Skip to main content
Log in

Localization and quantification of hydrophobicity: The molecular free energy density (MolFESD) concept and its application to sweetness recognition

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A method for the localization, the quantification, and the analysis of hydrophobicity of a molecule or a molecular fragment is presented. It is shown that the free energy of solvation for a molecule or the transfer free energy from one solvent to another can be represented by a surface integral of a scalar quantity, the molecular free energy surface density (MolFESD), over the solvent accessible surface of that molecule. This MolFESD concept is based on a model approach where the solvent molecules are considered to be small in comparison to the solute molecule, and the solvent can be represented by a continuous medium with a given dielectric constant. The transfer energy surface density for a 1-octanol/water system is empirically determined employing a set of atomic increment contributions and distance dependent membership functions measuring the contribution of the increments to the surface value of the MolFESD. The MolFESD concept can be well used for the quantification of the purely hydrophobic contribution to the binding constants of molecule-receptor complexes. This is demonstrated with the sweeteners sucrose and sucralose and various halogen derivatives. Therein the relative sweetness, which is assumed to be proportional to the binding constant, nicely correlates to the surface integral over the positive, hydrophobic part of the MolFESD, indicating that the sweetness receptor can be characterized by a highly flexible hydrophobic pocket instead of a localized binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Blokzijl, W. and Engberts, J.B.F.N., Angew. Chem. Int. Ed. Engl., 32 (1993) 1545.

    Google Scholar 

  2. Tanford, C., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York, NY, 1973.

    Google Scholar 

  3. Fujita, T., Iwasa, J. and Hansch, C., J. Am. Chem. Soc., 86 (1964) 5175.

    Google Scholar 

  4. Nys, G.C. and Rekker, R.F., Chim. Ther., 8 (1973) 521.

    Google Scholar 

  5. Rekker, R.F., The Hydrophobic Fragmental Constants, Elsevier, New York, NY, 1977.

    Google Scholar 

  6. Hansch, C. and Leo, A., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, NY, 1979.

    Google Scholar 

  7. Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem.-Chim. Ther., 19 (1984) 71.

    Google Scholar 

  8. Ghose, A.K. and Crippen, G.M., J. Comput. Chem., 7 (1986) 565.

    Google Scholar 

  9. Ghose, A.K., Pritchett, A. and Crippen, G.M., J. Comput. Chem., 9 (1988) 80.

    Google Scholar 

  10. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163. jm265238.tex; 2/08/2000; 7:32; p.14 645

    Google Scholar 

  11. Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J., J. Phys. Chem. A, 102 (1998) 3762.

