Skip to main content
Log in

3D-QSAR methods on the basis of ligand–receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Many heterocyclic amines (HCA) present in cooked food exert a genotoxic activity when they are metabolised (N-oxidated) by the human cytochrome P450 1A2 (CYP1A2h). In order to rationalize the observed differences in activity of this enzyme on a series of 12 HCA, 3D-QSAR methods were applied on the basis of models of HCA–CYP1A2h complexes. The CYP1A2h enzyme model has been previously reported and was built by homology modeling based on cytochrome P450 BM3. The complexes were automatically generated applying the AUTODOCK software and refined using AMBER. A COMBINE analysis on the complexes identified the most important enzyme–ligand interactions that account for the differences in activity within the series. A GRID/GOLPE analysis was then performed on just the ligands, in the conformations and orientations found in the modeled complexes. The results from both methods were concordant and confirmed the advantages of incorporating structural information from series of ligand–receptor complexes into 3D-QSAR methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Black, S.D. and Coon, M.J., Adv. Enzymol. Relat. Areas Mol. Biol., 60 (1987) 35.

    Google Scholar 

  2. Peterson, J.A. and Graham, S.E., Structure, 6 (1998) 1079.

    Google Scholar 

  3. Sugimura T., Mutat. Res., 376 (1997) 211.

    Google Scholar 

  4. Segura, J., Roberts, D.J. and TarrÚs, E.J., J. Pharm. Pharmacol., 41 (1989) 129.

    Google Scholar 

  5. Fuhr, U., Strobl, G., Manaut, F., Anders, E., Sörgel, F., López de Brinñas, E., Chu, D.T.W., Pernet, A.G., Mahr, G., Sanz, F. and Staib, H., Mol. Pharmacol., 43 (1993) 191.

    Google Scholar 

  6. Shimada, T., Iwasaki, M., Martin, M.V. and Guengerich, F.P., Cancer Res., 49 (1989) 3218.

    Google Scholar 

  7. Wakabayashi, K., Nagao, M., Esumi, H. and Sugimura, T., Cancer Res. (suppl.), 52 (1992) 2092.

    Google Scholar 

  8. Chang, Y.T., Stiffelman, O.B., Vakser, I.A., Loew, G.H., Bridges, A. and Waskell, L., Protein Eng., 10 (1997) 119.

    Google Scholar 

  9. Szklarz, G.D. and Halpert, J.R., Life Sci., 61 (1997) 2507.

    Google Scholar 

  10. Lozano, J.J., Lopez-de-Brinas, E., Centeno, N.B., Guido, R. and Sanz, F., J. Comput.-Aided Mol. Design, 11 (1997) 395.

    Google Scholar 

  11. Poulos, T.L., Finzel, B.C. and Howard, A.J., Biochemistry, 25 (1986) 5314.

    Google Scholar 

  12. Ravichandran, K.G., Boddupalli, S.S., Hasemann, C.A., Peterson, J.A. and Deisenhofer, J., Science, 261 (1993) 731.

    Google Scholar 

  13. Hasemann, C.A., Ravichandran, K.G., Peterson, J.A. and Deisenhofer, J., J. Mol. Biol., 236 (1994) 1169.

    Google Scholar 

  14. Cupp-Vickery, J.R. and Poulos, T.L., Nat. Struct. Biol., 2 (1995) 144.

    Google Scholar 

  15. Uno, T., Michell, E., Aida, K., Lambert, M.H., Darden, T.A., Pedersen, L.G. and Negishi, M., Biochemistry, 36 (1997) 3193.

