Skip to main content
Log in

A CoMFA analysis with conformational propensity: An attempt to analyze the SAR of a set of molecules with different conformational flexibility using a 3D-QSAR method

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

CoMFA analysis, a widely used 3D-QSAR method, has limitations to handle a set of SAR data containing diverse conformational flexibility since it does not explicitly include the conformational entropic effects into the analysis. Here, we present an attempt to incorporate the conformational entropy effects of a molecule into a 3D-QSAR analysis. Our attempt is based on the assumption that the conformational entropic loss of a ligand upon making a ligand-receptor complex is small if the ligand in an unbound state has a conformational propensity to adopt an active conformation in a complex state. For a QSAR analysis, this assumption was interpreted as follows: a potent ligand should have a higher conformational propensity to adopt an `active-conformation'-like structure in an unbound state than an inactive one. The conformational propensity value was defined as the populational ratio, Nactive/Nstable, of the number of energetically stable conformers, Nstable, to the number of `active-conformation'-like structures, Nactive. The latter number was calculated by counting the number of conformers that satisfied the structural parameters deduced from the active conformation. A set of SAR data of imidazoleglycerol phosphate dehydratase inhibitors containing 20 molecules with different conformational flexibility was used as a training set for developing a 3D structure-activity relationship by a CoMFA analysis with the conformational propensity value. This resulted in a cross-validated squared correlation coefficient of the CoMFA model with the conformational propensity value (R 2 cross = 0.640) higher than that of the standard CoMFA model (R 2 cross = 0.431). Then we evaluated the quality of the CoMFA models by predicting the inhibitory activity for a new molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohacek, R.S., McMartin, C. and Guida, W.C., Med. Res. Rev., 16 (1996) 3.

    PubMed  Google Scholar 

  2. Kubinyi, H., Drug Discov. Today, 2 (1997) 457.

    Google Scholar 

  3. Kubinyi, H., Drug Discov. Today, 2 (1997) 538.

    Google Scholar 

  4. Kubinyi, H. (Ed.) 3D-QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993.

    Google Scholar 

  5. Stahle, L. and Wold, S., Prog. Med. Chem., 25 (1988) 292.

    Google Scholar 

  6. Cramer, R.D., III, J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  7. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.A. and Dunn, D.A., in Olsen, E.C. and Christoffersen, E. (Eds.) Computer Assisted Drug Design, American Chemical Society, Washington, DC, 1979, pp. 87–112.

    Google Scholar 

  8. Klebe, G., In Kubinyi, H. (Ed.) 3D-QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 173–199.

    Google Scholar 

  9. Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I. and Pavlik, P.A., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Google Scholar 

  10. Sprague, P. W., Perspect. Drug Discov. Des., 3 (1995) 1.

    Google Scholar 

  11. Lemmen, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 11 (1997) 357.

    Google Scholar 

  12. Lemmen, C., Lengauer, T. and Klebe, G., J. Med. Chem., 41 (1998) 4502.

    PubMed  Google Scholar 

  13. Klebe, G. and Abraham, U., J. Med. Chem., 36 (1993) 70.

    PubMed  Google Scholar 

  14. DePriest, S.A., Mayer, D., Naylor, C.B. and Marshall, G.R., J. Am. Chem. Soc., 115 (1993) 5372.

    Google Scholar 

  15. Kellogg, G.E., Semus, S.F. and Abraham, D.J., J. Comput.-Aided Mol. Design, 5 (1991) 545.

    Google Scholar 

  16. Gaillard, P., Carrupt, P.-A., Testa, B. and Boudon, A., J. Comput.-Aided Mol. Design, 8 (1994) 83.

    Google Scholar 

  17. Masuda, T., Nakamura, K., Jikihara, T., Kasuya, F., Igarashi, K., Fukui, M., Takagi, T. and Fujiwara, H., Quant. Struct.-Act. Relat., 15 (1996) 194.

    Google Scholar 

  18. Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J., J. Phys. Chem. A, 102 (1998) 3762.

