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Evaluation of the EVA Descriptor for QSAR Studies: 3. The use of a Genetic
Algorithm to Search for M odels with Enhanced Predictive Properties (EVA_GA)

David B. Turner and Peter Willett
Krebs Institute for Biomolecular Researahd Department of Information Studies,
University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K.
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Summary

The EVA structural descriptor, based upon calculated fundamental molecular vibrational
frequencies, has proved to be an effective descriptor for both QSAR and database similarity
calculations. The descriptor is sensitive to 3D structure but has an advantage over field-
based 3D-QSAR methods inasmuch as strucsuiaérposition is not required. The original
technigue involves a standardisation method wherein uniform Gaussians of fixed standard
deviation 6) are used to smear out frequencies projected onto a linear scale. This smearing
function permits the overlap of proximal dngencies and thence the extraction of a fixed
dimensional descriptor regardless of the nunalper precise values of the frequencies. It is
proposed here that there exist optimal localised valuesrotiifferent spectral regions; that

is, the overlap of frequencies using uniform Gaussians may, at certain points in the
spectrum, either be insufficient to piak relationships where they exist or mix up

information to such an extent that signifitaorrelations are obscured by noise. A genetic
algorithm is used to search for optimal localisedalues using crossvalidated PLS

regression scores as the fithess score to be optimised. The resultant models are then
validated against a previously unseen sestof compounds. The performance of EVA_GA

is compared to that of EVA and analogous CoMFA studies.

Introduction

EVA is a molecular descriptor that is derived from calculated fundamental infra-red (IR)
and Raman range vibrational frequencies,Bl,Z'he descriptor has the advantage over
popular 3D-QSAR methods such as CoMFA [4] in as much as it is invariant to rotation and
translation of the structures concerned and it is therefore not necessary to superpose
compounds in order to provide descriptors. Bsiee studies [2,3] have indicated that EVA
can successfully be used to develop QSAR mddela range of different structural classes,
exhibiting various degrees of conformationalefdom and with a variety of biological

endpoints. These studies also found that EVA, like field-based 3D-QSAR, can perform well
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with heterogeneous sets of structures. In most cases the EVA models were found to be
statistically entirely comparable to those obtained using CoMFA but without the difficulties
associated with structural superposition. A detailed study with a benchmark steroid dataset
[3] indicated that EVA can provide statistically robust QSAR models when this is judged by
the scores from internal crossvalidation, rang@mmmutation tests and external test set

prediction.

This paper describes a modification to the/wawhich the EVA descriptor is calculated

that has been developed with a view to providing QSAR models with enhanced internal and
external predictivity. The "classical" EVAedcriptor (henceforth referred to as EVA) is
derived by projecting normal mode frequersc(NMFs) onto a linear scale and then

smearing them out using Gaussian kernels such that proximal frequencies are permitted to
overlap. A fixed-dimensional standardisezkdriptor is then exdrcted for any chosen

molecule, as described in more detail belovevitiusly, for a given analysis, EVA has been
extracted using Gaussian kernels of fixed standard deviafj@acfoss the spectrum. This is
necessary because it means that each frequenc¢eéioh part of the spectrum) is equally
weighted prior to regression analysis. It hasbfound that the quality of the QSAR model
very often is dependent upon the choseand that the best to use can vary substantially

[2,3]. The general approach [3] has beegdnerate many sets of EVA descriptors based
upon a variety o6 and, on the basis of training set crossvalidation results, setect a
expansion term that is expected to provadeoptimally predictive model for a previously
unseen test set. The effectiveness ofrtioslel-selection method has been clearly

demonstrated with a steroid dataset [3].

In the work described herenhas been permitted to have localised values at different
regions on the linear scale. This approach shpatmit the determination of an optimal or
near-optimal overlap of kernels across the spectrum, where the quality of this overlap is
judged by the scores from subsequent PLS regression using the derived descriptor matrix.
The basis of this study is the postultdtat there exist localised valuesméssociated with
different regions of the spectrum that provide improved internal and external predictivity
relative to those obtained with any model based on a &ixedm. At the same time there is
a requirement to search for an optimal set of tkesglues and, for reasons explained
below, a genetic algorithm (GA) has been ugedirect this search. PLS [5] crossvalidation
regression scores are used as the fithess funidibe optimised by the GA. The proposed
technique is fundamentally different from matendard variable selection techniques [6-8]

in as much as variables are not includedieded by the procedure; rather, it is their



information content (i.e., the selection of freqcies contributing to a variable) that is

altered through the adjustment of kernel overlap.

An incentive for the development of this napproach to EVA, referred to hereafter as
EVA_GA, is that there are a number otatets with which EVA has previously not
performed well [2], either in absolute termsrelative to COMFA — the reasons for this
under-performance are not apparent. Intamtdto the potential for providing improved
QSAR predictions, it may be the case that the use of localigagroves the possibilities

for interpretation of an EVA QSAR model (i.e., back-tracking to structure).

M ethods
Notation

The following is an alphabetic list of abbreviations related to PLS analyseaufber of
PLS LVs; CV- crossvalidation; = Fischer significance score;-Gnumber of CV groups;
LOO — leave-one-out CV (G = M); LNG leave-n-out CV, where n1; LVq,— optimum
number of latent variables (LVs); Mnumber of training set molecules? prtest set
predictive-f; PRESS- predictive residual sum of square$:-d-00 CV ¢ r* — fitted
model f; SE and SE, — Standard Error and CV-SE; TGtraining set; X— matrix of

descriptor variables; ¥ dependent variable (bioactivity etc.)

For the EVA descriptor and EVA_GA tliellowing abbreviations are used: BFSinear
bounded frequency scale; CONV_CRiITifference between fithess scores of the least and
most fit members of a GA population;-HHamming threshold; L¥ax— humber of LVs
evaluated by EVA_GA; MAX_CYCLES maximum number of GA generations;

N — number of atoms in a molecule; NBINSwumber of bins into which BFS is divided;
NMF — normal mode frequency; NPGPumber of GA chromosomes;-Rset of ro

values from which elements of V are selected; & GA chromosome; y; — an optimal V.

Software and Hardware

All the work described herein was carriegt using a multiprocessor Silicon Graphics
Origin 200 R10000. The molecular modelling software used was Sybyl 6.3 [9]. The
software required to run the GA, to perfoitme EVA standardisation process and to do the

GA-related PLS analyses was custom-written in the C programming language.



Classical EVA

The EVA descriptor [1,2] is derived from fundantal molecular vibrational frequencies of
which there are 3N-6 (or 3N-5 for a lineampound such as acetylene) for an N-atom
structure. The frequency values are projected onto a linear bounded frequency scale
covering the range 1 to 4,000 ¢rand then smeared out, and therefore overlapped, through
the application of Gaussian kernels to eauth @very frequency value. Finally, the BFS is
sampled at fixed intervals of L émThe value of the EVA descriptor at a point, x, on the
BFS is the sum of amplitudes of the overlapped kernels at that point:

EVA, - 3_'\56 1 (Y2202
i=1 o'\/?p

where fis the " normal mode frequency of the compound concerned.

This process is repeated for each datasettsey thus providing a descriptor of fixed

dimension for all compounds. Typically a descriptor set may be derived usinf®0 cnm

and an L of 5 cr resulting in 800 (4,000/L) descriptor variables [1]. The number of

variables is thus very much larger tithe number of compounds in a standard QSAR

dataset and the Partial least squares to L&nttures (PLS) technique [5] has been used

to provide a robust regression analysis. The purpose of the EVA smoothing procedure is not
to simulate an experimental IR spectrum (transition dipole data is not used and, therefore, all
kernels are of fixed maximum amplitude) buhex it is to apply a density function such

that vibrations at slightly different frequencies in different compounds can be "overlapped"
and thus compared with one another. &ent of this overlap is governed &yand the

proximity of vibrations on the BFS.

