Skip to main content
Log in

Lipophilicity in PK design: methyl, ethyl, futile

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Lipophilicity, often expressed as distribution coefficients (log D) in octanol/water, is an important physicochemical parameter influencing processes such as oral absorption, brain uptake and various pharmacokinetic (PK) properties. Increasing log D values increases oral absorption, plasma protein binding and volume of distribution. However, more lipophilic compounds also become more vulnerable to P450 metabolism, leading to higher clearance. Molecular size and hydrogen bonding capacity are two other properties often considered as important for membrane permeation and pharmacokinetics. Interrelationships among these physicochemical properties are discussed. Increasing size (molecular weight) often gives higher potency, but inevitably also leads to either higher lipophilicity, and hence poorer dissolution/solubility, or to more hydrogen bonding capacity, which limits oral absorption. Differences in optimal properties between gastrointestinal absorption and uptake into the brain are addressed. Special attention is given to the desired lipophilicity of CNS drugs. In examples using β-blockers, Ca channel antagonists and peptidic renin inhibitors we will demonstrate how potency and pharmacokinetic properties need to be balanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith, D.A., Jones, B.C. and Walker, D.K., Med. Res. Rev., 16 (1996) 243-266.

    Google Scholar 

  2. Van de Waterbeemd, H., Carter, R.E., Grassy, G., Kubinyi, H., Martin, Y.C., Tute, M.S. and Willett, P., Pure Appl. Chem., 69 (1997) 1137-1152.

    Google Scholar 

  3. Pliska, V., Testa, B. and Van de Waterbeemd, H. (Eds.), Lipophilicity in Drug Action and Toxicology, VCH, Weinheim, 1996.

    Google Scholar 

  4. Smith, D.A., In Van de Waterbeemd, H., Testa, B. and Folkers, G. (Eds.), Computer-Assisted Lead Finding and Optimization, Wiley-VCH, Weinheim, 1997, pp. 267-276.

    Google Scholar 

  5. Wacher, V.J., Salphati, L. and Benet, L.Z., Adv. Drug Deliv. Rev., 20 (1996) 99-112.

    Google Scholar 

  6. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Del. Res., 23 (1997) 3-25.

    Google Scholar 

  7. Yee, S.H., Pharm. Res., 14 (1997) 763-766.

    Google Scholar 

  8. Van de Waterbeemd, H., in Dressman, J. (Ed.), Methods for Assessing Oral Drug Absorption, Dekker, New York, NY 2000, pp. 31-49.

    Google Scholar 

  9. Camenisch, G., Alsenz, J., Van de Waterbeemd, H. and Folkers, G., Eur. J. Pharm. Sci., 6 (1998) 313-319.

    Google Scholar 

  10. Van de Waterbeemd, H., Eur. J. Pharm. Sci. 7 (1998) 1-3.

    Google Scholar 

  11. Van de Waterbeemd, H. and Kansy, M., Chimia, 46 (1992) 299-303.

    Google Scholar 

  12. Palm, K., Luthman, K., Ungell, A.-L., Strandlund, G. and Artursson, P., J. Pharm. Sci., 85 (1996) 32-39.

    Google Scholar 

  13. Van de Waterbeemd, H., Camenisch, G., Folkers, G. and Raevsky, O.A., Quant. Struct. Act. Relat., 15 (1996) 480-490.

    Google Scholar 

  14. Palm, K., Luthman, K., Ungell, A.-L., Strandlund, G., Beigi, F., Lundahl, P. and Artursson, P., J. Med. Chem., 41 (1998) 5382-5392.

    Google Scholar 

  15. Palm, K., Stenberg, P., Luthman, K. and Artursson, P., Pharm. Res., 14 (1997) 568-571.

    Google Scholar 

  16. Kansy, M., Senner, F. and Gubernator, K., J. Med. Chem., 41 (1998) 1007-1010.

    Google Scholar 

  17. Norinder, U., Österberg, T. and Artursson, P., Pharm. Res., 14 (1997) 1786-1791.

    Google Scholar 

  18. Winiwarter, S., Bonham, N.M., Ax, F., Hallberg, A. and Karlén, A., J. Med. Chem., 41 (1998) 4939-4949.

    Google Scholar 

  19. Gupta, S.P., Chem. Rev., 89 (1989) 1765-1800.

    Google Scholar 

  20. Van de Waterbeemd, H., Camenisch, G., Folkers, G., Chrétien, J.R. and Raevsky, O.A., J. Drug Target., 6 (1999) 151-165.

