Skip to main content
Log in

MOST-Based Design and Scaling of Synaptic Interconnections in VLSI Analog Array Processing CNN Chips

  • Published:
Journal of VLSI signal processing systems for signal, image and video technology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Roska and L.O. Chua, “The CNN universal machine: An analogic array computer,” IEEE Trans. Circuits & Systems-I, Vol. 40, pp. 163–173, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Domínguez-Castro, S. Espejo, A. Rodríguez-Vázquez, R. Carmona, P. Földessy, A. Zarándy, P. Szolgay, T. Szirányi, and T. Roska, “A 0.8µm CMOS 2-D programmable mixedsignal focal-plane array processor with on-chip binary imaging and instructions storage.” IEEE J. Solid-State Circuits, Vol. 32, pp. 1013–1026, 1997.

    Article  Google Scholar 

  3. G. Liñan, S. Espejo, R. Domínguez-Castro, and A. Rodríguez-Vázquez, “64 × 64 CNN universal chip with analog and digital I/O,” Proc. of the IEEE Int. Conf. on Electronics, Circuits and Systems, pp. 203–206, Lisbon, Sept. 1998.

  4. Y. Tsividis, Mixed Analog-Digital VLSI Devices and Technology, McGraw-Hill, New-York 1996.

    Google Scholar 

  5. N. Arora, MOSFET Models for VLSI Circuit Simulation- Theory and Practice, Springer-Verlag, New York 1993.

    Book  Google Scholar 

  6. D. Foty, MOSFET Modeling with SPICE: Principles and Practice, Prentice-Hall, London 1997.

    Google Scholar 

  7. C.C. Enz, F. Krummenacher, and E.A. Vittoz, “An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications.” Analog Integrated Circuits and Signal Processing, Vol. 8, pp. 83–114, July 1995.

    Article  Google Scholar 

  8. M.H. White, F. Van de Wiele, and J.P. Lambot, “HighaccuracyMOSmodels for computer-aided design,” IEEE Transactions on Electron Devices, Vol. ED-27, pp. 899–906, May 1980.

    Article  Google Scholar 

  9. M.J.M. Pelgrom, A.C.J. Duinmaijer, and A.P.G. Welbers, “Matching properties of MOS transistors.” IEEE J. Solid-State Circuits, Vol. SC-24, pp. 1433–1440, Oct. 1989.

    Article  Google Scholar 

  10. K. Lakshmikumar, R.A. Hadaway, and M. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analog design.” IEEE J. Solid-State Circuits, Vol. SC-21, pp. 1057–1066, Dec. 1986.

    Article  Google Scholar 

  11. K.R. Laker and W.M.C. Sansen, Design of Analog Integrated Circuits and Systems. McGraw-Hill, New York 1994.

    Google Scholar 

  12. A. Rodríguez-Vázquez, B. Linares-Barranco, J.L. Huertas, and E. Sánchez-Sinencio, “On the design of voltage-controlled sinusoidal oscillators using OTAs.” IEEE Trans. on Circuits and Systems, Vol. CAS-37, pp. 198–211, Feb. 1990.

    Article  Google Scholar 

  13. K.D. Peterson, A. Nedungadi, and R.L. Geiger, “Amplifier design considerations for high frequency monolithic filters.” Proc. of the 1987 European Conf. on Circuit Theory and Design, pp. 321–326, Sep. 1987.

  14. A. Rodríguez-Vázquez, S. Espejo, R. Domínguez-Castro, and J.L. Huertas, “Current mode techniques for the implementation of continuous and discrete-time cellular neural networks.” IEEE Transactions on Circuits and Systems-I, Vol. 40, pp. 132–146, IEEE March 1993.

    Article  MATH  Google Scholar 

  15. C. Toumazou, F.J. Lidgey, and D.G. Haigh (eds.), Analog IC Design: The Current-Mode Approach, Peter Peregrinus Ltd., London, 1990.

    Google Scholar 

  16. A. Fabre, O. Saaid, and H. Barthelemy, “On the frequency limitations of the circuits based on the second generation current conveyor.” Analog Integrated Circuits and Signal Processing, Vol. 7, pp. 113–129, 1995.

    Article  Google Scholar 

  17. F.J. Kub, K.K. Moon, I. Mack, and F.M. Long, “Programmable analog vector-matrix multipliers.” IEEE Journal of Solid-State Circuits, Vol. 25, pp. 207–214, Feb. 1990.

    Article  Google Scholar 

  18. S. Qin and R.L. Geiger, “A 5-VCMOS analog multiplier.” IEEE Journal of Solid-State Circuits, Vol. 22, pp. 1143–1146, Dec. 1987.

    Article  Google Scholar 

  19. B. Gilbert, “Aprecise four-quadrant multiplier with subnanosecond response.” IEEE Journal of Solid-State Circuits, Vol. 3, pp. 365–373. Dec. 1968.

    Article  Google Scholar 

  20. B. Gilbert, “A high-performance monolithic multiplier using active feedback.” IEEE Journal of Solid-State Circuits, Vol. 9, pp. 364–373, Dec. 1974.

    Article  Google Scholar 

  21. D.C. Soo and R.G. Meyer, “A four-quadrant NMOS analog multiplier.” IEEE Journal of Solid-State Circuits, Vol. 17, pp. 1174–1178, Dec. 1982.

