Skip to main content
Log in

A Soft Computing Approach to Road Classification

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Current learning approaches to computer vision have mainly focussed on low-level image processing and object recognition, while tending to ignore high-level processing such as understanding. Here we propose an approach to object recognition that facilitates the transition from recognition to understanding. The proposed approach embraces the synergistic spirit of soft computing, exploiting the global search powers of genetic programming to determine fuzzy probabilistic models. It begins by segmenting the images into regions using standard image processing approaches, which are subsequently classified using a discovered fuzzy Cartesian granule feature classifier. Understanding is made possible through the transparent and succinct nature of the discovered models. The recognition of roads in images is taken as an illustrative problem in the vision domain. The discovered fuzzy models while providing high levels of accuracy (97%), also provide understanding of the problem domain through the transparency of the learnt models. The learning step in the proposed approach is compared with other techniques such as decision trees, naïve Bayes and neural networks using a variety of performance criteria such as accuracy, understandability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almuallim, H. and Dietterich, T. G.: 1991, Learning with irrelevant features, in: AAAI-91, Anaheim, CA, pp. 547-552.

  • Baldwin, J. F.: 1991a, Combining evidences for evidential reasoning, Internat. J. Intelligent Systems 6(6), 569-616.

    Google Scholar 

  • Baldwin, J. F.: 1991b, A theory of mass assignments for artificial intelligence, in: A. L. Ralescu (ed.), IJCAI '91 Workshops on Fuzzy Logic and Fuzzy Control, Sydney, Australia, Lecture Notes in Artificial Intelligence, pp. 22-34.

  • Baldwin, J. F.: 1992, Fuzzy and probabilistic uncertainties, in: Shapiro (ed.), Encyclopaedia of AI, 2nd edn, pp. 528-537.

  • Baldwin, J. F.: 1993a, Evidential support logic, FRIL and cased base reasoning, Internat. J. Intelligent Systems 8(9), 939-961.

    Google Scholar 

  • Baldwin, J. F.: 1993b, Probabilistic, fuzzy and evidential reasoning in FRIL (fuzzy relational inference language), in: Two Decades of Fuzzy Control, IEE, London, pp. 7/1-7/4.

    Google Scholar 

  • Baldwin, J. F., Lawry, J., and Martin, T. P.: 1996, Efficient algorithms for semantic unification, in: IPMU, Granada, Spain, pp. 527-532.

  • Baldwin, J. F., Martin, T. P., and Pilsworth, B. W.: 1995, FRIL-Fuzzy and Evidential Reasoning in A.I., Research Studies Press, Wiley ISBN 086380159 5.

  • Baldwin, J. F., Martin, T. P., and Shanahan, J. G.: 1996, Modelling with words using Cartesian granule features, in: ITRC 246, Dept. of Engineering Maths, University of Bristol, UK.

    Google Scholar 

  • Baldwin, J. F., Martin, T. P., and Shanahan, J. G.: 1997, Modelling with words using Cartesian granule features, in: FUZZ-IEEE, Barcelona, Spain, pp. 1295-1300.

  • Baldwin, J. F., Martin, T. P., and Shanahan, J. G.: 1998a, Aggregation in Cartesian granule feature models, IPMU, Paris, 6.

  • Baldwin, J. F., Martin, T. P., and Shanahan, J. G.: 1998b, System identification of fuzzy Cartesian granule feature models using genetic programming, in: A. L. Ralescu and J. G. Shanahan (eds), IJCAI Workshop on Fuzzy Logic in Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 1566, Springer, Berlin, p. 26.

    Google Scholar 

  • Bastian, A.: 1995, Modelling and identifying fuzzy systems under varying user knowledge, PhD Thesis, Meiji University, Tokyo.

    Google Scholar 

  • Blum, A. L. and Langley, P.: 1997, Selection of relevant features and examples in machine learning, Artificial Intelligence 97, 245-271.

