Skip to main content
Log in

Pseudoreceptor model for ryanodine derivatives at calcium release channels

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This paper describes the generation of a pseudoreceptor model for ryanodine receptor (RyR) modulating ryanoids in rabbit skeletal muscle. For this purpose, the molecular modelling software PrGen was applied to correlate experimentally determined and calculated free energies of binding for a set of 15 ryanodine derivatives. The final model indicates a narrow cleft with hydrogen bond donor and acceptor capacities (represented by an Asn) as most crucial for binding the pyrrole carboxylate substituent at C3 of ryanodine. In addition, hydrophobic residues flank the aromatic pyrrole ring (Tyr, Phe, and Ile). Two of those residues (Tyr and Ile) interact with the 2-isopropyl moiety, which seems to contribute to binding. Opposite to the pyrrole locus, a second hydrophobic region (represented by a Leu) restricts ryanodine derivatives in their longitudinal axis and leads to the discrimination of equatorial and axial positioned methyl groups and of polar substituents at C9. Finally, a charged glutamate residue generates strong hydrogen bonding and electrostatic interactions with the hydroxyl groups at C10 and C15. For this binding-site model – composed of six amino acid residues – a correlation for the training set ligands of R = 0.99 (Q2 = 0.975) and a root mean square (rms) deviation of 0.568 kcal/mol for the prediction of the binding energies of four test set ligands was obtained. Based on this pseudoreceptor model the putative topology of the real binding site of ryanoids will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Sutko, J.L., Airey, J.A., Welch, W. and Ruest, L., Pharmacol. Rev., 49 (1997) 53.

    Google Scholar 

  2. Leong, P. and MacLennan, D.H., J. Biol. Chem., 273 (1998) 7791.

    Google Scholar 

  3. Saiki, Y., El-Hayek, R. and Ikemoto, N., J. Biol. Chem., 274 (1999) 7825.

    Google Scholar 

  4. Pessah, I.N., Waterhouse, A.L. and Casida, J.E., Biochem. Biophys. Res. Commun., 128 (1985) 449.

    Google Scholar 

  5. Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T. and Numa, S., Nature, 339 (1989) 439.

    Google Scholar 

  6. Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Green, N.M., Lai, F.A., Meissner, G. and MacLennan, D.H., J. Biol. Chem., 265 (1990) 2244.

    Google Scholar 

  7. Sutko, J.L. and Airey, J.A., Physiol. Rev., 76 (1996) 1027.

    Google Scholar 

  8. Jefferies, P.R., Lam, W.-W., Toia, R.F. and Casida, J.E., J. Agric. Food Chem., 40 (1992) 509.

    Google Scholar 

  9. Ruest, L. and Dodier, M., Can. J. Chem., 74 (1996) 2424.

    Google Scholar 

  10. SYBYL v. 6.5, Tripos Associates, Inc., St. Louis, MO, USA.

  11. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  12. SPARTAN 4.1.1, Wavefunction, Irvine, CA, USA.

  13. PrGen 1.5.6, Zbinden, P., Biographics Laboratory, Basel, Switzerland, 1997.

  14. Zbinden, P., Dobler, M., Folkers, G. and Vedani, A., Quant. Struct-Act. Relat., 17 (1998) 122.

    Google Scholar 

  15. Vedani, A., Zbinden, P., Snyder, J.P. and Greenidge, P.A., J. Am. Chem. Soc., 117 (1995) 4987.

    Google Scholar 

  16. Still, W.C., Tempczyk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  17. Searle, M.S. and Williams, D.H., J. Am. Chem. Soc., 114 (1992) 10690.

    Google Scholar 

  18. Welch, W., Ahmad, S., Airey, J.A., Gerzon, K., Humerickhouse, R.A., Besch, H.R. Jr, Ruest, L., Deslongchamps, P. and Sutko, J.L., Biochemistry, 33 (1994) 6074.

    Google Scholar 

  19. Ruest, L., Taylor, D.R. and Deslongchamps, P., Can. J. Chem., 63 (1985) 2840.

    Google Scholar 

  20. Kaye, P.T., Macrae, R., Meakins, D.D. and Patterson, C.H., J. Chem. Soc. Perkin II, (1980) 1631.

    Google Scholar 

  21. Waterhouse, A.L., Pessah, I.N., Francini, A.O. and Casida, J.E., J. Med. Chem., 30 (1987) 710.

    Google Scholar 

  22. Welch, W., Sutko, J.L., Mitchell, K.E., Airey, J. and Ruest, L., Biochemistry, 35 (1996) 7165.

    Google Scholar 

  23. Jefferies, P.R., Blumenkopf, T.A., Gengo, P.J., Cole, L.C. and Casida, J.E., J. Med. Chem., 39 (1996) 2331.

    Google Scholar 

  24. Jefferies, P.R., Gengo, P.J., Watson, M.J. and Casida, J.E., J. Med. Chem., 39 (1996) 2339.

    Google Scholar 

  25. Welch, W., Williams, A.J., Tinker, A., Mitchell, K.E., Deslongchamps, P., Lamothe, J., Gerzon, K., Bidasee, K.R., Besch, H.R. Jr, Airey, J.A., Sutko, J.L. and Ruest, L., Biochemistry, 36 (1997) 2939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleifer, KJ. Pseudoreceptor model for ryanodine derivatives at calcium release channels. J Comput Aided Mol Des 14, 467–475 (2000). https://doi.org/10.1023/A:1008141819487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008141819487

Navigation