Localisingo

In classical EVA the kernels have a uniforxefil standard deviation (equal width, height
and shape) for all frequencies in all compounds while, as stated abisvegre permitted to
have localised values in different spectral oagi The local values are to be selected so as
to improve model predictivity and, asth the selection of a suitable fixedvalue, training

set CV is used to select an optimal set of locaksed

There are a number of ways in which the concept of a locatisaight be applied to EVA-
descriptor generation. It is possible to associate each and every NMF in each and every
compound of a dataset with its own localisedalue. Such a scheme would, however, only
be appropriate were there not to be a requirement to make external test predictions, since

there would be no way of assigning localisedalues for the test set compounds without



including them in the optimisation procedutn addition, the number of adjustable
parameters would be extremely large ¥XNBN-6)) for typical QSAR datasets. It was,
therefore, decided to divide the BFS into NBINS bins of equal width (w), with each of
which a localised value is associated. The Gausdiamel for any frequency in any

structure whose value falls within a given bin (spectral sub-region) is thus expanded using
theo associated with that bin. NBINS (4,000/w) is thus independent of both M and the
number of NMFs (proportional to N). A potentsdlution is thus a vector, V, consisting of
NBINS elements:

V= { O1, 02, 03, ... ONBINS-2: ONBINS-1; GNBINS}

Each of the NBINS sub-regions cannot h@gpendently evaluated because the information
content of descriptors located in adjacenshs generally not independent: except where

is very small indeed, kernels centred ifaadnt bins tend to ovap one another thus

adding additional signal (or noise) to the descriptmncerned. The extent of such overlap
depends upon the relative frequency values and thedaggplied. Only the main spectral
sub-regions (the fingerprint / functional group-stretching and hydrogen-stretching) are
sufficiently far apart on the BFS such that there is no overlap unlesse to be extremely

large (Figure 1).

Without imposing constraints upon the values that leazn assume the search space is
huge; e.g., if only integer values in the range 1 to 58 were to be permitted then full
coverage ob space would require a search ot'®8% permutations. Therefore, a restriction

is placed on the values that loesatan assume and are taken from a user-defined r element

vector (R) where:

R :{Gi! Giiv ""Gl‘-ll GI’}

A suitable set of values for R may, for examjple {5, 10, 15, 20, 40} and a solution V has
elements taken from R. The use of a repriede set of discrete values such as these is
justified since previous work hatiown that for small changesdrthere tends to be little
difference in the ensuing PLS scores [2,3}. &particular dataset, R may be selected to
reflect results obtained when using a range of fixedlues; i.e., one may wish to bias the
solution toward previously obtained results. The total number of permutations where r =5 is
thus 3"®™° which, where w = 40 cth is equivalent to 8° (~10°). In practice there are
substantial regions of the IR spectrum inehthere tend to be no NMFs (Figure 1),
particularly outside the skeletal region (~1,500—4,000)cifhis feature means that, for the

melatonin data set described below, and where w = Q0 NBINS is reduced from 100 to



62. This significantly reduces the available permutation§’6-30") but nonetheless
remains a large search spaces #alue of zero has not been permitted here since this would
allow NMFs to be omitted from consideratidtogether, although this may form the basis

of a variable selection procedure.

A second problem that arises with the use of locaksedlues is that, without some form of
scaling, there will be variance that is related solely to the chogies, kernel maximum
amplitude differences) rather than to differences in frequency value location on the BFS.
Therefore, all kernels are scaled to a maximamplitude of unity prior to determining the
local EVA descriptor values. This means that ldernels differ only in terms of their width,

and to a lesser extent, shape (Figuref)er than height, shape and width.

Searching for an Optimal Solutiondy ~ EVA_GA

As stated previously the number of possimutions to be explored is immense and all

possible permutations of the elements of Yraat be evaluated systematically. Therefore, a
technigue is required that permits a sampling of the search space in as thorough a manner as
possible without the requirement to cover that space in its entirety. Genetic algorithms

[10,11] provide an obvious and convenient nsefmnapproach the stated problem. GAs are

now a well-established stochastic technitpreperforming directed random searches of a
problem space and have been widely applied to drug design and chemometric problems

[12]. A wide variety of alternative formulatns are available the selection of which are to

some extent arbitrary; details of the chosen methods are given below while Figure 3 is a
generalised overall schema for EVA_GA.

A. Chromosome encoding. In the current context a chromosome conveniently consists of
the vector, V, described above. In order tewgr the diversity of the initial population a
Hamming threshold (H) was applied such #uathe outset each chromosome was permitted
to have a maximum of H genes of identiealue to those of any other chromosome. The
minimum possible value of H depends upon NPOP, NBINS and the number of possible

different values associated with each bin (r).

B. Chromosome fitness evaluation. The chromosome fitness function is thesgore from
PLS CV based upon an EVA descriptor set derived using V; the higheTshberg the
greater the chromosome fitness. Both LOO and LNO CV have been implemethted
advantages and disadvantages of these ppmaches are discussed below. The SAMPLS
algorithm [13] provides a highly efficient implementation of PLS-1 and, for univariate Y

only, gives identical results to the classical NIPALS [5] and SIMPLS [14] algorithms.



SAMPLS is based upon reduction of the X bloctada an M-by-M covariance matrix of
all the pair wise "distances" between eacMaholecular descriptor vectors which is then
used to fit all PLS LVé$ndependenof the original number of variables. SAMPLS was
custom-written so as to provide a very efficienplementation and full integration with the
GA and EVA descriptor code; for examplatiwM = 21 and 1000 variables LOO CV using

five LVs required only ~0.01 seconds.

C. Reproduction. The reproductive stage involves three steps; viz. parent selection,
crossover and mutation. Parents are selagted) the roulette wheel method whereby
parents are selected in a probabilistic mann&rich those with a higher fitness are more
likely to be selected than thoséth lower fitness. However, atlitist model [15] also was
implemented in which the best member of theent parent population is forced to be in
next generation. Both single and double crossover points are permitted, the selection of
which is done at random as are the poinigtdth crossover takes place. Mutation is
permitted at random points on a randomly selected chromos@ohromosome may be
selected for mutation (or crossover) more than enaed, while thes at the mutated point
is selected at random from R, the new valueriseid to be different from the current value.
Child population duplicates are mutated in the same way. The probabhilityf, futation is
set to 0.05 (although this can be altered by a usthis is somewhat higher than a typical
value of 0.01 and was chosen to encouegsoration of the large search space. The

probability, R, of crossover is also user-definable but was fixed at 0.85 herein.

D. Evaluation of ultimate GA solution(s). The optimal solution(s) provided by the GA is
(are) evaluated against a previously unseen set of compounds (the test set) where such is
available. This enables one to test for ovetefithe training set and must be considered a
crucial model validation procedure where, asha large number of adjustable parameters
(o) are involved. Training set random permutation tests also are applied tg athd/

estimates made that the observédny f scores could be chance effects; 1,000

permutations of the activity ttawere made in every case.