    Google Scholar 

  • Bovlik, A. C., Clark, M., and Geisler, W. S.: 1990, Multichannel texture analysis using localised spatial filters, IEEE Trans. on PAMI 12(1), 55-73.

    Google Scholar 

  • Brooks, R. A.: 1987, Model-based three-dimensional interpretations of two-dimensional images, in: M. A. Fischler and O. Firschein (eds), Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, Kaufmann Publishers, Los Altos, CA, USA, pp. 360-370.

    Google Scholar 

  • Caelli, T. and Reye, D.: 1993, On the classification of image regions by colour, texture and shape, Pattern Recognition 26(4), 461-470.

    Google Scholar 

  • Campbell, F.W. and Robson, J. G.: 1968, Application of Fourier analysis to the visibility of gratings, Journal of Physiology 197, 551-566.

    Google Scholar 

  • Campbell, N. W., Mackeown, W. P. J., Thomas, B. T., and Troscianko, T.: 1997, Interpreting image databases by region classification, Pattern Recognition 30(4), 555-563.

    Google Scholar 

  • Campbell, N. W., Thomas, B. T., and Troscianko, T.: 1997, Automatic segmentation and classification of outdoor images using neural networks, Internat. J. of Neural Systems 8(1), 137-144.

    Google Scholar 

  • Connell, J. H. and Brady, M.: 1987, Generating and generalising models of visual objects, Artificial Intelligence 34, 159-183.

    Google Scholar 

  • Cootes, T. F. and Taylor, C. J.: 1995, Combining point distributions with shape models based on finite-element analysis, Image Vision Computation 13(5), 403-409.

    Google Scholar 

  • Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J.: 1992, Training models of shape from sets of examples, in: British Machine Vision Conference, Leeds, UK, pp. 9-18.

  • Daugman, J. G.: 1985, Uncertainty relation for resolution in space, spatial, frequency, and orientation optimised by two-dimensional visual cortical filters, J. Optical Soc. Am. 2(7), 1160-1169.

    Google Scholar 

  • Devijer, P. A. and Kittler, J.: 1982, Pattern Recognition: A Statistical Approach, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Dietterich, T. G. and Michalski, R. S.: 1983, A comparative review of selected methods for learning from examples, in: R. S. Michalski, J. G. Carbonell, and T.M. Mitchell (eds), Machine Learning: An Artificial Intelligence Approach, Springer, Berlin, pp. 41-81.

    Google Scholar 

  • Draper, B. A., Collins, R. T., Brolio, J., Hanson, A. R., and Riseman, E. M.: 1989, The schema system, Internat. J. Computer Vision 2, 209-250.

    Google Scholar 

  • Dubois, D. and Prade, H.: 1991, Fuzzy sets in approximate reasoning 1-inference with possibility distributions, Fuzzy Sets and Systems 40, 143-202.

    Google Scholar 

  • Fischler, M. A. and Firschein, O.: 1987, Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, Kaufmann Publishers, Los Altos, CA, USA, pp. 765-768.

    Google Scholar 

  • Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J.: 1991, Knowledge discovery in databases: An overview, in: G. Piatetsky-Shapiro and W. J. Frawley (eds), Knowledge Discovery in Databases, AAAI Press/MIT Press, Cambridge, MA, USA, pp. 1-27.

    Google Scholar 

  • Glassner, A. S.: 1995, Principles of Digital Image Synthesis, Morgan Kaufmann, San Francisco.

    Google Scholar 

  • Good, I. J.: 1965, The Estimation of Probabilities: An Essay on Modern Bayesian Methods, MIT Press, Cambridge, MA.

    Google Scholar 

  • Grimson, W. E. L. and Lozano-Perez, T.: 1984, Model-based recognition and localization from sparse range or tactile data, Internat. J. Robotics Res. 3(3), 3-35.

    Google Scholar 

  • Jain, A. K., Ratha, N. K., and Lakshmanan, S.: 1997, Object detection using Gabor filters, Pattern Recognition 30(2), 295-309.

