Skip to main content
Log in

A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors. 2. The relationship between alignment solutions obtained from conformationally rigid and flexible matching

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

An analysis of the relationship among alignment solutions obtained from field-based matching of a representative set of rigid conformers of three non-nucleoside HIV-1 reverse transcriptase inhibitors and solutions obtained from flexible matching of the same conformers is presented. In some cases, different alignment solutions obtained from rigid matching converge to the same solution when conformational rigidity is relaxed, indicating that a reduced set of conformers per molecule may be sufficient in many field-based similarity studies. Furthermore, the results also indicate the importance of going beyond the pairwise similarity level to obtain consistent solutions in flexible-matching studies. In this respect, the best conformationally flexible multi-molecule alignment obtained is found to be in good agreement with the relative binding geometry and orientation found experimentally from protein-ligand crystal structures. The rms separation between corresponding atoms in computed and `experimental' sets of three inhibitor structures is 0.94 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, M.A. and Maggiora, G.M. (Eds.), Concepts and Applications of Molecular Similarity, Wiley, New York, NY, 1990.

    Google Scholar 

  2. Kubinyi, H. (Ed.), 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993.

    Google Scholar 

  3. Dean, P.M. (Ed.), Molecular Similarity in Drug Design, Blackie Academic, London, 1995.

    Google Scholar 

  4. Martin, Y.C., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  5. Lajiness, M., In van de Waterbeemd, H. (Ed.), Structure-Property Correlations in Drug Research, Landes Bioscience, Austin, TX, 1996, Chapter 5.

    Google Scholar 

  6. Lewis, R.A., Mason, J.S. and McLay, I.M., J. Chem. Inf. Comput. Sci., 37 (1997) 599.

    Google Scholar 

  7. Matter, H., J. Med. Chem., 40 (1997) 1219.

    Google Scholar 

  8. Mayer, D., Naylor, C.B., Motoc, I. and Marshall, G.R., J. Comput.-Aided Mol. Design, 1 (1987) 3.

    Google Scholar 

  9. Van Drie, J.H., Weininger, D. and Martin, Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.

    Google Scholar 

  10. Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I. and Pavlik, P.A., J. Comput.-Aided Mol. Design, 7 (1993)83.

    Google Scholar 

  11. Willett, P., J. Mol. Recogn., 8 (1995) 290.

    Google Scholar 

  12. Pickett, S.D., Mason, J.S. and McLay, I.M., J. Chem. Inf. Comput. Sci., 36 (1996) 1214.

    Google Scholar 

  13. Van Drie, J.H., J. Comput.-Aided Mol. Design, 11 (1997) 39.

    Google Scholar 

  14. Klebe, G., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 173–199.

    Google Scholar 

  15. Carbó, R., Leyda, L. and Arnau, M., Int. J. Quantum Chem., 17 (1980) 1185.

    Google Scholar 

  16. Hodgkin, E.E. and Richards, W.G., Int. J. Quantum Chem. Quantum Biol., 14 (1987) 105.

    Google Scholar 

  17. Petke, J.D., J. Comput. Chem., 14 (1993) 928.

    Google Scholar 

  18. Good, A.C., J. Mol. Graphics, 10 (1992) 114.

    Google Scholar 

  19. Kearsley, S.K. and Smith, G.M., Tetrahedron Comput. Methodol., 3 (1990) 615.

    Google Scholar 

  20. Hermann, R.B. and Herron, D.K., J. Comput.-Aided Mol. Design, 5 (1991) 511.

    Google Scholar 

  21. Sanz, F., Manaut, F., Rodríguez, J., Lozoya, E. and López-de-Briñas, E., J. Comput.-Aided Mol. Design, 7 (1993) 337.

    Google Scholar 

  22. Good, A.C., So, S.-S. and Richards, W.G., J. Med. Chem., 36 (1993) 433.

    Google Scholar 

  23. Perkins, T.D.J., Mills, J.E.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 479.

    Google Scholar 

  24. Jain, A.N., Dietterich, T.G., Lathrop, R.H., Chapman, D., Critchlow, Jr., R.E., Baner, B.E., Webster, T.A. and Lozano-Pérez, T., J. Comput.-Aided Mol. Design, 8 (1994) 635.

