Skip to main content
Log in

Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In a number of disciplines, directional data provides a fundamental source of information. A novel framework for isotropic and anisotropic diffusion of directions is presented in this paper. The framework can be applied both to denoise directional data and to obtain multiscale representations of it. The basic idea is to apply and extend results from the theory of harmonic maps, and in particular, harmonic maps in liquid crystals. This theory deals with the regularization of vectorial data, while satisfying the intrinsic unit norm constraint of directional data. We show the corresponding variational and partial differential equations formulations for isotropic diffusion, obtained from an L2 norm, and edge preserving diffusion, obtained from an L norm in general and an L1 norm in particular. In contrast with previous approaches, the framework is valid for directions in any dimensions, supports non-smooth data, and gives both isotropic and anisotropic formulations. In addition, the framework of harmonic maps here described can be used to diffuse and analyze general image data defined on general non-flat manifolds, that is, functions between two general manifolds. We present a number of theoretical results, open questions, and examples for gradient vectors, optical flow, and color images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alouges, F. 1991. An energy decreasing algorithm for harmonic maps. In Nematics, J.M. Coron et al. (Eds.), Nato ASI Series, Kluwer Academic Publishers: Netherlands, pp. 1–13.

    Google Scholar 

  • Alvarez, L., Lions, P.L., and Morel, J.M. 1992. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29:845–866.

    Google Scholar 

  • Angenent, S., Haker, S., Tannenbaum, A., and Kikinis, R. 1998. Laplace-Beltrami operator and brain flattening. University of Minnesota ECE Report.

  • Anzellotti, G. 1985. The Euler equation for functionals with linear growth. Transactions of the American Mathematical Society 483–501.

  • Bethuel, F. and Zheng, X. 1988. Density of smooth functions between two manifolds in Sobolev spaces. Journal of Functional Analysis 80:60–75.

    Google Scholar 

  • Black, M. and Anandan, P. 1993. A framework for the robust estimation of optical flow. In Fourth International Conf. on Computer Vision, Berlin, Germany, pp. 231–236.

  • Black, M., Sapiro, G., Marimont, D., and Heeger, D. 1998. Robust anisotropic diffusion. IEEE Trans. Image Processing 7(3):421–432.

    Google Scholar 

  • Blomgren, P. and Chan, T. 1998. Color TV: Total variation methods for restoration of vector valued images. IEEE Trans. Image Processing 7:304–309.

    Google Scholar 

  • Brezis, H., Coron, J.M., and Lieb, E.H. 1986. Harmonic maps with defects. Communications in Mathematical Physics 107:649–705.

    Google Scholar 

  • Cabral, B. and Leedom, C. 1993. Imaging vector fields using line integral convolution. ACM Computer Graphics (SIGGRAPH' 93) 27(4):263–272.

    Google Scholar 

  • Caselles, V. and Sapiro, G. 1998. Vector median filters, morphology, and PDE': Theoretical connections, ECE-University of Minnesota Technical Report. Also in Caselles, V., Sapiro, G., and Chung, D.H. Vector median filters, inf-sup operations, and coupled PDE': Theoretical connections. Journal of Mathematical Imaging and Vision, pp. 109- 120, April 2000.

  • Chan, T. and Shen, J. 1999. Variational restoration of non-flat image features: Models and algorithms. UCLA CAM-TR 99-20.

  • Chang, K.C., Ding, W.Y., and Ye, R. 1992. Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differential Geometry 36:507–515.

    Google Scholar 

  • Chen, Y. 1989. The weak solutions of the evolution problems of harmonic maps. Math. Z. 201:69–74.

    Google Scholar 

  • Chen, Y., Hong, M.C., and Hungerbuhler, N. 1994. Heat flow of p-harmonic maps with values into spheres. Math. Z. 205:25–35.

    Google Scholar 

  • Chen, Y., Li, J., and Lin, F.H. 1995. Partial regularity for weak heat flows into spheres. Communications on Pure and Applied Mathematics XLVIII:429–448.

    Google Scholar 

  • Cohen, R., Hardt, R.M., Kinderlehrer, D., Lin, S.Y., and Luskin, M. 1987. In Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer (Eds.), Minimum energy configurations for liquid crystals: Computational results, IMA Volumes in Mathematics and its Applications. Springer-Verlag: New York, pp. 99–121.

    Google Scholar 

  • Coron, J.M. 1990. Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. H. Poincaré, Analyse Non Linéaire 7(4):335–344.

    Google Scholar 

  • Coron, J.M. and Gulliver, R. 1989. Minimizing p-harmonic maps into spheres. J. Reine Angew. Mathem. 401:82–100.

    Google Scholar 

  • Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle. W. 1995. Multiresolution analysis of arbitrary meshes. Computer Graphics (SIGGRAPH' 95 Proceedings), pp. 173–182.

  • Eells, J. and Lemarie, L. 1978. A report on harmonic maps. Bull. London Math. Soc. 10(1):1–68.

    Google Scholar 

  • Eells, J. and Lemarie, L. 1988. Another report on harmonic maps. Bull. London Math. Soc. 20(5):385–524.

    Google Scholar 

  • Eells, J. and Sampson, J.H. 1964. Harmonic mappings of Riemannian manifolds. Am. J. Math. 86:109–160.