E. PLS model selection strategies. The selection of model-dimensionality (b and thus

the fitness score fjof a particular chromosome during evolution of the GA requires careful
consideration. Scoring on the basis of the fifsngximum (keyword: MAX_Q2) provides

the most obvious method. However, in the intere$tefficiency it is desirable to extract as
few LVs as possible while at the same time model parsimony is, in general terms,

considered to be desirable [16] when exaépredictivity is a criterion. Model parsimony



can be favoured by using, for example, a formula for calculating &t penalises
additional LVs [16]:

1/2
SE_, =(PRESS/(M- A- 1)

Thus, models can be extracted on the basis dfr8teSEy-minimum (keyword:
SECV_MIN). Alternatively, or additionallya 5% rule (keyword: 5% RULE) may be
applied [16] wherein an additionaV is permitted only where it raise$ by > 0.05 units. In
general, but not always where M is small, the latter method is at least as parsimonious as the
SECV_MIN approach. However, the purpose & @A is to search for better solutions, the
quality of which are judged by thé scores. A "better" solution can be seen as any vector,
V, that provides a highef ¢han obtained previously. Arf @nprovement may be very

small, and may require an additional LV in caripon to other models with slightly smaller
o but may provide an intermediary modtethe progress toward a significantly better
solution. It is, therefore, arguable asitbether MAX_Q2, SECV_MIN or the 5% RULE
should be the model selection criterion aadous comparative tests are made using

otherwise identical EVA_GA runs.

An upper bound to the value of Lyis that it should not exceed M/4 since the use of a ratio
greater than this results in increased probghilitchance correlation [17]. Finally, it is not
acceptable to make predictions of the biological activity of structures to greater precision
than the error in (reproducibility of) the origimakasurements. This factor has been directly
addressed for the steroids [3] while the valg information is not available for the

melatonin compounds.

F. Default EVA_GA parameters. The following set of default GA parameters are defined:
CONV_CRIT = 0.05 (i.e. there is no signifidadifference between the fithess scores of the
most and least fit population members); MAX_CYCLES = 100; NBINS = 100 (i.e.,

w = 40 cnt); NPOP = 100; PLS_MODEL_SELECTION = 5%_RULE. Crossvalidation can
be LOO or LNO; unless otherwise stated, in the latter case G = 7 and CV is repeated 50
times and mean values reported foagd Sky. Parameters such as R and.kyare set
according to the dataset involved and cands=d upon examination of a range of results
with EVA.

Datasets

The performance of EVA_GA was evaluated usiatpsets for which external test sets were
available and consist of a benchmark stkdztaset [4,18,19] and a set of melatonin

receptor ligands [20]. The use of test setste considered essential for validating an



EVA_GA QSAR model since the large numbemdfustable parameters (NBINS) means a

priori that there is great potential for training set overfit.

Steroids. The steroid set consists of 21 TG and 10 test set compounds (Table 1), originally
investigated (in terms of 3D-QSAR analysis)®samer et al. [4]. This dataset has been
described in detail previously together withth COMFA and EVA analyses [3] and is not
described further here; the activity data areasured corticosteroid-binding globulin

affinities expressed as log [K]. The PLS results with EVA were good and it is of interest to
determine whether or not EVA_GA can enhance this in any way. Whilst this dataset has
been widely used as a benchmark for novel QSAR methods [18] it completely lacks any sort
of experimental design; seven of the ten test set compounds have structural features not
explicit in the training set. With this in mind statistical experimental design techniques
[21,22] have been applied to these structures as described below. It is legitimate to make

quite precise predictions of the steroid binding affinitieslower bound to the SE of ~0.08

(equivalent to7> 0.995) has previously been estimated [2].

Melatonin. The melatonin receptor ligands (Tablar®l Figure 4) consist of a TG of 44
structures and a test set of 9 structures taken from a 3D-QSAR investigation by Sicsic et al.
[20]. This TG (analysis "J" in Ref. 2@yovided the best CoMFA model selected from a

range of different TGs having up to 48 compounds and should thus provide a stringent test
of the relative performance of EVA/EVA_GA. The TG ("T" name prefix in Table 2)

consists of five classes of structure, uthg 9 indole, 21 naphthalene, 2 tricyclic, 2

tetraline and 10 benzene-based compounds.egteét ("Z" name prefix) consists of 9
compounds, 7 of which belong to the benzenphtielene or tricyclic classes and which to
some extent reproduce structural features ptesehe TG. However, there are no explicit

TG examples of the m-ethoxy substituentshef test compounds Z55 and Z56, one of the

test set compounds is a quinolinic structure (Z49) and compound (Z50) is structurally
related to one of the naphthalene compounds. There are, therefore, four test set compounds
which a priori might be expected to (méed not necessarily) provide predictive problems

for a QSAR model.

Both the TG and test set compounds exhilitlivig affinities (pKi) covering five orders of
magnitude for chicken brain melatonigceptors (Table 2). The 44 TG compounds
thoroughly and regularly span activity spacig(ife 5). However, two of the test set
compounds (Z49 and Z56) have lower activitgrttany of the 44 TG structures while only
one of the TG compounds (T04) is less active than Z54. Not only is Z56 the least active
compound overall but there is a gap of ~QB4 units between it and the least active TG

compound (T04), a much larger distance thastgxlsewhere in "activity space". There is



once again, therefore, an expectation thate are likely to be predictive difficulties
particularly with compound Z56 and, possibly, Z49. In the original CoOMFA study [20]
structure T47 has lower activity than Z56 but was excluded from the best COMFA analysis
since it was considered an outlier, a not unredsderfanding given that its pKi is ~0.6 units
lower than that of TO4.

Calculation of Normal Mode Frequencies (EVA)

Semiempirical. The steroid dataset was treated using the AM1 Hamiltonian of MOPAC 6.0
[23] with the parameters described previoy8ly The conformations used for the CoOMFA
analyses were adopted as the starting points for the MOPAC geometry optimisation of all
structures. None of the 31 structures had imay ("negative") normal mode frequencies,

indicating that the optimized geometries were at or very close to a stationary point

MM 3 Molecular Mechanics. The melatonin ligands wegeometry minimised using
MM3(94) [24] molecular mechanics. As withe steroids, CoOMFA conformations [20] were
used as the starting points for the MM3 runs. The MM3 FULL_MATRIX option is required
for a FORCE calculation to be done; all otM#vI3 parameters were left at their default
values. Eleven of the structures had one imary NMF but the most negative of these was
only -28.9 crit. The calculations are in any case unreliable from -50ton%0 cn' so

NMFs within this range are not significant; imaginary NMFs are excluded from

consideration when generating the EVA descriptor.

CoMFA Analyses

For both datasets CoMFA analyses were paréal so as to provide benchmark values
against which to judge the performancd&aMA/EVA_GA. The steroid CoMFA analysis

has been described in some detail previol&ithe structures and conformations are those
of Wagener et al. [19] and were alignedngsan RMS fit of the 3, 5, 6, 13, 14 and 17

skeletal carbon atoms (Figure 6) with deoxycortisol (H11) as a template. For the melatonin
ligands the superposed conformations were nbthdirectly from the original authors [20].
Most of the melatonin ligands have a highly flé& ethylamido side-chain (Figure 4) so the
CoMFA alignments are based upon atom-b&kesb fitting to the restrained tricyclic
compounds (T33 and T34) using the alignment centres defined in that Figure.

CoMFA was undertaken using a 1 A grid-spacing rather than the default 2 A. There is
considerable evidence to suggest that resuittsthe latter spacing are likely to be
unreliable [8] and, therefore, the C¥BRS (Crossvalidated-Guided Region Selection)
method [8]- an unsophisticated domain-based variable selection procesas applied to

the analyses. In addition, the robustness ofrihdels was assessed at both 2 and 1 A grid-

10



spacing through reorientation tests, in which all compounds are reoriented as an aggregate
rigid body within the bounding CoMFA 3D grid. This was done systematically, at fixed
intervals of either 1and 10 through 360 in each plane separately and in various
combinations, and training and test metdelling and prediction performed for each
orientation; this provides a means of estimgtihe stability and true statistical performance

of the COMFA PLS models. Evaluations such as iticorporating test set predictions have

not been previously published.