    Google Scholar 

  • Jolliffe, I. T.: 1986, Principal Component Analysis, Springer, New York.

    Google Scholar 

  • Kira, K. and Rendell, L.: 1992, A practical approach to feature selection, in: 9th Conference in Machine Learning, Aberdeen, Scotland, pp. 249-256.

  • Klir, G. J. and Yuan, B.: 1995, Fuzzy Sets and Fuzzy Logic, Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Kohavi, R. and John, G. H.: 1997, Wrappers for feature selection, Artificial Intelligence 97, 273-324.

    Google Scholar 

  • Kononenko, I. and Hong, S. J.: 1997, Attribute selection for modelling, FGCS Special Issue in Data Mining (Fall), 34-55.

  • Kosako, A., Ralescu, A. L., and Shanahan, J. G.: 1994, Fuzzy techniques in image understanding, in: ISCIE Joint Conf. for Automatic Control, Osaka, Japan, pp. 17-22.

  • Koza, J. R.: 1992, Genetic Programming, MIT Press, Cambridge, MA.

    Google Scholar 

  • Koza, J. R.: 1994, Genetic Programming II, MIT Press, Cambridge, MA.

    Google Scholar 

  • Mackeown, W. P. J., Greenway, P., Thomas, B. T., and Wright, W. A.: 1994, Contextual image labelling with a neural network, IEE Vision, Speech and Signal Processing, 238-244.

  • Malik, I. and Perona, P.: 1990, Preattentive texture discrimination with early vision mechanisms, J. Opt. Society Am. A 7, 923-932.

    Google Scholar 

  • Michalski, R. S. and Chilausky, R. L.: 1980, Learning by being told and by examples, Internat. J. Policy Analysis and Information Systems 4, 125-161.

    Google Scholar 

  • Michalski, R. S., Rosenfeld, A., Duric, Z., Maloof, M., and Zhang, Q.: 1998a, Data mining and knowledge discovery: A review of issues and a multistrategy approach, in: R. S. Michalski, I. Bratko, and M. Kubat (eds), Machine Learning and Data Mining, Wiley, New York, pp. 71-112.

    Google Scholar 

  • Michalski, R. S., Rosenfeld, A., Duric, Z., Maloof, M., and Zhang, Q.: 1998b, Learning patterns in images, in: R. S. Michalski, I. Bratko, and M. Kubat (eds), Machine Learning and Data Mining, Wiley, New York, pp. 241-268.

    Google Scholar 

  • Mirmehdi, M., Palmer, P. L., Kittler, J., and Dabis, H.: 1999, Feedback control strategies for object recognition, IEEE Trans. Image Processing 8(8), 1084-1101.

    Google Scholar 

  • Moller, M. F.: 1993, A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks 6, 525-533.

    Google Scholar 

  • Mukunoki, M., Minoh, M., and Ikeda, K.: 1994, Retrieval of images using pixel based object models, in: IPMU, Paris, France, pp. 1127-1132.

  • Murase, H. and Nayar, S. K.: 1993, Learning and recognition of 3D objects from appearance, in: IEEE 2nd Qualitative Vision Workshop, New York, pp. 39-50.

  • Murphy, S. K., Kasif, S., and Salzburg, S.: 1994, A system for induction of oblique decision trees, J. Artificial Intelligence Res. 2, 1-33.

    Google Scholar 

  • Quinlan, J. R.: 1986, Induction of decision trees, Machine Learning 1(1), 86-106.

    Google Scholar 

  • Quinlan, J. R.: 1993, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Ralescu, A. L. and Hartani, R.: 1995, Some issues in fuzzy and linguistic modelling, in: Workshop on Linguistic Modelling, FUZZ-IEEE, Yokohama, Japan.

  • Ralescu, A. L. and Shanahan, J. G.: 1995, Line structure inference in fuzzy perceptual grouping, in: NSF Workshop on Computer Vision, Islamabad, Pakistan, pp. 225-239.

