Skip to main content
Log in

Homology model directed alignment selection for comparative molecular field analysis: Application to photosystem II inhibitors

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The use of a computational docking protocol in conjunction with a protein homology model to derive molecular alignments for Comparative Molecular Field Analysis (CoMFA) was examined. In particular, the DOCK program and a model of the herbicidal target site, photosystem II (PSII), was used to derive alignments for two PSII inhibitor training sets, a set of benzo- and napthoquinones and a set of butenanilides. The protein design software in the QUANTA molecular modeling package was used to develop a homology model of spinach PSII based on the reported amino acid sequence and the X-ray crystal structure of the purple bacterium reaction center. The model is very similar to other reported PSII protein homology models. DOCK was then used to derive alignments for CoMFA modeling by docking the inhibitors in the PSII binding pocket. The molecular alignments produced from docking yielded highly predictive CoMFA models. As a comparison, the more traditional atom-atom alignments of the same two training sets failed to produce predictive CoMFA models. The general utilities of this application for homology model refinement and as an alternative scoring method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Cramer, R.D. III, DePriest, S.A., Patterson, D.E. and Hecht, P., In Kubinyi, H. (Ed.), 3D QSAR Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 443–485.

    Google Scholar 

  2. Folkers, G., Merz, A. and Rognan, D., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 583–618.

    Google Scholar 

  3. Hopfinger, A.J. and Tokarski, J.S., In Charifson, P.S. (Ed.), Pract. Appl. Comput.-Aided Drug Des., Dekker, New York, NY, 1997, pp. 105–164.

    Google Scholar 

  4. Martin, Y.C., Kim, K-H. and Lin, C.T., Adv. Quart. Struct.-Prop. Relat., 1 (1996) 1.

    Google Scholar 

  5. Davis, A., In van de Waterbeemd, H. (Ed.), Adv. Comp.-Ass. Tech. Drug Discovery, VCH, New York, NY, 1994, pp. 39–60.

    Google Scholar 

  6. Cramer, R.D. III, Patterson, D. and Bunce, B., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  7. Lindberg, W., Persson, J.A. and Wold, S., Anal. Chem., 55 (1983) 643.

    Google Scholar 

  8. Dunn, W.J., III, Wold, S., Edlund, U., Hellberg, S. and Gasteiger, J., Quant. Struct.Act. Relat. Pharmacol., Chem. Biol., 3 (1984) 131.

    Google Scholar 

  9. For a recent example of this approach see: Cho, S.J., Serrano G.M.L., Bier, J. and Tropsha, A., J. Med. Chem., 39 (1996) 5064.

    Google Scholar 

  10. Marshall, G.R., Barry, C.D., Bossghard, H.E., Dammkoehler, R.A. and Dun, D.A., In Olson, E.C. and Christoffersen, R.E. (Eds), Computer-Assisted Drug Design, ACS Symp. Series, Vol. 112, American Chemical Society, Washington, DC, 1979, 205–226.

    Google Scholar 

  11. Mayer, D., Naylor, C.B., Motoc, I. and Marshall, G.R., J. Comput.-Aided Mol. Design, 1 (1987) 3.

    Google Scholar 

  12. Dammkoehler, R.A., Karasek, S.F., Shands, E.F.B. and Marshall, G.R., J. Comput.-Aided Mol. Design, 3 (1989) 3.

    Google Scholar 

  13. For an example see: DePriest, S.A., Mayer, D., Naylor, C.B. and Marshall, G.R., J. Am. Chem. Soc., 115 (1993) 5372.

    Google Scholar 

  14. Martin, Y.C., Bures, M.G., Danaher, E.A, DeLazzer, J., Lico, I. and Pavelik, P.A., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Google Scholar 

  15. Myers, A.M., Charfison, P.S., Owens, C.E., Kula, N.S., McPhail, A.T., Baldessarini, R.J., Booth, R.G. and Wyrick, S.D., J. Med. Chem., 37 (1994) 4109.

