Skip to main content
Log in

Computer-aided design and activity prediction of leucine aminopeptidase inhibitors

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The Ligand Design (LUDI) approach has been used in order to design leucine aminopeptidase inhibitors, predict their activity and analyze their interactions with the enzyme. The investigation was based on the crystal structure of bovine lens leucine aminopeptidase (LAP) complexed with its inhibitor – the phosphonic acid analogue of leucine (LeuP). More than 50 potential leucine aminopeptidase inhibitors have been obtained, including the most potent aminophosphonic LAP inhibitors with experimentally known activity, which have been the subject of more detailed studies. A reasonable agreement between theoretical and experimental activities has been obtained for most of the studied inhibitors. Our results confirm that LUDI is a powerful tool for the design of enzyme inhibitors as well as in the prediction of their activity. In addition, for inhibitor-active site interactions dominated by the electrostatic effects it is possible to improve binding energy estimates by using a more accurate description of inhibitor charge distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Sträter, N. and Lipscomb, W.N., Biochemistry, 34 (1995) 9200.

    Google Scholar 

  2. Taylor, A., Trends Biochem. Sci., 18 (1993) 167.

    Google Scholar 

  3. Taylor, A. and FASEB J., 7 (1993) 290.

    Google Scholar 

  4. Sträter, N. and Lipscomb, W.N., Biochemistry, 34 (1995) 14792.

    Google Scholar 

  5. Pulido-Cejudo, G., Conway, B., Proulx, P., Brown, R. and Izaguirre, C.A., Antiviral Res., 36 (1997) 167.

    Google Scholar 

  6. Andersson, L., Isley, T.C. and Wolfenden, R., Biochemistry, 21 (1982) 4177.

    Google Scholar 

  7. Giannousis, P.P. and Bartlett, P.A., J. Med. Chem., 30 (1987) 1603.

    Google Scholar 

  8. Shenvi, A.B., Biochemistry, 25 (1986) 1286.

    Google Scholar 

  9. Sträter, N., Lipscomb, W.N., Klabunde, T. and Krebs, B., Angew. Chem. Int. Ed. Engl., 35 (1996) 2024.

    Google Scholar 

  10. Matthews, B.W., Acc. Chem. Res., 21 (1988) 333.

    Google Scholar 

  11. Kim, H. and Lipscomb, W.N., Biochemistry, 30 (1991) 8171.

    Google Scholar 

  12. Böhm, H.J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  13. Böhm, H.J., J. Mol. Recognition, 6 (1993) 131.

    Google Scholar 

  14. Böhm, H.J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  15. Böhm, H.J., J. Comput.-Aided Mol. Design, 8 (1994) 623.

    Google Scholar 

  16. Böhm, H.J. and Klebe, G., Angew. Chem. Int. Ed. Engl., 35 (1996) 2588.

    Google Scholar 

  17. Ligand Design 97.0 Molecular Modelling Program Package, Molecular Simulations Inc., San Diego, CA, 1997.

  18. INSIGHT 97 Molecular Modelling Program Package, Molecular Simulations Inc., San Diego, CA, 1997.

  19. Lejczak, B., Kafarski, P. and Zygmunt, J., Biochemistry, 28 (1989) 3549.

    Google Scholar 

  20. CFF97 User Guide, Molecular Simulations Inc., San Diego, CA, 1997.

  21. DISCOVERMolecular Modelling Program Package, Molecular Simulations Inc., San Diego, CA, 1997.

  22. Hafkenscheid, J.C. and Kohler, B.E.M., J. Clin. Chem. Clin. Biochem., 23 (1985) 393.

    Google Scholar 

  23. Böhm, H.J., J. Comput.-Aided Mol. Design, 12 (1998) 309.

    Google Scholar 

  24. Roterman, I.K., Gibson, K.D. and Scheraga, H.A., J. Biomol. Struct. Dyn., 7 (1989) 391.

    Google Scholar 

  25. Gaussian 98, (Revision A.1), Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petterson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al.-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzales, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S. and Pople, J.A., Gaussian, Inc., Pittsburgh, PA, 1998.

  26. Day, F.P.N., Jensen, J.H., Gordon, M.S., Webb, S.P., Stevens, W.J., Krauss, M., Garmer, D., Basch, H. and Cohen, D., J. Chem. Phys., 105 (1996) 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grembecka, J., Sokalski, W. & Kafarski, P. Computer-aided design and activity prediction of leucine aminopeptidase inhibitors. J Comput Aided Mol Des 14, 531–544 (2000). https://doi.org/10.1023/A:1008189716955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008189716955

Navigation