Skip to main content
Log in

De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of ∼25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define `fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library `diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Böhm, H.-J., J. Comput.-Aided Mol. Design, 12 (1998) 309.

    Google Scholar 

  2. Kubinyi, H., J. Recept. Signal Transduct. Res., 19 (1999) 15.

    Google Scholar 

  3. Willett, P., Trends Biotechnol., 13 (1995) 516.

    Google Scholar 

  4. Schneider, G., Schrödl, W., Wallukat, G., Nissen, E., Rönspeck, G., Müller, J., Wrede, P. and Kunze, R., Proc. Natl. Acad. Sci. USA, 95 (1998) 12179.

    Google Scholar 

  5. Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Discov. Today, 3 (1998) 160.

    Google Scholar 

  6. Wrede, P., Landt, O., Klages, S., Fatemi, A., Hahn, U. and Schneider, G., Biochemistry, 37 (1998) 3588.

    Google Scholar 

  7. Böhm, H.-J., Banner, D.W. and Weber, L., J. Comput.-Aided Mol. Design, 13 (1999) 51.

    Google Scholar 

  8. Lewell, X.Q., Judd, D.B., Watson, S.P. and Hann, M.M., J. Chem. Inf. Comput. Sci., 38 (1998) 511.

    Google Scholar 

  9. Kaiser, B., Hauptmann, J., Weiss, A. and Markwardt, F., Biomed. Biochim. Acta, 44 (1985) 1201.

    Google Scholar 

  10. Bode, W., Turk, D. and Sturzebecher, J., Eur. J. Biochem., 193 (1990) 175.

    Google Scholar 

  11. Mohler, M.A., Refino, C.J., Chen, S.A., Chen, A.B. and Hotchkiss, A.J., Thromb. Haemost., 56 (1986) 160.

    Google Scholar 

  12. Rechenberg, I., Evolutionsstrategie-Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (extended edition 1994), Frommann-Holzboog, Stuttgart, 1973.

    Google Scholar 

  13. Willett, P., Barnard, J.M. and Downs, G.M., J. Chem. Inf. Comput. Sci., 38 (1998) 983.

    Google Scholar 

  14. Schneider, G. and Wrede, P., Prog. Biophys. Mol. Biol., 70 (1998) 175.

    Google Scholar 

  15. Schneider, G., Neidhart, W., Giller, T. and Schmid, G., Angew. Chem. Int. Ed. Engl., 38 (1999) 2894.

    Google Scholar 

  16. Walters, W.P., Ajay and Murcko, M.A., Curr. Opin. Chem. Biol., 3 (1999) 384.

    Google Scholar 

  17. Schneider, G., Schuchhardt, J. and Wrede, P., Biol. Cybern., 74 (1996) 203.

    Google Scholar 

  18. Grootenhuis, P.D. and Karplus, M., J. Comput.-Aided Mol. Design, 10 (1996) 1.

    Google Scholar 

  19. Wiley, M.R. and Fisher, M.J., Exp. Opin. Ther. Patents, 7 (1997) 1265.

    Google Scholar 

  20. Rarey, M., Wefing, S. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1996) 41.

    Google Scholar 

  21. Banner, D.W. and Hadváry, P., Biol. Chem., 266 (1991) 20085.

    Google Scholar 

  22. Gerber, P.R. and Müller, K., J. Comput.-Aided Mol. Design, 9 (1995) 251.

    Google Scholar 

  23. Bohacek, R.S. and McMartin, C., Curr. Opin. Chem. Biol., 1 (1997) 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, G., Lee, ML., Stahl, M. et al. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14, 487–494 (2000). https://doi.org/10.1023/A:1008184403558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008184403558

Navigation