    Google Scholar 

  16. Barnum, D., Greene, J., Smellie, A. and Sprague, P., J. Chem. Inf. Comput. Sci., 36 (1996) 563.

    Google Scholar 

  17. Smellie, A., Teig, S.L. and Towbin, P., J. Comput. Chem., 16 (1995) 171.

    Google Scholar 

  18. Langer, T. and Hoffman, R.D., J. Chem. Inf. Comput. Sci., 38 (1998) 325.

    Google Scholar 

  19. Bargar, T.M., Secor, J., Markley, L.D., Shaw, B.A. and Erickson, J.A., Pest. Sci., 55 (1999) 1059.

    Google Scholar 

  20. SYBYL, version 6.4, 1997, Tripos Inc, St. Louis, MO.

  21. Clark, M., Cramer, R.D. III, Jones, D.M., Patterson, D.E. and Simeroth, P.E., Tet. Comput. Meth., 3 (1990) 47.

    Google Scholar 

  22. Rault, S., Bureau, R., Pilo, J.C. and Robba, M., J. Comput.-Aided Mol. Design, 6 (1992) 553.

    Google Scholar 

  23. Klebe, G. and Abraham, U., J. Med. Chem., 36 (1993) 70.

    Google Scholar 

  24. Kearsley, S.K. and Smith, G.M., Tet. Comput. Meth., 3 (1990) 615.

    Google Scholar 

  25. Horowitz, J.P., Massova, I., Wiese, T.E., Besler, B.H. and Corbett, T.H., J. Med. Chem., 37 (1994) 781.

    Google Scholar 

  26. Tafi, A., Anasttassopoulou, J., Theophanides, T., Botta, M., Corelli, F., Massa, S., Artico, M., Costi, R., Di Santo, R. and Rango, R., J. Med. Chem., 39 (1996) 1227.

    Google Scholar 

  27. Carrigan, S.W., Fox, P.C., Wall, M.E., Wan, M.C. and Bowen, J.P., J. Comput.-Aided Mol. Design, 11 (1997) 71.

    Google Scholar 

  28. Clark, R.D., Parlow, J.J., Brannigan, L.H., Schnur, D.M. and Duewer, D.L., In Hansch, C. and Fujita, T. (Eds), Classical and Three-Dimensional QSAR in Agrochemistry, ACS Symp. Series, Vol. 606, American Chemical Society, Washington, DC, 1995, pp. 264–281.

    Google Scholar 

  29. Folkers, G., Merz, A. and Rognan, D., In Wermuth, C.G. (Ed.), Trends in QSAR and Molecular Modeling 92, ESCOM, Leiden, 1993, pp. 233–244.

    Google Scholar 

  30. Ortiz, A.R., Pastor, M., Palomer, A., Cruciani, U., Gago, F. and Wade, R.C., J. Med. Chem., 40 (1997) 1136.

    Google Scholar 

  31. Waller, C.L., Oprea, T.I., Giolitti, A. and Marshall, G.R., J. Med. Chem., 36 (1993) 4152.

    Google Scholar 

  32. Oprea, T.I., Waller, C.L. and Marshall, G.R., J. Med. Chem., 37 (1994) 2206.

    Google Scholar 

  33. Schmetzer, S., Greenidge, P., Kovar, K.-A., Meike, S.-A. and Folkers, G., J. Comput.-Aided Mol. Design, 11 (1997) 278.

    Google Scholar 

  34. Vedani, A., Zbinden, P., Snyder, J.P. and Greenidge, P.A., J. Am. Chem. Soc., 117 (1995) 4987.

    Google Scholar 

  35. Zbinden, P., Dobler, M., Folkers, G. and Vedani, A., Quant. Struct.-Act. Relat., 17 (1998) 122.

    Google Scholar 

  36. Sanchez, R. and Sali, A., Curr. Opin. Struct. Biol., 7 (1997) 206.

    Google Scholar 

  37. Boehm, G., Biophys. Chem., 59 (1996) 1.

    Google Scholar 

  38. Johnson, M.S., Srinivasan, N., Sowdhamini, R. and Blundell, T.L., Crit. Rev. Biochem. Mol. Biol., 29 (1994) 1.

    Google Scholar 

  39. Ortiz, A.R., Pisabarro, M.T., Gago, F. and Wade, R.C., J. Med. Chem., 38 (1995) 2681.

    Google Scholar 

  40. Tokarski, J.S. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 37 (1997) 779, 792.

    Google Scholar 

  41. Artico, M., Botta, M., Corelli, F., Mai, A., Massa, S. and Ragno, R., Bioorg. Med. Chem., 4 (1996) 1715.

    Google Scholar 

  42. Carrieri, A., Altomare, C., Barreca, M.L., Contento, A., Carotti, A. and Hansch, C., Il Farmaco, 49 (1994) 573.

    Google Scholar 

  43. Gainper, A.M., Winger, R.H., Liedl, K.R., Sotriffer, C.A., Varga, J.M., Kroemer, R.T. and Rode, B.M., J. Med. Chem., 39 (1996) 2882.

    Google Scholar 

  44. Goodsell, D.S. and Olsen, A.J., Proteins Struct. Funct. Genet., 8 (1990) 195.

    Google Scholar 

  45. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  46. Shoichet, B.K., Bodian, D.L. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 380.

    Google Scholar 

  47. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  48. Meng, E.C., Gschweng, D.A., Blaney, J.M. and Kuntz, I.D., Proteins Struct. Funct. Genet., 17 (1993) 266.