    Google Scholar 

  • Feldman, M. 1994. Partial regularity for harmonic maps of evolutions into spheres. Comm. in Partial Differential Equations 19:761–790.

    Google Scholar 

  • Freire, A. 1995. Uniqueness for the harmonic map flow in two dimensions. Calc. Var. 3:95–105.

    Google Scholar 

  • Giaquinta, M., Modica, G., and Soucek, J. 1993. Variational problems for maps of bounded variation with values in S 1. Cal. Var. 1:87–121.

    Google Scholar 

  • Granlund, G.H. and Knutsson, H. 1995. Signal Processing for Computer Vision. Kluwer: Boston, MA.

    Google Scholar 

  • Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., and Halle, M. 1999. Conformal surface parametrization for texture mapping. University of Minnesota IMA Preprint Series 1611.

  • Hardt, R.M. 1997. Singularities of harmonic maps. Bulletin of the American Mathematical Society 34(1):15–34.

    Google Scholar 

  • Hardt, R.M. and Lin, F.H. 1987. Mappings minimizing the L p norm of the gradient. Communications on Pure and Applied Mathematics XL:555–588.

    Google Scholar 

  • Hughes, T. 1987. The Finite Element Method. Prentice-Hall: New Jersey.

    Google Scholar 

  • Koenderink, J.J. 1984. The structure of images. Biological Cybernetics 50:363–370.

    Google Scholar 

  • Lindeberg, T. 1994. Scale-Space Theory in Computer Vision. Kluwer: The Netherlands.

    Google Scholar 

  • Osher, S. and Vese, L. 1999. Personal communication.

  • Pardo, A. and Sapiro, G. 1999. Vector probability diffusion. University of Minnesota, IMA preprint 1649, October 1999.

  • Perona, P. 1998. Orientation diffusion. IEEE Trans. Image Processing 7:457–467.

    Google Scholar 

  • Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern. Anal. Machine Intell. 12:629–639.

    Google Scholar 

  • Pismen, L.M. and Rubinstein, J. 1991. Dynamics of defects. In Nematics, J.M. Coron et al. (Eds.), Nato ASI Series: Kluwer Academic Publishers: Netherlands, pp. 303–326.

    Google Scholar 

  • Qing, J. 1995. On singularities of the heat flow for harmonic maps from surfaces into spheres. Communications in Analysis and Geometry 3(2):297–315.

    Google Scholar 

  • Rudin, L.I. and Osher, S. 1994. Total variation based image restoration with free local constraints. Proc. IEEE-ICIP I, pp. 31–35, Austin, Texas.

    Google Scholar 

  • Rudin, L.I., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. PhysicaD 60:259–268.

    Google Scholar 

  • Sapiro, G. and Ringach, D. 1996. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Processing 5:1582–1586.

    Google Scholar 

  • Sochen, N., Kimmel, R., and Malladi, R. 1998. A general framework for low level vision. IEEE Trans. Image Processing 7:310–318.

    Google Scholar 

  • Struwe, M. 1985. On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helvetici 60:558–581.

    Google Scholar 

  • Struwe, M. 1990. Variational Methods. Springer Verlag: New York.

    Google Scholar 

  • Tang, B., Sapiro, G., and Caselles, V. 1999. Color image enhancement via chromaticity diffusion, pre-print.

  • Trahanias, P.E., Karakos, D., and Venetsanopoulos, A.N. 1996. Directional processing of color images: Theory and experimental results. IEEE Trans. Image Processing 5:868–880.

    Google Scholar 

  • Trahanias, P.E. and Venetsanopoulos, A.N. 1993. Vector directional filters—A new class of multichannel image processing filters. IEEE Trans. Image Processing 2:528–534.

    Google Scholar 

  • Weickert, J. 1996. Foundations and applications of nonlinear anisotropic diffusion filtering. Zeitscgr. Angewandte Math. Mechan. 76:283–286.

    Google Scholar 

  • Weickert, J. 1999. Coherence-enhancing diffusion of color images. Image and Vision Computing 17:201–212.

    Google Scholar 

  • Whitaker, R.T. and Gerig, G. 1983. Vector-valued diffusion. In Geometry Driven Diffusion in ComputerVision, Ber B. Haar Romeny, (Ed.). Kluwer: Boston, MA.

    Google Scholar 

  • Witkin, A.P. 1983. Scale-space filtering. Int. Joint. Conf. Artificial Intelligence 2:1019–1021.

    Google Scholar 

  • Yezzi, A. 1998. Modified curvature motion for image smoothing and enhancement. IEEE Trans. Image Processing 7:345–352.

    Google Scholar 

  • You, Y.L., Xu, W., Tannenbaum, A., and Kaveh, M. 1996. Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. Image Processing 5:1539–1553.

    Google Scholar 

  • Zhang, D. and Hebert, M. 1999. Harmonic maps and their applications in surface matching. Proc. CVPR' 99. Colorado.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, B., Sapiro, G. & Caselles, V. Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case. International Journal of Computer Vision 36, 149–161 (2000). https://doi.org/10.1023/A:1008152115986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008152115986

Navigation