    Google Scholar 

  19. Kim, K.H., Quant. Struct.-Act. Relat., 12 (1993) 232.

    Google Scholar 

  20. Koehler, M.G. and Hopfinger, A.J., Polymer, 30 (1989) 116.

    Google Scholar 

  21. Tokarski, J.S. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 37 (1997) 792.

    PubMed  Google Scholar 

  22. Hopfinger, A.J., Wang, S., Tokarski, J.S., Jin, B., Albuquerque, M., Madhav, P.J. and Duraiswami, C., J. Am. Chem. Soc., 119 (1997) 10509.

    Google Scholar 

  23. Ames, B.N., J. Biol. Chem., 228 (1957) 131.

    PubMed  Google Scholar 

  24. Hawkes, T.R., Cox, J.M., Barnes, N.J., Beautement, K., Edwards, L.S., Kipps, M.R., Langford, M.P., Lewis, T., Ridley, S.M. and Thomas, P.G., Brighton Crop Protection Conference (Weeds), 1993, pp. 739–744.

  25. Mori, I., Fonne-Pfister, R., Matsunaga, S., Tada, S., Kimura, Y., Iwasaki, G., Mano, J., Hatano, M., Nakano, T., Koizumi, S., Scheidegger, A., Hayakawa, K. and Ohta, D., Plant Physiol., 107 (1995) 719.

    PubMed  Google Scholar 

  26. Lindell, S.D., Earnshaw, C.G., Wright, B.J., Carver, D.S., O'Mahony, M.J. and Saville-Stones, E.A., Bioorg. Med. Chem. Lett., 6 (1996) 547.

    Google Scholar 

  27. Mori, I., Iwasaki, G., Kimura, Y., Matsunaga, S., Ogawa, A., Nakano, T., Buser, H.-P., Hatano, M., Tada, S. and Hayakawa, K., J. Am. Chem. Soc., 117 (1995) 4411.

    Google Scholar 

  28. QUANTA v. 3.3.1., Molecular Simulation Inc., Burlington, MA, 1994.

  29. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  30. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.

    Google Scholar 

  31. SPARTAN v. 4.0.2.,Wavefunction Co., Irvine, CA, 1995.

  32. Chang, G., Guida, W.C. and Still, W.C., J. Am. Chem. Soc., 111 (1989) 4379.

    Google Scholar 

  33. Guida, W.C., Bohacek, R.S. and Erion, M.D., J. Comput. Chem., 13 (1992) 214.

    Google Scholar 

  34. SYBYL v. 6.0.2., Tripos Inc., St. Louis, MO, 1994.

  35. Cramer III, R.D., DePriest, S.A., Patterson, D.E. and Hecht, P., in Kubinyi, H. (Ed.) 3D-QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 443–485.

    Google Scholar 

  36. Wold, S., Technometrics, 20 (1978) 397.

    Google Scholar 

  37. SYBYL 6.0 manual: Ligand-Based Design, Tripos Inc., St. Louis, MO, 1994, pp. 195–262.

  38. Leo, A.J., CLOGP version 3.63, Daylight Chemical Information Systems, Irvine, CA, 1991.

    Google Scholar 

  39. Bostrom, J., Norrby, P.-O. and Liljefors, T., J. Comput.-Aided Mol. Design, 12 (1998) 383.

    Google Scholar 

  40. Gohda, K., Kimura, Y., Mori, I., Ohta, D. and Kikuchi, T., Biochim. Biophys. Acta, 1385 (1998) 107.

    PubMed  Google Scholar 

  41. QUANTA 3.3 manual: Simulation, search, and analysis, Molecular Simulation Inc., Burlington, MA, 1994, pp. 185–228.

  42. Clark, M. and Cramer, R.D., III, Quant. Struct.-Act. Relat., 12 (1993) 137.

    Google Scholar 

  43. Epps, D.E., Cheney, J., Schostarez, H., Sawyer, T.K., Prairie, M., Krueger, W.C. and Mandel, F., J. Med. Chem., 33 (1990) 2080.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gohda, K., Mori, I., Ohta, D. et al. A CoMFA analysis with conformational propensity: An attempt to analyze the SAR of a set of molecules with different conformational flexibility using a 3D-QSAR method. J Comput Aided Mol Des 14, 265–275 (2000). https://doi.org/10.1023/A:1008193217627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008193217627

Navigation