Skip to main content
Log in

Some New Optimal Ternary Linear Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let d3(n,k) be the maximum possible minimum Hamming distance of a ternary [ n,k,d;3]-code for given values of n and k. It is proved that d3(44,6)=27, d3(76,6)=48,d3(94,6)=60 , d3(124,6)=81,d3(130,6)=84 , d3(134,6)=87,d3(138,6)=90 , d3(148,6)=96,d3(152,6)=99 , d3(156,6)=102,d3(164,6)=108 , d3(170,6)=111,d3(179,6)=117 , d3(188,6)=123,d3(206,6)=135 , d3(211,6)=138,d3(224,6)=147 , d3(228,6)=150,d3(236,6)=156 , d3(31,7)=17 and d3(33,7)=18 . These results are obtained by a descent method for designing good linear codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bogdanova and I. Boukliev, New linear codes of dimension 5 over GF(3), Proc. Inter. Workshop ACCT-94, Novgorod, Russia (1994) pp. 41–43.

  2. A. E. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes, Designs, Codes and Cryptography (to appear).

  3. R. N. Daskalov, Bounds for binary and ternary linear codes, Ph.D. Thesis (1993).

  4. M. van Eupen, Five new optimal ternary linear codes, IEEE Trans. Info. Theory, Vol. 40 (1994) p. 193.

    Google Scholar 

  5. M. van Eupen, Four non-existence results for ternary linear codes, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 800–805.

    Google Scholar 

  6. M. van Eupen, Some new results for ternary linear codes of dimension 5 and 6, IEEE Trans. Inform. Theory, Vol. 41,No. 6 (1995) pp. 2048–2051.

    Google Scholar 

  7. M. van Eupen, N. Hamada and Y. Watamori, The nonexistence of ternary [50, 5, 32] codes, Designs, Codes and Cryptography, Vol. 7,No. 3 (1996) pp. 235–237.

    Google Scholar 

  8. M. van Eupen and R. Hill, An optimal termary [69, 5, 45] code and related codes, Designs, Codes and Cryptography, Vol. 4,No. 3 (1994) pp. 271–282.

    Google Scholar 

  9. J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Devel., Vol. 4 (1960) pp. 532–542.

    Google Scholar 

  10. T. A. Gulliver, New optimal ternary linear codes, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 1182–1185.

    Google Scholar 

  11. T. A. Gulliver and V. K. Bhargava, Some best rate 1/p and rate (p − 1)/p systematic quasi-cyclic codes over GF(3) and GF(4), IEEE Trans. Inform. Theory, Vol. 38 (1992) pp. 1369–1375.

    Google Scholar 

  12. T. A. Gulliver and V. K. Bhargava, New good rate (m − 1)/pm ternary and quaternary quasi-cyclic codes, Designs, Codes and Cryptography (to appear).

  13. F. R. Kschischang and S. Pasupathy, Some ternary and quaternary codes and associated sphere packings, IEEE Trans. Inform. Theory, Vol. 38 (1992) pp. 227–246.

    Google Scholar 

  14. I. Landgev, Nonexistence of [143, 5, 94]3 Codes, Proc. Inter. Workshop OCRT'95, Sozopol, Bulgaria (1995) pp. 108–116.

  15. N. Hamada, A survey of recent work on characterization of minihypers in P G(t, q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. Syst. Sci., Vol. 18 (1993) pp. 161–191.

    Google Scholar 

  16. N. Hamada, The nonexistence of [303, 6, 201; 3]-codes meeting the Griesmer bound, Technical Report OWUAM-009, Osaka Women's Univ., Sakai, Osaka 590, Japan (1995).

    Google Scholar 

  17. N. Hamada and T. Helleseth, The uniqueness of [87, 5, 57; 33]-codes and the nonexistence of [258, 6, 171; 3]-codes, J. Statist. Plann. Inference (to appear).

  18. N. Hamada and T. Helleseth, Construction of some optimal ternary codes and the uniqueness of [294, 6, 195; 3]-codes meeting the Griesmer bound, Finite Field and Their Application, Vol. 1 (1995) pp. 458–468.

    Google Scholar 

  19. N. Hamada and T. Helleseth, The nonexistence of ternary [270, 6, 179] codes and [309, 6, 205] codes, Proc. Inter. Workshop OCRT'95, Sozopol, Bulgaria (1995) pp. 65–68.

  20. N. Hamada, T. Helleseth and Ø. Ytrehus, On the construction of a [q 4 + q 2q, 5, q 4q 3 + q 2 − 2q; q]-code meeting the Griesmer bound, Designs, Codes and Cryptography, Vol. 2 (1992) pp. 225–229.

    Google Scholar 

  21. N. Hamada and Y. Watamori, The nonexistence of [71, 5, 46; 3]-codes, J. Statist. Plann. Inference (to appear).

  22. N. Hamada and Y. Watamori, The nonexistence of some ternary linear codes of dimension 6 and the bounds for n 3(6, d), 1 ≤ d ≤ 243, Math. Japonica, Vol. 43 (1996) pp. 577–593.

    Google Scholar 

  23. R. Hill, Optimal Linear Codes: Cryptography and Coding II (C. Mitchell, ed.), Oxford University Press (1992) pp. 75–104.

  24. R. Hill, Caps and codes, Discrete Math., Vol. 22 (1978) pp. 111–137.

    Google Scholar 

  25. R. Hill and P.P. Greenough, Optimal quasi-twisted codes, Proc. Inter. Workshop ACCT-92, Voneshta voda, Bulgaria (1992) pp. 92–97.

  26. R. Hill and D. E. Newton, Optimal ternary linear codes, Designs, Codes and Cryptography, Vol. 2,No. 2 (1992) pp. 137–157.

    Google Scholar 

  27. A. Said and R. Palazzo, Heuristic search: A new method to design good unit memory convolutional codes, Proc. Fourth Swedish-Soviet Inter. Workshop on Inf. Theory, Gotland, Sweden (1989) pp. 325–331.

  28. G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control., Vol. 8 (1965) pp. 170–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukliev, I. Some New Optimal Ternary Linear Codes. Designs, Codes and Cryptography 12, 5–11 (1997). https://doi.org/10.1023/A:1008215724132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008215724132

Navigation