Aside from the grid resolution all other COMFA parameters were kept at the Sybyl default
values. MOPAC 6.0 AM1 [23] charges were used for the steroid analysis while Sybyl [9]
Gasteiger and Marsili charges were utilisathwwhe melatonin receptor ligands per the

original publication [20]. As with the EVAnalyses LOO or LNO (steroids only) CV was

used with a maximum of M/4 LVs dependingtbe dataset size. Analyses were done using
steric and electrostatic fields combinediavere performed for unscaled and blockscaled

data. Sybyl PLS was used for COMFA regression analysis and models were selected on the
basis of the SECV_MIN rule noted above.

Results and Discussion
Steroid Dataset

CoMFA and EVA. As stated above the chosen steroid dataset previously has been
investigated in some detail using both EVA and CoMFA [3] and only brief comments will
be made here. With EVA the best models with fisadere obtained where = 3/4 cnm*

(Table 3). These models hadZ%of 0.80 (two LVs) and a pof 0.69 or 0.76 (excluding an
outlier (M31) with a fluorine substituent not explicit in the TG). Test set predictionrs for
values other than 3/4 chrapidly become very poor (Figure 7) so there is a quite distinct,
limited range of optimal fixed for this dataset. The melatonin dataset on the other hand
has a much broader (contiguous) band wflues over which piscores are relatively stable
(see below). COMFA modelling with this steroid dataset (Table 3) provides a very*high q
score of 0.87 (two LVs) and an equally high test sef84) where the fluorine outlier is
excluded. However, the CoMFA model igrexnely sensitive to M31 and, when it is
included in the test set, the’sicore drops to 0.45. It has bermgested that this difference
between CoMFA and EVA reflects the differeémfiormation content of the vibrational and
field-based descriptors. It is therefore of interest to determine whether or not optimisation of
the EVA model using EVA_GA alters the sensitivitiithe method to M31. It should also
be noted that with a 1 A CoMFA grid-aging the PLS scores are quite stable under

11



aggregate reorientation [3]the test grscores show the greatest variation, ranging from
0.42 to 0.48 (all compounds) and 0.81 to 0.86 (M31 excluded).

EVA_GA To start with the default GA parameteisted above were used together with R
={1, 2, 3, 4, 5} and LV,ax = 2 both chosen according to EVA results (Figure 7, Table 3).
However, a wide variety of alternatives paeters were investigated also (TableZy The
most obvious feature of most of the results obtained is that it is possible to ernhaycg q
to 0.08 units (LOO CV) and 0.06 units (LNO TCkélative to the best EVA model (Table 3).
The best predictive results are obtained wheto or more LVs are available to EVA_GA
and in general, but not exclusively, two LVs are optimal for both TG and test set
predictions. Where two or more LVs are available test $etgores (0.70-0.75) are virtually
identical or slightly smaller than that obtathwith EVA. Again, provided at least two LVs
are available, EVA_GA is not sensitive to the PLS model selection criteria and there is
nothing to be gained from setting MAX_CYCLESLOO (Table 5) although, where
MAX_CYCLES = 50 the results over five runstbe GA show considerable variation. In
addition EVA_GA is not sensitive to the altetima values of NBINS that were investigated
(Table 6).

EVA_GA appears to be most sensitive to the chaf R set values (Table 7). For example,
if relatively largec such as 20 and 30 cnare made available to the GA then, whether one,
two or three LVs are used, LOGig enhanced (to 0.82. 0.86 and 0.90 respectively) while
pr® scores are very poor where either M31 is included (0.47, 0.39 and 0.25) or excluded
(0.59, 0.52 and 0.42); LNO-based searches geownly slightly better results in some
cases. This is a similar finding to that with EVA wherésmores (and TG CV scores) are
poorer wheres is not very close to 4 ci(Figure 4). Examination of thegy solutions for
each of the five GA runs indicates that lasgare incorporated intthe solutions when

made available. Random permutation tests appliewo sets of results where R = {1, 2, 3,
4,5} and {4, 8, 10, 20, 30} and where L} is two (Table 7 footnotes) indicate that (for
LOO ¢f) in the latter case the estimated probability of chance correlation (p) is 0.021 for
LV1 (i.e., greater than 1%) and 0.0005 for LV2 (mean p over 5 GA runs) while in the
former case p is 0.0007 or 0.0006 for one or two LVs respectively. Thus, it seems that the
possibility for chance correlatias greatly increased where largere used. Where the
fitted-r* is considered, in all cases®.7x 10*. Thus, even in the absence of the poor test
set predictions where R = {4, 8, 10, 20, 3fi}¢ models based on the R set with smailer

would be favoured for predictive purposes.
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As noted above the steroid dataset lacks artyo$§@xperimental design, statistical or
otherwise, and in view of this the dataas a whole was re-examined using PCA and PLS.
It is acknowledged, however, that implicitEVA_GA are changes to the descriptor space
and that experimental design can be prypapplied only where descriptor space is
constant. However, we proceed on the assumption that some sort of design consideration is
better than none at all. As an initial step PLS CV was applied to all 31 struetuwesqm

1) giving a § of 0.75 (two LVs) against which the scores from subsequent designed models
can be compared; note that a total of 21.9%efX block (i.e., EVA descriptor) variance is
explained by these two LVs. A PCA (no scaling) was then applied to the 31-compound X
matrix. However, 19 PCs are required to explain 90% of the varianceviitiXthe first

seven PCs explaining (cumulatively) 15.1%, 25.4%, 34.5%, 41.8%, 47.5 %, 52.8% and
57.8% respectively additional PCs explain 5% further variance. The number of design
points (compounds) required for a two-level factorial design (FD) with k variables (here,
significant PCs) is'2and that for a fractional FD (FFD) i§2(ignoring centre-points). Thus
even where k = 7 and a two-level FFD is apgptieere is a requirement for a minimum of 64
compounds. This is in any case an unsatisfpommary of the univariate variance in X
since 42.2% is left unexplained where only 7 R€@sconsidered. Therefore, further analysis
was done so as to eliminate compounds that nfigltonsidered outlierthis can be done
either in terms of the X space alone obath X and Y space coml@d. Outliers in X space
can be identified using Hotelling',Ta multivariate generalisation of Student's t-test, which
provides an elliptical confidence region for theta when viewed as two-dimensional score
plots. Using 0.01 as a confidence limit, and through examination of all score plot
combinations up to 7, 19 (90 % of X explainady 30 (100 % of X explained to three d.p.)
PCs, then 0 compounds, 4 compounds (M1, L16, M27 and M31) and 10 compounds
(previous four plus: H7, L13, H19, H2BI21, M24) respectively can be considered
significant outliers. When these compounds are excluded and PCA repeated 16 or 14 PCs
respectively are required to explain 90% af Wariance in the reduced descriptor blocks.
Even with a 0.05 confidence limit fo?;Tusing which threshold 21 compounds can be
excluded, 7 PCs are required to explain 3ff%he variance in X for the remaining 10
compounds; clearly too many design variables where only 10 compounds are available.
Thus, even where the chemical justificationdacluding compounds is ignored, it seems to
be the case that experimental design in PC space is difficult if not impossible with these

compounds and this descriptor.

In consequence of the difficulty of perfommgi a PCA-based design it was decided to do a

design in the PLS LV space which focuses attentipon the variance in X that is related to

* An equally large number of PCs is requiredtonmarise the X matrix for the 53 melatonin ligands.
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Y and is, therefore, a supervised or biadesign. As noted above LOO CV using all 31
compounds provides LOO/LNG gcores of 0.75 / 0.74 (2 LVs)an additional LV does

not improve §any further. Clearly, a FD with only two significant variables requires only
four data points. However, ten data poistgenerally considered to be the minimum
required for PLS analysis and, therefore, further compounds were selected, including centre-
points, so as to span the LV space thoroughly, giving a new TG consisting of L4, H6, H7,
L9, L13, L18, H22, H23, M26, M27 and H30 (DESIGN_A). EVA analysis (Table 8)
provided an optimal model whese= 4 cm' with LOO/LNO ¢f scores of 0.55 / 0.54 (one

LV) — which are somewhat less than all-compound-GMth an F of 0.89 and a prof 0.51

(or 0.55 excluding M31). It is to be expedtthat CV using a sparse, designed set of
compounds give a lowef gelative to instances where there is much redundancy.
Application of EVA_GA to DESIGN_1 (Table 8) provided enhancedrai f scores (0.71
and 0.96 respectively) while the’mcore was, once again, not significantly altered whether

or not M31 is included in the test set.