    Google Scholar 

  12. Buchwald, P. and Bodor, N., Curr. Med. Chem., 5 (1998) 353.

    Google Scholar 

  13. Kantola, A., Villar, H.O. and Loew, H., J. Comput. Chem., 12 (1991) 681.

    Google Scholar 

  14. Alkorta, I. and Villar, H.O., Int. J. Quantum Chem., 44 (1992) 203.

    Google Scholar 

  15. Abraham, D.J. and Leo, A.J., Proteins Struct. Funct. Genet., 2 (1987) 130.

    Google Scholar 

  16. Kellogg, G.E., Joshi, G.S. and Abraham, D.J., Med. Chem. Res., 1 (1992) 444.

    Google Scholar 

  17. Kellogg, G.E. and Abraham, D.J., J. Mol. Graphics, 10 (1992) 212.

    Google Scholar 

  18. Kellogg, G.E., Semus, S.F. and Abraham, D.J., J. Comput.-Aided Mol. Design, 5 (1991) 545.

    Google Scholar 

  19. Abraham, D.J. and Kellogg, G.E., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, p. 506.

    Google Scholar 

  20. Wildman, S.A. and Crippen, G.M., J. Chem. Inf. Comput. Sci., 39 (1999) 868.

    Google Scholar 

  21. Jäger, R. and Brickmann, J., Empirical quantification of hydrophobicity with the MolFESD strategy, in preparation.

  22. Heiden, W., Moeckel, G. and Brickmann, J., J. Comput.-Aided Mol. Design, 7 (1993) 503.

    Google Scholar 

  23. Connolly, M., Science, 221 (1983) 709.

    Google Scholar 

  24. Audry, E., Dubost, J.P., Colleter, J.C. and Dallet, P., Eur. J. Med. Chem.-Chim. Ther., 21 (1986) 71.

    Google Scholar 

  25. Fauchère, J.-L., Quarendon, P. and Kaetterer, L., J. Mol. Graphics, 6 (1988) 203.

    Google Scholar 

  26. Brasseur, R., J. Biol. Chem., 266 (1991) 16120.

    Google Scholar 

  27. Furet, P., Sele, A. and Cohen, N.C., J. Mol. Graphics, 6 (1988) 182.

    Google Scholar 

  28. Gaillard, P., Carrupt, P.A., Testa, B. and Boudon, A., J. Comput.-Aided Mol. Design, 8 (1994) 83.

    Google Scholar 

  29. Carrupt, P.A., Gaillard, P., Billois, F., Weber, P., Testa, B., Meyer, C. and Pérez, S., In Pliska, V., Testa, B. and van de Waterbeemd, H. (Eds), Lipophilicity in Drug Research, VCH Publishers, Weinheim, 1996.

    Google Scholar 

  30. Gaillard, P., Carrupt, P.A., Testa, B. and Schambel, P., J. Med. Chem., 39 (1996) 126.

    Google Scholar 

  31. Privalov, P.L. and Gill, S.J., Adv. Protein Chem., 39 (1985) 191.

    Google Scholar 

  32. Lee, B. and Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  33. Cothia, C., J. Mol. Biol., 105 (1976) 1.

    Google Scholar 

  34. Hermann, R.B., Proc. Natl. Acad. Sci. USA, 74 (1977) 4144.

    Google Scholar 

  35. Tanford, C., The Hydrophobic Effect, Wiley, New York, NY, 1980.

    Google Scholar 

  36. Abraham, M.H., J. Am. Chem. Soc., 104 (1982) 2085.

    Google Scholar 

  37. Abraham, M.H., J. Chem. Soc. Faraday Trans., 1 (1984) 153.

    Google Scholar 

  38. Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.

    Google Scholar 

  39. Radzicka, A. and Wolfenden, R., Biochemistry, 27 (1988) 1664.

    Google Scholar 

  40. DeYoung, L.R. and Dill, K.A., J. Phys. Chem., 94 (1990) 801.

    Google Scholar 

  41. Sharp, K.A., Nicholls, A., Fine, R.F. and Honig, B., Science, 252 (1991) 106.

    Google Scholar 

  42. Richards, N.G.J., Williams, P.B. and Tute, M., Int. J. Quantum Chem.: Quantum Biol. Symp., 18 (1991) 299.

    Google Scholar 

  43. Richards, N.G.J., Williams, P.B. and Tute, M., Int. J. Quantum Chem., 44 (1992) 219.

    Google Scholar 

  44. Hermann, R.B., J. Comput. Chem., 18 (1997) 115.

    Google Scholar 

  45. Lee, B., Proc. Natl. Acad. Sci. USA, 88 (1993) 5154.

    Google Scholar 

  46. Kellogg, G.E., Semus, S.E. and Abraham, D.J., J. Comput.-Aided Mol. Design, 5 (1991) 545.

    Google Scholar 

  47. Abraham, D.J., Kellogg, G.E., Holt, J.M. and Ackers, G.K., J. Mol. Biol., 272 (1997) 613.

    Google Scholar 

  48. a. Luque, F.J., Barril, X. and Orozco, M., J. Comput.-Aided Mol. Design, 13 (1999) 139; Muòoz, J., Barril, X., Luque, F.J., Gelpí, J.L., and Orozco, M., private communication. b. Barill, X., Muòoz, J., Luque, F.J., and Orozco, M., private communication, to be published.

  49. Sinanoglu, O., J. Chem. Phys., 75 (1981) 463.

    Google Scholar 

  50. DeBolt, S.E. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5316.

    Google Scholar 

  51. Hansch, C. and Dunn III, J., J. Pharm. Sci., 61 (1972) 1.

    Google Scholar 

  52. Davis, M.E. and McCammon, J.A., Chem. Rev., 90 (1990) 509.

    Google Scholar 

  53. Warwicker, J. and Watson, H.C., J. Mol. Biol., 157 (1982) 671.

    Google Scholar 

  54. Gilson, M.K., Sharp, K.A. and Honig, B., J. Comput. Chem., 9 (1987) 327.

    Google Scholar 

  55. Sharp, K., Jean-Charles, A. and Honig, B., J. Phys. Chem., 96 (1992) 3822.

    Google Scholar 

  56. Sharp, K.A., Nicholls, A., Fine, R.F. and Honig, B., Science, 268 (1995) 1144.

    Google Scholar 

  57. Rashin, A.A., J. Phys. Chem., 93 (1989) 4664.

    Google Scholar 

  58. Juffer, A.H., Botta, E.F., van Keulen, B.A., van der Plog, A. and Berendsen, H.J.C., J. Comput. Phys., 97 (1991) 144.