    Google Scholar 

  25. Grant, J.A., Gallardo, M.A. and Pickup, B.T., J. Comput. Chem., 17 (1996) 1653.

    Google Scholar 

  26. Klebe, G., Mietzner, T. and Weber, F., J. Comput.-Aided Mol. Design, 8 (1994) 751.

    Google Scholar 

  27. McMartin, C. and Bohacek, R.S., J. Comput.-Aided Mol. Design, 9 (1995) 237.

    Google Scholar 

  28. Lemmen, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 11 (1997) 357.

    Google Scholar 

  29. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Comput. Chem., 18 (1997) 934.

    Google Scholar 

  30. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Mol. Graphics Mod., 15 (1997) 114.

    Google Scholar 

  31. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Comput.-Aided Mol. Design, 13 (1999) 79.

    Google Scholar 

  32. Klebe, G., Perspect. Drug Discov. Design, 3 (1996) 85.

    Google Scholar 

  33. Leach, A.R., In Dean, P.M. (Ed.), Molecular Similarity in Drug Design, Blackie Academic, London, 1995, pp. 57–88.

    Google Scholar 

  34. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.A. and Dunn, D.A., In Olson, E.C. and Christoffersen, R.E. (Eds.), Computer-Assisted Drug Design, ACS Symposium Series, No. 112, American Chemical Society, Washington, DC, 1979, pp. 205–222.

    Google Scholar 

  35. Perkins, T.D.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 7 (1993) 155.

    Google Scholar 

  36. Allinger, N.L., J. Am. Chem. Soc., 99 (1977) 8127.

    Google Scholar 

  37. Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T. and Still, W.C., J. Comput. Chem., 11 (1990) 440.

    Google Scholar 

  38. Goodman, J. and Still, W.C., J. Comput. Chem., 12 (1991) 1110.

    Google Scholar 

  39. Rohrer, D.C., In Carbó, R. (Ed.), Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, Kluwer Academic Publishers, Dordrecht, 1995, pp. 141–161.

    Google Scholar 

  40. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  41. Good, A.C., Hodgkin, E.E. and Richards, W.G., J. Chem. Inf. Comput. Sci., 32 (1992) 188.

    Google Scholar 

  42. Merluzzi, V.J., Hargrave, K.D., Labadia, M., Grozinger, K., Skoog, M., Wu, J.C., Shih, C.-K., Eckner, K., Hattox, S., Adams, J., Rosenthal, A.S., Faanes, R., Eckner, R.J., Koup, R.A. and Sullivan, J.L., Science, 250 (1990) 1411.

    Google Scholar 

  43. Kukla, M.J., Breslin, H.J., Pauwels, R., Fedde, C.L., Miranda, M., Scott, M.K., Sherrill, R.G., Raeymaekers, A., Van Gelder, J., Andries, K., Janssen, M.A.C., De Clercq, E. and Janssen, P.A.J., J. Med. Chem., 34 (1991) 746.

    Google Scholar 

  44. Pauwels, R., Andries, K., Debyser, Z., Van Daele, P., Schols, D., Stoffels, P., De Vreese, K., Woestenborghs, R., Vandamme, A.-M., Janssen, C.G.M., Anne, J., Cauwenbergh, G., Desmyter, J., Heykants, J., Janssen, M.A.C., De Clercq, E. and Janssen, P.A.J., Proc. Natl. Acad. Sci. USA, 90 (1993) 1711.

    Google Scholar 

  45. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  46. Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. and Steitz, T.A., Science, 256 (1992) 1783.

    Google Scholar 

  47. Ding, J., Das, K., Tantillo, C., Zhang, W., Clark Jr., A.D., Jessen, S., Lu, X., Hsiou, Y., Jacobo-Molina, A., Andries, K., Pauwels, R., Moereels, H., Koymans, L., Janssen, P.A.J., Smith Jr., R.H., Koepke, M.K., Michejda, C.J., Hughes, S.H. and Arnold, E., Structure, 3 (1995) 365.

    Google Scholar 

  48. Ding, J., Kalysn, D., Moereels, H., Koymans, L., Andries, K., Janssen, P.A.J., Hughes, S.H. and Arnold, E., Nat. Struct. Biol., 2 (1995) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mestres, J., Rohrer, D.C. & Maggiora, G.M. A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors. 2. The relationship between alignment solutions obtained from conformationally rigid and flexible matching. J Comput Aided Mol Des 14, 39–51 (2000). https://doi.org/10.1023/A:1008168228728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008168228728

Navigation