A second design was made (DESIGN_B) but this time the three largest outliers from all-
compound CV (H22, M27, H31) were excluded entirely. With EVA this set of 28
compounds provided optimal LOO/LNG scores of 0.84 / 0.83 (2 LVs) whase= 4 cmi™.

Ten compounds were picked from an LV sco pk before (Table 8) which provided an
EVA model with LOO/LNO 4§ scores of 0.69 / 0.66 (2 LVs) and & pf 0.69; that is, both
predictive scores are reasonably high and traires very similar indicating that hereis
good indication of model predictivity. The application of EVA_GA (Table 8) provided
enhanced gscores (0.81 with 2 LVs) and a slightly reducetspore (0.66, whether M31 is
included or not). Thus, overall it appears that tierething to be gained or lost in terms of
test compound predictivity through the application of EVA_GA with the various steroid

training / test sets evaluated.

Melatonin Receptor Ligands

CoMFA Results. A CoMFA was performed using a set of aligned structures obtained

directly from Sicsic et al. [20]; note that for reasons discussed above dataset "J" was
selected from that paper. The results of oUMEA are listed in Table 9 together with those
obtained by the original authors. It is apparent that our results differ somewhat from those of
Sicsic et al. despite ensuring as far as postibliethe CoMFA parameters were identical.

The reason for this is most likely that, as naibdve [8], a 2 A grid resolution usually adds

a sampling error into the descriptors imagch as the results obtained depend upon the
orientation of the structures as an aggregatg beldtive to the 3D grid. For this reason a 1

A resolution has been recommended [8] sinéeshid to provide relatively orientation-
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independent results. Indeed, the mean PLS scofes, (or’) of ~3,800 reorientations of the
aggregate using a 2 A resolution are almostiital to the single orientation 1 A results
(Table 9); this also applies where meatuga from the same set of reorientations are
assessed at a 1 A grid-spacing. The range of PLS scores obtained is extremely wide at 2 A,
particularly for the test set predictions(.4 units), and the scores obtained by Sicsic et al.
certainly fall within these limits. At a A resolution the PLS scores are more stable

covering ~0.1 units for’and £ while pr scores again show the greatest variance ranging
from 0.66 to 0.80 for all nine compounds and from 0.53 to 0.76 where Z55 and Z56 are
excluded. What is more theredaly a very low correlation betweehand pf (r = 0.15) so
choosing a suitable orientation on the basis of CV scores provides no indication as to what
the true pt may be. Overall, these results indicatat th 2 A resolution is inadequate with

this dataset and that test set scores can show significant variation even at a 1 A resolution.

EVA Results. A large number of EVA descriptor setsrived using a range of different
fixed Gaussiam were evaluated on the basis of training and test set statistics. It is clear
from the LOO CV results (Figure 8) thattbest training set models are those wisere
3-15 cm', depending upon which LVs areridered. LV1 is maximal whete< ~4 cnt',
while the addition of LV2 and subsequent Liésults in progressively higher peaks where
o ~ 10 cm. Thus, wheres = 10 cm' (Table 10)if the 5%_RULE is applied%js 0.46 (2
LVs), while a model based on SECV_MIN has’@f0.53 (5 LVs). If MAX_Q2 is the
selection criterion then?g 0.58 (8 LVs); this is in fact the highest observétbgall

models where a maximum of ten LVs are extracted. Thus, whatever criterion is used to
select L\,y, and thence the optimalto use, §is not particularly high. Test set predictions
wherec = 10 cmt* are, on the other hand, somewhatdrgTable 10) with the parsimonious
models providing the bestfscores of 0.66 for all nine compounds and ~0.81 (2 or 5 LVs)
if the previously noted outliers (Z55/256) axecluded. Overall, with this data set, and in
contrast to the steroid results, the selection af,Land the best fixed is not clear cut. In
comparison to COMFA these EVA results are poorer, particularly wiésecqnsidered
while there are much smaller differences ihgmores. The EVA predictions are quite
sensitive to the presence of compounds Z55 &&d(Z0.15 units difference) while this is
less the case for COMFAO0.06 units difference where the mean values of aggregate

reorientation at 1 A resolution are considered (Table 9).

EVA_GA. As previously, an initial R set was chosen based apeaiues centred around
the optimal EVA training set of 10 cm* (Figure 8); thus, R= {3, 5, 8, 10, 12}. These
results also suggest that L), should be two or three; the larger value was chosen since this

permits the GA to select either dimensionalitpwever, the effect, if any, of alternative
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choices of parameters are considered below. The PLS_MODEL_SELECTION method was
the 5%_RULE since this provides the most straightforward selection gfftdn the
optimal solutions produced by the GA.

If the results where R =;Ras suggested by the EVA results, are considered (Table 11) it is
apparent that it is always the cases thattmwria can be obtained with EVA_GA that have
substantially higherdthan EVA. It is also the case that this improvement does not require
additional LVs. Indeed, the one-LV EVA_Ghodels have roughly the same LOO/LN®O q
(~0.58/~0.53) as the eight-LV EVA model (Table 10) and test set predictivity that is equal
to that of the optimal EVA models §pr ~0.65 or ~0.80, including and excluding Z55/Z56
respectively). If further LVs are made availatiighe GA then it is clear that two or three

LV models provide the best test setraso(~0.75 / ~0.88) representing worthwhile
improvements over the EVA scores. Even where five LVs are made available to the GA,
LV ot is indicated to be two or three provididat the more conservative LNO CV is used
for fitness scoring during population evolutiolhe use of LOO CV for fithess scoring
where LV, > 3 produces the highest scores (up to 0.70 with Loyt = 4 or 5) but the

models begin to show signs of overfit to the TG ¢pr-0.58 / ~0.79). If an alternative R set
is considered (R= {2, 4, 6, 8, 10}) the results (Tablel) are almost identical to those with
R; as might be expected, the only substantive difference being the béteones where

LV max = 5. If very much largess are made available to the GAs(R{5, 10, 15, 20, 30})
scores can be enhanced to similar levels as witnBR R while their is little or no
improvement in ﬁrscores relative to EVA where Ly> 1. Where only one LV is

available 4 and test set scores are poorer thaarwore LVs are available as was found
also with sets Rand R. The findings with Rsuggest that lowes help to limit the
possibilities for TG overfit this was even more strongly indicated with the steroid results
(Table 7). In any case the EVA results over a range of tix@eigure 8) suggest that the use
of largecs would not be useful. Note that nookthe models listed (Table 11) are

contraindicated by random permutation tests at any number of LVs.

Thus far the results described have been with default EVA_GA settings and a variety of R
sets and LMax The results with alternative MAXCYCLES (Table 12) suggest that 100
cycles is certainly adequate, where the othernparars are their default values, and there is
clearly little or nothing to be gained fromig more than 100 GA iterations. Where only 50
iterations are available the mean score valoesr(five GA runs) are similar to those where
more runs are used but, as with the sterdidse is much greater variation in the scores

over the five runs and 100 iterations igferred. Where alternative bin widths are

considered (Table 13) the best results imteof prediction are obtained where NBINS is
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100 or 200 while poorer scores are obtained where NEIM@0 despite the improvements

to of. However, even where NBINS = 800 (#mvailable permutations where empty bins

are excluded) and MAX_CYCLES = 1,000 (Table 13) test set predictions remain at least as
good as those with EVA (Table 10).