    Google Scholar 

  59. Zauhar, R.J. and Morgan, R.S., J. Comput. Chem., 9 (1988) 171.

    Google Scholar 

  60. You, T.J. and Harvey, S.C., J. Comput. Chem., 14 (1993) 484.

    Google Scholar 

  61. Gilson, M. and Honig, B., Proteins, 4 (1988) 7.

    Google Scholar 

  62. Sitkoff, D., Ben-Tal, N. and Honig, B., J. Phys. Chem., 100 (1996) 2744.

    Google Scholar 

  63. Zauhar, R.J. and Morgan, R.S., J. Mol. Biol., 186 (1985) 815.

    Google Scholar 

  64. Luty, B.A., Davis, M.E. and McCammon, J.A., J. Comput. Chem., 13 (1992) 768.

    Google Scholar 

  65. Still, W.C., Tempczyk, A., Hawley, R. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  66. Cramer, C.J. and Truhlar, D.G., J. Am. Chem. Soc., 113 (1991) 8305.

    Google Scholar 

  67. Qiu, D., Shenkin, P.S., Hollinger, F.P. and Still, W.C., J. Phys. Chem. A, 101 (1997) 3005.

    Google Scholar 

  68. Giesen, D.J., Storer, J.W., Cramer, C.J. and Truhlar, D.G., J. Am. Chem. Soc., 117 (1995) 1057.

    Google Scholar 

  69. Giesen, D.J., Cramer, C.J. and Truhlar, D.G., J. Phys. Chem., 99 (1995) 7137.

    Google Scholar 

  70. Chambers, C.C., Hawkins, G.D., Cramer, C.J. and Truhlar, D.G., J. Phys. Chem., 100 (1996) 16385.

    Google Scholar 

  71. Cramer, C.J. and Truhlar, D.G., J. Comput.-Aided Mol. Design, 6 (1992) 629.

    Google Scholar 

  72. Giesen, D.J., Chambers, C.C., Cramer, C.J. and Truhlar, D.G., J. Phys. Chem. B, 101 (1997) 2061.

    Google Scholar 

  73. Hawkins, G.D., Cramer, C.J. and Truhlar, D.G., J. Phys. Chem., 100 (1996) 19824.

    Google Scholar 

  74. Giesen, D.J., Gu, M.Z., Cramer, C.J. and Truhlar D.G., J. Org. Chem., 61 (1996) 8720.

    Google Scholar 

  75. Edinger, S.R., Cortis, C., Shenkin, P.S. and Friesner, R.A., J. Phys. Chem. B, 101 (1997) 1190.

    Google Scholar 

  76. Cramer, C.J. and Truhlar, D.G., In Lipkowitz, K.B. and Boyd, D. (Eds.), Reviews in Computational Chemistry, Vol. 6, VCH, New York, NY, 1995.

    Google Scholar 

  77. Born, M., Z. Phys., 1 (1920) 45.

    Google Scholar 

  78. Kirkwood, J., J. Chem. Phys., 3 (1935) 300.

    Google Scholar 

  79. Srebrenik, S., Weinstein, H. and Pauncz, R., Chem. Phys. Lett., 20 (1973) 419. jm265238.tex; 2/08/2000; 7:32; p.15 646