    Google Scholar 

  49. Leach, A.R. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 730.

    Google Scholar 

  50. Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1175.

    Google Scholar 

  51. Bowyer, J., Hilton, M., Whitelegge, J., Jewess, P., Camilleri, P., Crofts, A. and Robinson, H., Z. Naturforsch., 45c (1990) 379.

    Google Scholar 

  52. Tietjen, K.G., Kluth, J.F., Anfree, R., Haug, M., Lindig, M., Muller, K.H., Wroblowsky, H.J. and Trebst, A., Pest. Sci., 31 (1991) 65.

    Google Scholar 

  53. Ruffle, S.V., Donnelly, D., Blundell, T.L. and Nugent, J.H.A., Photosynthesis Res., 34 (1992) 287.

    Google Scholar 

  54. Egner, U., Hoyer, G.-A. and Saenger, W., Eur. J. Biochem., 206 (1992) 685.

    Google Scholar 

  55. Egner, U., Hoyer, G.-A. and Saenger, W., Biochim. Biophys. Acta, 1142 (1993) 106.

    Google Scholar 

  56. Mackay, S.P. and O'Malley, P.J., Z. Naturforsch., 48c (1993), 773.

    Google Scholar 

  57. Sobolev, V. and Edelman M., Proteins Struct. Funct. Genet., 21 (1995) 214.

    Google Scholar 

  58. Svensson, B., Etchebest, C., Tuffery, P., van Kan, P., Smith, J. and Styring, S., Biochemistry, 35 (1996) 14486.

    Google Scholar 

  59. Egner, U., Gerbling, K.P., Hoyer, G.-A., Kruger, G. and Wegner, P., Pest. Sci., 47 (1996) 145.

    Google Scholar 

  60. Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H., Nature, 318 (1985) 618.

    Google Scholar 

  61. Michel, H. and Deisenhofer, J., Biochemistry, 27 (1988) 1.

    Google Scholar 

  62. Draber, W., Tietjen, K., Kluth, J.F. and Trebst, A., Angew. Chem. Int. Ed. Engl., 30 (1991) 1621.

    Google Scholar 

  63. Huppazt, J.L., Weed Sci., 44 (1996) 743.

    Google Scholar 

  64. Vaz, R., Weed Sci., 44 (1996) 718.

    Google Scholar 

  65. Draber, W., Trebst, A. and Oettmeier, W., In Hansch, C. and Fujita, T. (Eds), Classical and Three-Dimensional QSAR in Agrochemistry, ACS Symp. Series, Vol. 606, American Chemical Society, Washington, DC, 1995, pp. 186–198.

    Google Scholar 

  66. Eilers, R.J., Crouse, G.D., Durst, G.L., Manly, C.J., Webster, J.D. and Streusand, V.J., Pest. Biochem. Phys., 43 (1992) 162.

    Google Scholar 

  67. QUANTA, 1997, Molecular Simulations Inc., San Diego, CA.

  68. Zurawksi, G., Bohnert, H.J., Whitfeld, P.R. and Bottomley, W., Proc. Natl. Acad. Sci. USA, 79 (1982) 7699.

    Google Scholar 

  69. CHARMm, 1997, Molecular Simulations Inc., San Diego, CA.

  70. Brooks, B.R., Bruccoleri. R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  71. DOCK version 4.0, University of California, 1997, San Fransisco, CA.

  72. CONCORD 4.0, 1998, University of Texas, Austin, TX.

  73. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219.

    Google Scholar 

  74. Marsili, M. and Gasteiger, J., Croat. Chem. Acta, 53 (1980) 601.

    Google Scholar 

  75. Cho, S.J. and Tropsha, A., J. Med. Chem., 38 (1995) 1060.

    Google Scholar 

  76. Sulea, T., Oprea, T.I., Muresan, S. and Chan, S.L., J. Chem. Inf. Comput. Sci., 3 (1997) 1162.

    Google Scholar 

  77. Bush, B.L. and Nachbar, R.B., J. Comput.-Aided Mol. Design, 7 (1993) 587.

    Google Scholar 

  78. Lindgren, F., Geladi, P., Ranner, S. and Wold, S., J. Chemometrics, 8 (1994) 349.

    Google Scholar 

  79. Verloop, A., Hoogenstraaten, W. and Tipker, J., Med. Chem., 11 (1976) 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalaie, M., Erickson, J.A. Homology model directed alignment selection for comparative molecular field analysis: Application to photosystem II inhibitors. J Comput Aided Mol Des 14, 181–197 (2000). https://doi.org/10.1023/A:1008198211292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008198211292

Navigation