    Article  Google Scholar 

  22. E. Seevinck and R.F. Wassenaar, “A versatile CMOS linear transconductor/square-law function circuit.” IEEE Journal of Solid-State Circuits, Vol. 22, pp. 366–377, June 1987.

    Article  Google Scholar 

  23. J.N. Babanezhad and G.C. Temes, “A20-V four quadrantCMOS analog multiplier.” IEEE Journal of Solid-State Circuits, Vol. 20, pp. 1158–1168, Dec. 1985.

    Article  Google Scholar 

  24. S.L. Wong, N. Kalyanasundaram, and C.A.T. Salama, “Wide dynamic range four-quadrant CMOS analog multiplier using linearized transconductance stages.” IEEE Journal of Solid-State Circuits, Vol. 21, pp. 1120–1122, Dec. 1986.

    Article  Google Scholar 

  25. K. Kimura, “An MOS four-quadrant analog multiplier based on the multitail technique using a quadritail cell as a multiplier core.” IEEE Transactions on Circuits and Systems-I, Vol. 42, pp. 448–454, Aug. 1995.

    Article  Google Scholar 

  26. A. Rodríguez-Vázquez, M. Delgado-Restituto, J.L. Huertas, and F. Vidal, “Synthesis and design of nonlinear circuits.” in The Circuits and Filters Handbook, W.K. Chen (Ed.), ISBN 0-8493-8341-2/95, IEEE Press, 1995.

  27. M. Delgado-Restituto, Design of Nonlinear Integrated Circuits with Application to Chaos Generation and Secure Communications. Ph.D. dissertation, Univ. of Seville, 1996.

  28. M. Delgado-Restituto, A. Rodríguez-Vázquez, and F. Vidal, “Nonlinear synthesis using ICs.” in Encyclopedia of Electrical and Electronics Engineering, John G. Webster (Ed.), JohnWiley & Sons, 1999.

  29. K. Bult and H. Wallinga, “A CMOS four-quadrant analog multiplier.” IEEE Journal of Solid-State Circuits, Vol. 21, pp. 430- 435, June 1986.

  30. K. Bult, Analog CMOS Square-Law Circuits, Ph.D. Dissertation, University of Twente, 1988.

  31. Z. Wang, “ACMOSfour-quadrant analog multiplier with singleended voltage output and improved temperature performance.” IEEE Journal of Solid-State Circuits, Vol. 26, pp. 1293–1301, Sept. 1991.

    Article  Google Scholar 

  32. U. Gatti, F. Maloberti, and G. Torelli, “A novel CMOS linear transconductance cell for continuous-time filters.” Proceedings of the 1990 IEEE International Symposium on Circuits and Systems, pp. 1173–1176, May 1990.

  33. S.O. Lee and S.B. Park, “New CMOS triode transconductor for continuous-time active integrated filters.” Electronics Letters, Vol. 30, No. 12, pp. 946–948, June 1994.

    Article  Google Scholar 

  34. B. Nauta, E. Klumperink, and W. Kruiskamp, “A CMOS triode transconductor.” Proceedings of the 1991 IEEE International Symposium on Circuits and Systems, pp. 2232–2235, May 1991.

  35. J.L. Pennock, “CMOS triode transconductor for continuoustime active integrated filters.” Electronics Letters, Vol. 21, No. 18, pp. 817–818, Aug. 1985.

    Article  Google Scholar 

  36. B. Stefanelli and A. Kaiser, “A 2-µm CMOS fifth-order lowpass continuous-time filter for video-frequency applications.” IEEE Journal of Solid-State Circuits, Vol. 28, pp. 713–718, July 1993.

    Article  Google Scholar 

  37. A. Wyszynski, “Low-voltage CMOS and BiCMOS triode transconductors and integrators with gain-enhanced linearity and output impedance.” Electronics Letters, Vol. 30, No. 3, pp. 211–213, Feb. 1994.

    Article  Google Scholar 

  38. Z. Czarnul, “Novel MOS resistive circuit for synthesis of fully integrated continuous-time filters.” IEEE Transactions on Circuits and Systems, Vol. 33, pp. 718–721, July 1986.

    Article  Google Scholar 

  39. M. Ismail, “Four-transistor continuous-time MOS transconductor.” Electronics Letters, Vol. 23, pp. 1099–1100, Sept. 1987.

    Article  Google Scholar 

  40. B.P. Song, “CMOS RF circuits for data communication applications.” IEEE Journal of Solid-State Circuits, Vol. 21, pp. 310–317, April 1987.

    Article  Google Scholar 

  41. R. Spence and R.S. Soin, Tolerance Design of Electronic Circuits. Addison-Wesley, Woking-ham, 1988.

    Google Scholar 

  42. E.A. Vittoz, “Future of analog VLSI in the VLSI environment.” Proc. of the 1990 IEEE Int. Symp. Circ. and Syst., pp. 1372–1375, 1990.

  43. H.C. Graaf and F.M. Klaassen, Compact Transistor Modeling for Circuit Design, Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Vázquez, A., Roca, E., Delgado-Restituto, M. et al. MOST-Based Design and Scaling of Synaptic Interconnections in VLSI Analog Array Processing CNN Chips. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 23, 239–266 (1999). https://doi.org/10.1023/A:1008184732735

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008184732735

Keywords

Navigation