    Google Scholar 

  80. Schaefer, M. and Frömmel, C., J. Mol. Biol., 216 (1990) 1045.

    Google Scholar 

  81. Schaefer, M. and Karplus, M., J. Phys. Chem., 100 (1996) 1578.

    Google Scholar 

  82. Smythe, W.R., Static and Dynamic Electricity, McGraw-Hill, New York, NY, 1967.

    Google Scholar 

  83. Fröhlich, H., Theory of Electric Polarization, Clarendon Press, Oxford, 1958.

    Google Scholar 

  84. Wilhelm, E., Battino, R. and Wilcock, R.J., Chem. Rev., 77 (1977) 219.

    Google Scholar 

  85. Abraham, M.H., Grellier, P.L. and McGill, R.A., J. Chem. Soc. Perkin Trans., 2 (1988) 339.

    Google Scholar 

  86. Abraham, M.H. and Nasehzadeh, A., J. Chem. Soc. Faraday Trans., 1 (1981) 321.

    Google Scholar 

  87. Frank, H.S. and Evans, M.W., J. Chem. Phys., 13 (1945) 507.

    Google Scholar 

  88. Lee, B., Methods Enzymol., 259 (1995) 555.

    Google Scholar 

  89. Lee, B., Biopolymers, 31 (1991) 993.

    Google Scholar 

  90. Lee, B., Biopolymers, 24 (1985) 813.

    Google Scholar 

  91. Pierotti, R.A., Chem. Rev., 76 (1976) 717.

    Google Scholar 

  92. Pierotti, R.A., J. Phys. Chem., 69 (1965) 281.

    Google Scholar 

  93. Pierotti, R.A., J. Phys. Chem., 67 (1963) 1840.

    Google Scholar 

  94. Reiss, H., Adv. Chem. Phys., 9 (1966) 1.

    Google Scholar 

  95. Ben-Naim, A. and Lovett, R., J. Phys. Chem. B, 101 (1997) 10535.

    Google Scholar 

  96. Jackson, J.D., Classical Electrodynamics, Wiley, New York, NY, 1975.

    Google Scholar 

  97. Best, S.A., Merz, K.M. and Reynolds, C.H., J. Phys. Chem. B, 103 (1999) 714.

    Google Scholar 

  98. Privalov, P.L., Gill, S.J. and Murphy, K.P., Science, 250 (1990) 297.

    Google Scholar 

  99. Zimmermann, H.J., Fuzzy Set Theory and its Applications, Kluwer, Boston, MA, 1991.

    Google Scholar 

  100. Pixner, P., Heiden, W., Merx, H., Möller, A., Moeckel, G. and Brickmann, J., J. Chem. Inf. Comput. Sci., 34 (1994) 1309.

    Google Scholar 

  101. Mannhold, R., Cruciani, W., Dross, K. and Rekker, R., J. Comput.-Aided Mol. Design, 12 (1998) 573.

    Google Scholar 

  102. Jäger, R., Segal, A., Flonda, M.L. and Brickmann, J., in preparation.

  103. Shallenberger, R.S. and Acree, T.E., Nature, 216 (1967) 480.

    Google Scholar 

  104. Kier, L.B., J. Pharm. Sci., 61 (1972) 1394.

    Google Scholar 

  105. Immel, S., Kreis, U. and Lichtenthaler, F.W., Starch, 43 (1991) 121.

    Google Scholar 

  106. Immel, S., Ph.D. Thesis, Darmstadt University of Technology, 1995.

  107. Lee, C.K., Adv. Carbohydr. Chem. Biochem., 45 (1987) 199.

    Google Scholar 

  108. Hough, L. and Khan, R., Trends Biol. Sci., 3 (1978) 61.

    Google Scholar 

  109. Jenner, M.R., Jackson, G., Lee, C.K. and Khan, R.A. (Tate & Lyle PLC), UK Pat. GB2104063 (1983).

  110. Jackson, G., Jenner, M.R. and Khan, R.A. (Tate & Lyle PLC), US Pat. US4473546 (1984).

  111. Jackson, G., Jenner, M.R., Khan, R.A., Lee, C.K., Mufti, K.S., Patel, G.D. and Rathbone, E.B. (Tate & Lyle PLC) Eur. Pat. EP0073093 (1983).

  112. Knoblauch, M. and Waldherr-Teschner, M., MOLCAD. Neue Entwicklungen von Molecular-Modeling-Software für Superworkstations. In: Gauglitz, G. (Ed.), Software-Entwicklungen in der Chemie 3, Springer-Verlag, Berlin, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, R., Schmidt, F., Schilling, B. et al. Localization and quantification of hydrophobicity: The molecular free energy density (MolFESD) concept and its application to sweetness recognition. J Comput Aided Mol Des 14, 631–646 (2000). https://doi.org/10.1023/A:1008181611372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008181611372

Navigation