Conclusion

A method has been described that exploresl@nnative formulation of the EVA QSAR
technique (EVA_GA) incorporating the Idsation of the values of the main EVA
parameter, the Gaussian kernel width @ genetic algorithm has been used to explore
localised & space” using the scores from LOO ?vQ@ PLS crossvalidation as the fithess to
be maximised by the GA. When applied tbemchmark steroid dataset, for which really
quite good results had already been obtained using classical EVA, the EVA_GA could
always find improved training set models but for the most part test set predictivity was
improved not at all. However, except with teém parameter choices (availability of high
contraindicated by both the classical E\@sults and random permutation tests, test set
predictivity was as good as that with EVA. Sanresults were obtained where the training

/ test division of structures was modified using statistical experimental design criteria.

With a second relatively heterogeneous senhelfatonin receptor ligands, representing five
structural classes, the results obtained werehmoore encouraging. Again, it was always
found that higher gscores (typically, up to 0.25 units better) could be obtained with
EVA_GA compared to fixed EVA. However, in contrast to the steroid results, test set
predictive scores were also substantially enhaircetbst cases. As with the steroid set the
availability (and incorporation by EVA_GA into optimal solutions)ofalues larger than
those suggested by the EVA results leadsdications of training set overfit. Where large
numbers of latent variables are madeilabode to EVA_GA the possibilities for overfit

increase although, with this melatonin dataset, the use of the more conservative LNO PLS

crossvalidation helps to control modetdinsionality such that this avoided.

Overall, additional work is needed so as tdfyghat EVA_GA is an effective technique, to
attempt to generalise these findings into a spaodmeters that might be expected to be
widely applicable, and to examine the obtained models in detail so as to look at what
changes are being made by EVA_GA in dgdor space. Further development of EVA_GA
might include the incorporation of some lindteorm of random permutation testing into the
chromosome scoring function, perhaps simplyefect a chromosome entirely if it fails to

meet certain criteria. Also being considei®dombination of the method described with
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more standard variable selection procedun which variables may be removed from

consideration entirely; i.e., permaitto be zero.
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Figure Captions

Fig. 1. Histogram summarising the number of fundamental NMFs found in different regions of the
IR spectrum (melatonin receptor ligand training dataset, bin widths (w) of 40 cm

Fig. 2. Example of the different kernel widths and shapes obtained after expansion with selected
Gaussian standard deviatiar) {alues (after scaling to unit maximum amplitude) for a single
hypothetical frequency at 29 ¢m

Fig. 3. Overview of GA routine.

Fig. 4. Melatonin training and test set compounds with CoMFA superposition &entres
Fig. 5. Distribution of melatonireceptor ligands in activity space.

Fig. 6. Steroid skeleton.

Fig. 7. Steroid dataset: cumulativefgr successive PLS LVs for classical EVA models derived from
a range of values.

Fig. 8. Cumulative LOO%for successive PLS LVs for classical EVA models derived from a range
of ¢ values: melatonin receptor ligands.
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TABLE 1
STEROID CBG-BINDING AFFINITIES

Compound CB@ffinity
Training Set log [K]
M1 Aldosterone 6.279
L2 Androstanediol 5.000
L3 Androstenediol 5.000
L4 Androstenedione 5.763
L5 Androsterone 5.613
H6 Corticosterone 7.881
H7 Cortisol 7.881
M8 Cortisone 6.892
L9 Dehydroepiandrosterone 5.000
H10 Deoxycorticosterone 7.653
H11 Deoxycortisol 7.881
M12 Dihydrotestosterone 5.919
L13  Estradiol 5.000
L14  Estriol 5.000
L15 Estrone 5.000
L16  Etiocholanolone 5.255
L17  Pregnenolone 5.255
L18  17-Hydroxypregnenolone 5.000
H19 Progesterone 7.380
H20  17-Hydroxyprogesterone 7.740
M21 Testosterone 6.724
Test Set
H22  Prednisolone 7.512
H23  Cortisol 21-acetate 7.553
M24  4-Pregnene-3,11,20-trione 6.779
H25  Epicorticosterone 7.200
M26  19-Nortestosterone 6.144
M27  16a,17-Dihydroxy-4-pregnene-3,20-dione 6.247
H28  17-Methyl-4-pregnene-3,20-dione 7.120
M29  19-Norprogesterone 6.817
H30 115,17,21-Trihydroxy-2:-methyl-
4-pregnene-3,20-dione 7.688

M31  115,17,21-Trihydroxy-2:-methyl-

@-fluoro-4-pregnene-3,20-dione 5.797

Structure numbers and activity group classification prefixes (but not the

structures themselves) are those used by Good et al. [25]: H - high

activity; M - medium; L - low.

21



TABLE 2
MELATONIN RECEPTOR LIGANDS BINDING AFFINITIES

name pKi name pKi name pKi name pKi name pKi
TO1 9.17 T12 10.62 T25 8.66 T36 6.67 Z49 6.23
TO2 10.49 T13 9.92 T26 7.71 T37 6.67 Z50 8.59
TO3 6.80 T15 7.52 T27 9.26 T38 6.71 Z51 10.30
TO4 6.31 T16 8.03 T28 8.45 T39 6.94 Z52 8.85
TO5 9.85 T17 6.49 T29 8.23 T40 6.66 Z53 7.77
TO6 8.60 T19 9.62 T30 8.97 T41 6.64 754 6.41
TO7 8.60 T20 10.14 T31 7.92 T42 7.19 Z55 6.83
TO8 8.17 T21 9.41 T32 7.25 T43 7.15 Z56 5.77
TO9 7.66 T22 8.77 T33 7.46 T44 7.38 Z57 7.09
T10 9.27 T23 8.57 T34 8.22 T45 6.54

T11 9.74 T24 9.17 T35 6.69 T46 6.60

& Binding affinities for chicken brain melatonin receptors [A0hining set compounds are prefixed by "T" while test set
compounds are prefixed by "Z".
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TABLE 3
CLASSICAL EVA AND COMFA PLS STATISTICS: STEROID DATASET

OOO0O0000000 SV OO00o0000000000 Do Fitted Model o Test Set ﬁr
. o SEcv ) ) With/Without ~ M31
Analysis Parameters LVot  LOO/LNO? LOO/LNO* P r SE g M31 residual

"Classical" EVA ¢ =4 cm' 2 0.80/ 0.79 0.55/0.57 0.001 0.96 0.24 0.0029 0.69 (0.74) +0.67
CoMFA See maintext 2 0.87/0.84 0.45/0.49 0.0001 0.93 0.32 0.00002 0.45(0.84) +1.91

@ Mean of 200 runs of LNO CV where G = 7.
® For both LOO §and fitted 7, p is an estimate of the probability of chance correlation based upon 1,000 random
permutations of Y.
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TABLE 4
EVA_GA PLS RESULTS: STEROID DATASET

OO0 GA Parametefs D000 CO0C0000000) CVb OO0000000d Fit° Test Sef
prf
RULE® LV max CV  RULE LVee ¢  SEv 2 All/No M31

