Skip to main content
Log in

A Finite Algorithm for Global Minimization of Separable Concave Programs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Researchers first examined the problem of separable concave programming more than thirty years ago, making it one of the earliest branches of nonlinear programming to be explored. This paper proposes a new algorithm that finds the exact global minimum of this problem in a finite number of iterations. In addition to proving that our algorithm terminates finitely, the paper extends a guarantee of finiteness to all branch-and-bound algorithms for concave programming that (1) partition exhaustively using rectangular subdivisions and (2) branch on the incumbent solution when possible. The algorithm uses domain reduction techniques to accelerate convergence; it solves problems with as many as 100 nonlinear variables, 400 linear variables and 50 constraints in about five minutes on an IBM RS/6000 Power PC. An industrial application with 152 nonlinear variables, 593 linear variables, and 417 constraints is also solved in about ten minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Al-Khayyal and J. Kyparisis. Finite convergence of algorithms for nonlinear programs and variational inequalities. Journal of Optimization Theory and Applications, 70(2): 319–332, 1991.

    Google Scholar 

  2. M. S. Bazaraa and H. D. Sherali. On the use of exact and heuristic cutting plane methods for the quadratic assignment problem. Journal Operational Society, 33: 991–1003, 1982.

    Google Scholar 

  3. S. Ben Saad and S. E. Jacobsen. A level set algorithm for a class of reverse convex programs. {tiAnnals of Operations Research}, 25: 19–42, 1990.

    Google Scholar 

  4. H. P. Benson. A finite algorithm for concave minimization over a polyhedron. Naval Research Logistics Quarterly, 32: 165–177, 1985.

    Google Scholar 

  5. H. P. Benson. Separable concave minimization via partial outer approximation and branch and bound. Operations Research Letters, 9: 389–394, 1990.

    Google Scholar 

  6. H. P. Benson. Concave minimization: Theory, applications and algorithms. In, P. M. Pardalos and R. Horst (eds.) Handbook of Global Optimization, Chapter 3, Hingham, Massachusetts, 1994.

  7. H. P. Benson and R. Horst. A branch and bound-outer approximation algorithm for concave minimization over a convex set. Computers Math Applications, 21(6/7): 67–76, 1991.

    Google Scholar 

  8. H. P. Benson and S. Sayin. A finite concave minimization algorithm using branch and bound and neighbor generation. Journal of Global Optimization, 5: 1–14, 1994.

    Google Scholar 

  9. I. M. Bomze and G. Danninger. A global optimization algorithm for concave quadratic programming problems. SIAM Journal of Optimization, 3: 826–842, 1993.

    Google Scholar 

  10. I. M. Bomze and G. Danninger. A finite algorithm for solving general quadratic problems. Journal of Global Optimization, 4: 1–16, 1994.

    Google Scholar 

  11. K. M. Bretthauer and A. V. Cabot. A composite branch and bound, cutting plane algorithm for concave minimization over a polyhedron. Computers in Operations Research, 21(7): 777–785, 1994.

    Google Scholar 

  12. A. V. Cabot and R. L. Francis. Solving certain nonconvex quadratic minimization problems by ranking the extreme points. Operations Research, 18: 82–86, 1970.

    Google Scholar 

  13. R. Carvajal-Moreno. Minimization of concave functions subject to linear constraints. Technical Report ORC 72–3, Operations Research Center, University of California, Berkeley, 1972.

    Google Scholar 

  14. J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK User's Guide. SIAM, Philadelphia, PA, 1979.

    Google Scholar 

  15. Jack J. Dongarra. Performance of various computers using standard linear equations software. Technical Report CS–89–85, Computer Science Department, University of Tennessee, Knoxville, and Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, 1997.

    Google Scholar 

  16. M. C. Dorneich and N. V. Sahinidis. Global optimization algorithms for chip layout and compaction. {tiEngineering Optimization}, 25(2): 131–154, 1995.

  17. M. E. Dyer. The complexity of vertex enumeration methods. Mathematics of Operations Research, 8: 381–402, 1983.

    Google Scholar 

  18. M. E. Dyer and L. G. Proll. An algorithm for determining all extreme points of a convex polytope. {tiMathematical Programming}, 12: 81–96, 1977.

    Google Scholar 

  19. J. E. Falk. A linear max–min problem. Mathematical Programming, 5: 169–188, 1973.

    Google Scholar 

  20. J. E. Falk and K. R. Hoffman. A successive underestimation method for concave minimization problems. Mathematics of Operations Research, 1(3): 251–259, 1976.