  • Ralescu, A. L. and Shanahan, J. G.: 1999, Fuzzy perceptual organisation of image structures, Pattern Recognition 32, 1923-1933.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: 1986, Learning internal representations by error propagation, in: D. E. Rumelhart and J. L. McClelland (eds), Parallel Distributed Processing, Vol. 1, MIT Press, Cambridge, USA.

    Google Scholar 

  • Ruspini, E. H.: 1969, A new approach to clustering, Inform. Control 15(1), 22-32.

    Google Scholar 

  • Schweizer, B. and Sklar, A.: 1961, Associative functions and statistical triangle inequalities, Publ. Math. Debrecen 8, 169-186.

    Google Scholar 

  • Shanahan, J. G.: 1998, Cartesian granule features: Knowledge discovery of additive models for classification and prediction, PhD Thesis, Dept. of Engineering Maths, University of Bristol, Bristol, UK.

    Google Scholar 

  • Shanahan, J. G., Baldwin, J. F., Campbell, N., Martin, T. P., Mirmehdi, M., and Thomas, B. T.: 1999, Road recognition using fuzzy classifiers, in: British Machine Vision Conference (BMVC), Nottingham, UK, pp. 432-442.

  • Shepherd, B. A.: 1983, An appraisal of a decision tree approach to image classification, Internat. Joint Conf. on AI, pp. 473-475.

  • Strat, T. M.: 1992, Natural Object Recognition, Springer, New York, USA.

    Google Scholar 

  • Sudkamp, T.: 1992, On probability-possibility transformation, Fuzzy Sets and Systems 51, 73-81.

    Google Scholar 

  • Syswerda, G.: 1989, Uniform crossover in genetic algorithms, in: J. D. Schaffer (ed.), Third Internat. Conf. on Genetic Algorithms, Morgan Kaufmann, San Francisco, pp. 989-995.

    Google Scholar 

  • Turk, M. A. and Pentland, A. P.: 1991, Face recognition using eigenfaces, in: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586-591.

  • Valois, L. R. D. and Valois, K. K. D.: 1993, A multi-stage color model, Vision Research 33(8), 1053-1065.

    Google Scholar 

  • Valois, R. L. D., Albreacht, D. G., and Thorell, L. G.: 1982, Spatial-frequency selectivity of cells in macaque visual cortex, Visual Research 22, 545-559.

    Google Scholar 

  • Winston, P. H.: 1975, The Psychology of Computer Vision, McGraw-Hill, New York.

    Google Scholar 

  • Wood, M. E. J., Campbell, N.W., and Thomas, B. T.: 1997, Searching large image databases using radial basis function neural networks, in: Internat. Conf. on Image Processing and its Applications, London, UK, pp. 116-120.

  • Zadeh, L. A.: 1968, Probability measures of fuzzy events, J. Math. Analysis Appl. 23, 421-427.

    Google Scholar 

  • Zadeh, L. A.: 1975a, The concept of a linguistic variable and its application to approximate reasoning. Part 1, Inform. Sci. 8, 199-249.

    Google Scholar 

  • Zadeh, L. A.: 1975b, The concept of a linguistic variable and its application to approximate reasoning. Part 2, Inform. Sci. 8, 301-357.

    Google Scholar 

  • Zadeh, L. A.: 1975c, The concept of a linguistic variable and its application to approximate reasoning. Part 3, Inform. Sci. 9, 43-80.

    Google Scholar 

  • Zadeh, L. A.: 1994, Soft computing and fuzzy logic, IEEE Software 11(6), 48-56.

    Google Scholar 

  • Zadeh, L. A.: 1996, Fuzzy logic=computing with words, IEEE Trans. Fuzzy Systems 4(2), 103-111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanahan, J., Thomas, B., Mirmehdi, M. et al. A Soft Computing Approach to Road Classification. Journal of Intelligent and Robotic Systems 29, 349–387 (2000). https://doi.org/10.1023/A:1008158907779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008158907779

Keywords

Navigation