5% RULE 3 LOO BOTH 2 0.84 0.49 0.98 0.68/0.72
LNO BOTH 2 0.82 0.53 0.98 0.66/0.70

2 LOO BOTH 2 0.86 0.47 0.98 0.68/0.73

LNO BOTH 2 0.84 0.50 0.98 0.67/0.71

1 LOO BOTH 1 0.83 0.50 0.96 0.65/0.70

LNO BOTH 1 0.80 0.53 0.95 0.65/0.70

SECV_MIN 3 LOO SECV_MIN Z 0.86 0.47 0.99 0.68/0.74

5% RULE i 0.83 0.51 0.96 0.67/0.71

LNO SECV_MIN 2 0.83 0.51 0.98 0.65/0.71

5% RULE 1 0.80 0.53 0.96 0.63/0.68

2 LOO SECV_MIN 2 0.86 0.47 0.99 0.64/0.70

5%_ RULE 1 0.83 0.50 0.97 0.63/0.68

LNO SECV_MIN 2 0.83 0.51 0.98 0.63/0.68

5% _ RULE 1 0.80 0.54 0.96 0.62/0.65

MAX_Q2 3 LOO SECV.MIN 3 086 048  0.99 0.63/0.69
5% RULE 1 0.80 0.53 0.96 0.62/0.66

LNO SECV_MIN 2 0.82 0.52 0.98 0.65/0.70

5% RULE 1 0.79 0.55 0.95 0.62/0.66

2 LOO SECV_MIN 2 0.86 0.46 0.98 0.65/0.71

5% RULE 1 0.83 0.49 0.96 0.63/0.68

LNO SECV_MIN 2 0.82 0.52 0.98 0.66/0.71

5%_ RULE 1 0.79 0.54 0.96 0.64/0.69

& Default GA parameters unless otherwise stated{R % 3, 4, 5}.

b All PLS statistics are for descriptors derived frogy.¥nd are mean values taken from 5 GA runs.
° Rule used to select Ly and thus the chromosome fitness scofedgring evolution of the GA.

4 Rule used to select LM and thus the final PLS statistics fogMas distinct fronf.

®LVopt =3 for 2 runs.

"LVop = 2 for one of the five runs.
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TABLE 5
EVA_GA PLS RESULTS: STEROID DATASET: EFFECT OF MAX_CYCLES

D000 GA Parameters 000 OO0 CVDOO000] Fit TestSet
prf
MAX_CYCLES® LVya CV  LVopt o  SE All/No M31
50 2 LOO 2 0.84 0.50 0.97 0.66/0.70
100 2 LOO 2 0.86 0.47 0.98 0.68/0.73
200 2 LOO 2 0.87 0.46 0.98 0.66/0.70
400 2 LOO 2 0.85 0.48 0.98 0.69/0.73
1000 2 LOO 2 0.87 0.45 0.98 0.67/0.72

@ See footnotes to Table 4 for further information; R =2, 3, 4, 5}.

P Maximum iterations of the GA - each run was started separately with a
different random seed and CONV_CRIT set so that convergence was not
reached in any run.
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TABLE 6

EVA_GA PLS RESULTS: STEROID DATASET: ALTERNATIVE BIN WIDTHS

DO GA Parameters | DO CV LoD Fit TestSet
pr

NBINS W  LVopx CV LVopt ¢  SEy r? All / No M31
50 80ct 2 LOO 2 083 051 097 0.68.73
LNO 2 080 055 0097 0.65/0.69

100 40cm* 2 LOO 2 086 047 098 0.68.73
LNO 2 084 050 098 0.67/0.71

200 20cm* 2 LOO 2 085 048 098 0.69.69
LNO 2 082 052 098 0.67/0.71

400 10cm* 2 LOO 2 086 046  0.99 0.69.72
LNO 2 083 051 098 0.67/0.74

400 10cm* 2 LOO 2 088 044 098 0.69.75
LNO 2 085 049 0098 0.66/0.72

800 S5cmi 2 LOO 2 089 041 099 0.6©.73
LNO 2 085 048 098 0.69/0.75

@ See footnotes to Table 4 for further information; R =2, 3, 4, 5}.

® MAX_CYCLES = 400.

¢ MAX_CYCLES = 500. All model converged prior to MAX_CYCLES of the GA.

26



TABLE 7

EVA_GA PLS RESULTS: STEROID DATASET: ALTERNATIVE R SETS

OO0 GA Parameters 000 DO0000 €V OO0 Fit TestSet
pr
R LVmax CV  LVopt SEv r? All/ No M31
{1,2,3,4,5} 2 LOO 2 0.86 0.47 0.98 0.68/0.73
LNO 2 0.84 0.50 0.98 0.67/0.71
{2, 3, 4,5, 6} 2 LOO 2 0.84 050 0.97 0.67/0.72
LNO 2 0.81 0.54 0.97 0.66/0.71
{2, 3, 4} 2 LOO 2 0.79 057 0.97 0.68/0.73
LNO 2 0.79 057 0.98 0.68/0.72
1 LOO 1 0.76 059 0.95 0.62/0.68
LNO 1 0.77 057 0.95 0.64/0.69
{3, 4,5, 8,10} 3 LOO 2 0.85 047 0.97 0.61/0.65
LNO 2 0.83 0.1 0.96 0.65/0.70
2 LOO 2 0.86  0.47 0.97 0.64/0.68
LNO 2 0.83 0.1 0.97 0.62/0.66
1 LOO 1 0.79 0.54 0.93 0.62/0.68
LNO 1 0.79 055 0.93 0.61/0.68
{4,8,10,20,30} 3 LOO 3 0.90 0.40 0.98 0.25/0.42
LNO 3 0.87 045 0.98 0.27/0.41
2 LOO 2 0.88 0.45 0.95 0.39/0.52
LNO 2 0.85 048 0.95 0.45/0.60
1 LOO 1 0.82 0.1 0.91 0.47/0.59
LNO 1 0.80 0.54 0.91 0.49/0.59

& See footnotes to Table 4 for further information.
® Chance correlation estimates, p, fdage 0.0007 (LV1) and 0.0006 (LV2)
(mean values for the five GA runs).
¢ Chance correlation estimates, p, foare 0 (LV1 and LV2).
4 Chance correlation estimates, p, fdage 0.021 (LV1) and 0.0005 (LV2).

® Chance correlation estimates, p, foare 2.7x 10 (LV1) and 0 (LV2).
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TABLE 8

STEROIDS: ALTERNATIVE TRAINING AND TEST SET DESIGNS

OOO0O000o000 Classical EVADDIOOOOO000000 COO0000000000 EVA_GAl EEEEEEEEEEEN

. 2 pf2 2 pf2
Design oo LOOANO G LVey T All/No M3y LVmax LOO f LVexr T All/ No M31.
A? 4cm*  0.55/0.54 1 0.89 0.51/0.57 2 0.71 1 0.96 0.50/0.55
B® 4cm' 0.69/0.66 2 0.99 0.69/0.70 2 0.81 2 0.99 0.66/0.66

! Default GA parameters: models selected according to 5% RULE; R ={1, 2, 3, 4, 5}.
& ALL 31 compounds retained: TG = {L4, H6, H7, L9, L13, L18, H22, H23, M26, M27, H30}; M = 11; 20 Test compounds.
b H22 M27 and M31 excluded entirely: TG = {L4, H6, L9, H10, L13, L18, H23, M24, M26, H30}; M = 10; 18 Test compounds.
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TABLE 9
MELATONIN RECEPTOR LIGANDS: DETAILED COMFA PLS RESULTS.