    Google Scholar 

  21. Fischer, H., Gottschlich, R. and Seelig, A., J. Membr. Biol., 165 (1998) 201-211.

    Google Scholar 

  22. Young, R.C., Mitchell, R.C., Brown, T.H., Ganellin, C.R., Griffith, R., Jones, M., Rana, K.K., Saunders, D., Smith, I.R., Sore, N.E. and Wilks, T.J., J. Med. Chem., 31 (1988) 656-671.

    Google Scholar 

  23. Lombardo, F., Blake, J.F. and Curatolo, W.J., J. Med. Chem., 39 (1996) 4750-4755.

    Google Scholar 

  24. Norinder, U., Sjöberg, P. and Österberg, T., J. Pharm. Sci., 87 (1998) 952-959.

    Google Scholar 

  25. Luco, J.M., J. Chem. Inf. Comput. Sci., 39 (1999) 396-404.

    Google Scholar 

  26. Rowley, M., Kulagowski, J.J., Watt, A.P., Rathbone, D., Stevenson, G.I., Carling, R.W., Baker, R., Marshall, G.R., Kemp, J.a., Foster, A.C., Grimwood, S., Hargreaves, R., Hurley, C., Saywell, K.L., Tricklebank, M.D. and Leeson, P.D., J. Med. Chem., 40 (1997) 4053-4068.

    Google Scholar 

  27. Van Asperen, J., Mayer, U., Van Tellingen, O. and Beijen, J.H., J. Pharm. Sci., 86 (1997) 881-884.

    Google Scholar 

  28. Yamada, Y., Ito, K., Nakamura, K., Sawada, Y. and Iga, T., Biol. Pharm. Bull., 16 (1993) 1251-1259.

    Google Scholar 

  29. Meir, J., Am. Heart J., 104 (1982) 364-373.

    Google Scholar 

  30. Hinderling, P.H., Schmidlin, O. and Seydel, J.K., J Bioharm Pharmacokinet., 2 (1984) 263-286.

    Google Scholar 

  31. Smith, D.A., Ackland, M.J. and Jones, B.C., Drug Disc. Today, 2 (1997) 406-414.

    Google Scholar 

  32. Smith, D.A., Ackland, M.J. and Jones, B.C., Drug Disc. Today, 2 (1997) 479-486.

    Google Scholar 

  33. Smith, D.A. and Jones, B., Drug Discov. Dev., 2 (1999) 33-41.

    Google Scholar 

  34. Ferrari, S., Leemann, T. and Dayer, P., Life Sci., 48 (1991) 2259-2265.

    Google Scholar 

  35. Spahn-Langguth, H., Baktir, G., Radschuweit, A., Okyar, A., Terhaag, B., Ader, P., Hanafy, A. and Langguth, P., Int. J. Clin. Pharm. Thev., 36 (1998) 16-24.

    Google Scholar 

  36. Hamilton, H.W., Steinbaugh, B.A., Stewart, B.H., Chan, O.H., Schmid, H.L., Schroeder, R., Ryan, M.J., Keiser, J., Taylor, M.D., Blankley, C.J., Kaltenbronn, J.S. Wright, J. and Hicks, J., J. Med. Chem., 38 (1995) 1446-1435.

    Google Scholar 

  37. Chan, O.H. and Stewart, B.H., Drug Discov. Today, 1 (1996) 461-473.

    Google Scholar 

  38. Rosenberg, S.H. and Kleinert, H.D., In Borchardt, R.T., Freidinger, R.M., Sawyer, T.K. and Smith, P.L. (Eds.) Integration of Pharmaceutical Discovery and Development. Case Histories, Plenum Press, New York, 1998, pp. 7-28.

    Google Scholar 

  39. Hilgert, M., Noldner, M., Chatterjee, S.S. and Klein, J. (1999) Neurosci. Lett., 263 (1999) 193-196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Waterbeemd, H., Smith, D.A. & Jones, B.C. Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 15, 273–286 (2001). https://doi.org/10.1023/A:1008192010023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008192010023

Navigation