    Google Scholar 

  16. Helms, V. and Wade, R.C., J. Am. Chem. Soc., 120 (1998) 2710.

    Google Scholar 

  17. Paulsen, M.D. and Ornstein, R.L., Protein Eng., 9 (1996) 567.

    Google Scholar 

  18. Kollman, P., Chem. Rev., 93 (1993) 2395.

    Google Scholar 

  19. Ortiz, A.R., Pisabarro, M.T., Gago, F. and Wade, R.C., J.Med. Chem., 36 (1995) 2681.

    Google Scholar 

  20. Ortiz, A.R., Pastor, M., Palomer, A., Cruciani, G., Gago, F. and Wade, R.C., J. Med. Chem., 40 (1997) 1136.

    Google Scholar 

  21. Perez, C., Pastor, M., Ortiz, A.R. and Gago, F., J. Med. Chem., 41 (1998) 836.

    Google Scholar 

  22. Wade, R.C., Ortiz, A.R. and Gago, F., In Kubinyi, H., Folkers, G. and Martin, Y.C. (Eds.), 3D QSAR in Drug Design, Vol. 2, Kluwer/Escom, Dordrecht, 1998, p. 19.

    Google Scholar 

  23. Goodford, P., J. Chemometr., 10 (1996) 107.

    Google Scholar 

  24. Cramer, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  25. GOLPE 4.0, Multivariate Infometric Analysis, Perugia, Italy, 1998.

  26. Cruciani, G. and Watson, K.A., J. Med. Chem., 37 (1994) 2589.

    Google Scholar 

  27. Sugimura, T., Mutat. Res., 150 (1985) 33.

    Google Scholar 

  28. Eisenbrand, G. and Tang, W., Toxicology, 84 (1993) 1.

    Google Scholar 

  29. GRID v. 15, Molecular Discovery Ltd., Oxford, 1997.

  30. Wild, D., Feser, W., Michel, S., Lord, H.L. and Josephy, P.D., Carcinogesis, 16 (1995) 643.

    Google Scholar 

  31. Shimada, T. and Guengerich, F.P., Cancer Res., 51 (1991) 5284.

    Google Scholar 

  32. Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J., J. Comput.-Aided Mol. Design, 10 (1996) 293.

    Google Scholar 

  33. Raag, R., Li, H., Jones, B.C. and Poulos, T.L., Biochemistry, 32 (1993) 4571.

    Google Scholar 

  34. AMBER (UCSF): Assisted Model Building with Energy Refinement, version 4.1, 1995. Department of Pharmaceutical Chemistry, University of California, San Francisco, CA.

    Google Scholar 

  35. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  36. Poulos, T.L. and Howard, A.J., Biochemistry, 26 (1987) 8165.

    Google Scholar 

  37. Gaussian 94, Revision E.1, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A., Gaussian, Inc., Pittsburgh, PA, 1995.

    Google Scholar 

  38. Bayly, C.I., Cieplak, P., Cornell, W.D. and Kollman, P.A., J. Phys. Chem., 97 (1993) 10269.

    Google Scholar 

  39. Pastor, M., Cruciani, G. and Clementi, S., J. Med. Chem., 40 (1997) 1455.

    Google Scholar 

  40. Gotoh, O., J. Biol. Chem., 267 (1993) 83.

    Google Scholar 

  41. Furuya, H., Shimizu, T., Hirano, K., Hatano, M. and Fujii-Kuriyama, Y., Biochemistry, 28 (1989) 6848.

    Google Scholar 

  42. Shimizu, T., Sadeque, A.J.M., Sadeque, G.N., Hatano, M. and Fujii-Kuriyama, Y., Biochemistry, 30 (1991) 1490.

    Google Scholar 

  43. Tuck, F.S., Hiroya, K., Shimizu, T., Hatano, M. and Ortiz de Montellano, P.R., Biochemistry, 32 (1993) 2548.

    Google Scholar 

  44. Krainev, A.G., Shimizu, T., Ishigooka, M., Hiroya, K. and Hatano, M., Biochemistry, 32 (1993) 1951.

    Google Scholar 

  45. Poulos, T.L., Curr. Opin. Struct. Biol., 5 (1995) 767.

    Google Scholar 

  46. Oprea, T.I., Hummer, G. and Garcia, A.E., Proc. Natl. Acad. Sci. USA, 94 (1997) 2133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano, J.J., Pastor, M., Cruciani, G. et al. 3D-QSAR methods on the basis of ligand–receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands. J Comput Aided Mol Des 14, 341–353 (2000). https://doi.org/10.1023/A:1008164621650

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008164621650

Navigation