CoMFA Settings OOO0O000000 Training SetHOO00000000] Test Sepr?
Model Grid Resolution  Scaling LOO C¥ SEcv Fittedr? All Excl. Z55/56
Literature 2A not known 0.80 (5) 0.61 0.97 0.76 ndtnown
_ 2R None 0.65 (3) 0.76 0.84 0.68 0.67
Supplied Block 0.66 (3) 0.75 0.88 0.67 0.58
1A None 0.69 (3} 8;2 0.86 0.72 8'2}1
Block 0.64 (2) : 0.79 0.68 :
, o’ cut-off =0.f  None 0.70 (3) 0.71 0.87 0.74 0.72
CVQ-GRS[8] ?cutoff=0.3  None 0.67 (3) 0.74 0.84 0.72 0.65
0.58-0.81 0.72-0.97 0.43-0.88 0.13-0.88
Aggregate 2A None mean 0.69 n¢  mean0.87 mean0.70 0.67
Reorientatioh 0.67-0.76 0.85-0.97 0.66-0.80 0.53-0.76
1A None mean 0.72 n¢  mean0.93 mean0.73 0.67
# Model LV, picked on the basis of the (coincident) largésargl smallest Sk [20].
® Random permutation: for LOG,gp = 2.2x 10°. ¢ Random permutation: for fitted, p = 2.2x 10°,
4 Cut-off value for qusing which sub-regions are excluded from the {@@\IFA; a 1 A grid resolution is used throughout.
 See main text for details for reorientations used. " Minimum and maximum observed values.

9 Mean and ranges for ginot calculated.
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TABLE 10
CLASSICAL EVA PLS STATISTICS: MELATONIN DATASET

O00000000000000000 CV 00000000000000000 Fitted Model Test Set pr

a0 SEcy Excl.
Parameters ~ RULE LY LOO/LNO* LOO/LNG* P r’ SE g Al 755/56
c=10cm* 5% RULE 2 0.46 0.44 0.93/0.95 0.0005 0.79 058 .0 0.66 0.81
SECV_MIN 5 0.54 [° 090/ ¢ 0.0026 0.95 029 00 0.66 0.82

MAX_Q2¢ 8 0.58/0.53 0.90/0.94 0.0043 0.98 0.19 °©0.0 0.43 0.60

@Mean of 200 runs of LNO CV where G = 7.
® For both LOO §and fitted  p is an estimate of the probabilityafance correlation based upon 1,000 random

permutations of Y.
“ Two LVs were optimal using LNO CV.
4 This also corresponds to the overdlhgaximum where ten LVs are extracted.

¢ Normalised Z > 23.
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TABLE 11
EVA_GA PLS RESULTS: MELATONIN DATASET: ALTERNATIVE R SETS

00000 GA Parameters]i ] 0 4.V I Fit TestSet
prf
R LVmax CV RULE® LVopt ¢  SEv r>  All/ No Z55/56

Ri={3,5,8,10,12} 5 LOO SECV.MIN % 0.70 0.72 0.96 0.58/0.79
5% RULE 4" 069 0.73 0.95 0.58/0.80
LNO SECV_MIN 2 0.61 0.80 0.88 0.74/0.87
5% _RULE 2° 0.61 0.80 0.87 0.76/0.90
3 LOO BOTH 3 0.65 0.76 0.90 0.72/0.89
LNO BOTH 2 0.61 0.79 0.88 0.7770.89
2 LOO BOTH 2 0.64 0.76 0.87 0.76/0.87
LNO BOTH 2 0.61 0.80 0.86 0.75/0.88
1 LOO n/a 1 058 0.82 0.75 0.65/0.83
LNO n/a 1 0.55 0.84 0.74 0.63/0.80
R,={2, 4,6, 8, 10} 5 LOO SECV_.MIN % 070 0.72 0.98 0.63/0.80
5% RULE 4° 0.69 0.73 0.95 0.66/0.83

LNO BOTH 2° 0.64 0.77 0.89 0.74/0.88
3 LOO BOTH 3 0.67 0.74 0.92 0.76/0.89

LNO SECV_MIN 2 0.62 0.79 0.89 0.72/0.86
5%_RULE 2° 0.61 0.79 0.88 0.73/0.86
2 LOO BOTH 2 0.65 0.76 0.88 0.7470.87
LNO BOTH 2 0.63 0.78 0.87 0.74/0.86

1

1

1 LOO n/a 059 0.80 0.76 0.67/0.80
LNO n/a 0.58 081 0.76 0.65/0.78
Rs; = {5, 10, 15, 20, 30} 3 LOO BOTH 3 0.68 0.73 0.91 0.69/0.77
LNO BOTH 3 0.63 0.78 0.90 0.64/0.80
2 LOO BOTH 2 0.63 0.78 0.83 0.65/0.80
LNO BOTH 2 0.58 0.82 0.82 0.64/0.80
1
1

1 LOO n/a 0.55 0.85 0.70 0.50/0.74
LNO n/a 0.53 0.86 0.68 0.47/0.74

@ See footnotes to Table 4 for further information.

® Rule used to select LM and thus the final PLS statistics fog\~- not an EVA_GA parameter.
¢ For two solutions L\, = 4. 4 For one solution LVx=2.  °For one solution L\ = 4.

" For two solutions LV = 3. 9 For one solution L\ =3.

" For one solution LV = 2; for one solution Ly = 5. ' For one solution Ly = 5.

! For two solutions LV = 2.
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TABLE 12
EVA_GA PLS RESULTS: MELATONIN DATASET: EFFECT OF MAX_CYCLES

UHOO0 GA Parameters UL DHOOOH GV LOOCH Fit TestSet
pr
MAX_CYCLES® LVpax CV  LVopt ¢  SEy > All/ No Z55/56
50 3 LOO 3 064 077 090 0.7410.89
100 3 LOO 3 0.65 0.76 0.90 0.72/0.89
200 3 LOO 3 0.67 0.74 0.91 0.74/0.90
400 3 LOO 3 0.68 0.73 0.92 0.73/0.90
1000 3 LOO 3 0.70 0.71 0.92 0.72/0.90

& See footnotes to Table 4 for further information; B, 8, 10, 12}.
P Maximum iterations of the GA each run was started separately
with a different random seed and the CONV_CRIT set so that
convergence was not reached.

° For one solution Ly = 2.



TABLE 13
EVA_GA PLS RESULTS: MELATONIN DATASET: ALTERNATIVE BIN WIDTHS

OOOOEE GA Parameters DL CHOOOOD GV LU Fit TestSet
pr

NBINS W LVma CV LVopt &  SEv ' All/No Z55/56

50 80 cnt 3 LOO 2 0.61 0.80 0.90 0.70/0.83

100 40cm* 3 LOO 3 0.65 0.76 0.90 0.72/0.89
200 20cm* 3 LOO 3 0.71 0.70 0.95 0.72.88
400 10cm* 3 LOO 3 0.75 0.65 0.96 0.79.81
800 S5cm* 3 LOO 3 0.80 0.58 0.98 0.6%.86
80C" 5 cm* 3 LOO 3 0.91 0.39 0.99 0.60.81

& See footnotes to Table 4 for further information; B, 8, 10, 12}.

® For one solution LWt = 2. ¢ For two solutions LVt = 2.

4 MAX_CYCLES = 1000; CONV_CRIT = 0.025. For three of the five
EVA_GA runs the population converged (after between 965 and 972 cycles)
while the other two runs were very close to convergence (both 0.039) at
MAX_CYCLES.
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Fig. 1. Histogram summarising the number of fundamental NMFs
found in different regions of €hIR spectrum (melatonin receptor
ligand training dataset, bin widths (w) of 40 tm
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Fig. 2. Example of the different kernel widths and shapes
obtained after expansion with selected Gaussian standard
deviation 6) values (after scaling to unit maximum amplitude)
for a single hypothetical frequency at 29tm
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Fig. 3. Overview of GA routine.
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Fig. 4. Melatonin training and test set compounds with CoMFA superposition &entres
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Fig. 5. Distribution of melatonireceptor ligands in activity space.
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Fig. 6. Steroid skeleton.
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Fig. 7. Steroid dataset: cumulativefgr successive PLS LVs for classical EVA models derived from
a range ot values.
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Fig. 8. Cumulative LOOZfor successive PLS LVs for classical EVA
models derived from a range ®@fvalues: melatonin receptor ligands.
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