    Google Scholar 

  21. J. E. Falk and R. M. Soland. An algorithm for separable nonconvex programming problems. {tiManagement Science}, 15(9): 550–569, 1969.

    Google Scholar 

  22. C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained Global Optimization Algorithms. Number 268 in Lecture Notes in Computer Science. Springer–Verlag, Berlin–Heidelberg, 1990.

    Google Scholar 

  23. A. M. Frieze. A bilinear programming formulation of the 3–dimensional assignment problem. {tiMathematical Programming}, 7: 376–379, 1974.

    Google Scholar 

  24. T. Gal. Postoptimal Analyses, Parametric Programming, and Related Topics. McGraw-Hill Internaional, London, 1979.

    Google Scholar 

  25. F. Gianessi and F. Niccolucci. Connections between nonlinear and integer programming problems. In, Symposia Mathematica XIX, Istituto Nazionale Di Alta Mathematica, pp. 161–176, New York, 1976.

  26. F. Glover. Convexity cuts and cut search. Operations Research, 21: 123–134, 1973.

    Google Scholar 

  27. F. Glover and D. Klingman. Concave programming applied to a special class of 0-1 integer programs. Operations Research, 21: 135–140, 1973.

    Google Scholar 

  28. P. Hansen, B. Jaumard, and S.-H. Lu. An analytical approach to global optimization. Mathematical Programming, Series B, 52: 227–254, 1991.

    Google Scholar 

  29. K. L. Hoffman. A method for globally minimizing concave functions over convex sets. Mathematical Programming, 22: 22–32, 1981.

    Google Scholar 

  30. R. Horst. An algorithm for nonconvex programming problems. Mathematical Programming, 10: 312–321, 1976.

    Google Scholar 

  31. R. Horst. On the global minimization of concave functions–introduction and survey. OR Spektrum, 6: 195–205, 1984.

    Google Scholar 

  32. R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Norwell, MA, 1995.

    Google Scholar 

  33. R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer–Verlag, Berlin, third edition, 1996.

    Google Scholar 

  34. N. V. Horst, R., Thoai and H. P. Benson. Concave minimization via conical partitions and polyhedral outer approximation. Mathematical Programming, 50: 259–274, 1991.

    Google Scholar 

  35. IBM. Optimization Subroutine Library Guide and Reference Release 2. International Business Machines Corporation, Kingston, NY, third edition, July 1991.

    Google Scholar 

  36. B. Kalantari and J. B. Rosen. An algorithm for global minimization of linearly constrained convex quadratic functions. Mathematics of Operations Research, 12(3): 544–561, 1987.

    Google Scholar 

  37. S. L. Krynski. Minimization of a concave function under linear constraints (modification of tuy's method). In, Survey of Mathematical Programming, Proceedings of the Ninth International Mathematical Programming Symposium, Mathematicl Programming Society, Budapest, 1976, volume 1, pp. 479–493, Amsterdam, 1979.

    Google Scholar 

  38. B. W. Lamar. An improved branch and bound algorithm for minimum concave cost network flow problems. Journal of Global Optimization, 3(3): 261–287, 1993.

    Google Scholar 

  39. E. L. Lawler. The quadratic assignment problem. Management Science, 9: 586–699, 1963.

    Google Scholar 

  40. M. L. Liu and N. V. Sahinidis and J. P. Shectman. Planning of chemical process networks via global concave minimization. In, I. E. Grossmann (ed.), Global Optimization in Engineering Design, Boston, MA, 1996.

    Google Scholar 

  41. O. L. Mangasarian. Characterization of linear complementarity problems as linear programs. {tiMathematical Programming Study}, 7: 74–87, 1978.

  42. T. H. Matheiss. An algorithm for determining unrelevant constraints and all vertices in systems of linear inequalities. Operations Research, 21: 247–260, 1973.

    Google Scholar 

  43. T. H. Matheiss and D. S. Rubin. A survey and comparison of methods for finding all vertices of convex polyhedral sets. Mathematics of Operations Research, 5: 167–185, 1980.

    Google Scholar 

  44. G. P. McCormick. Attempts to calculate global solutions of problems that may have local minima. In, F. A. Lootsma (ed.), Numerical Methods for Non–Linear Optimization, pp. 209–221, New York, 1972.

  45. K. Moshirvaziri. Personal Communication, 1994.

  46. K. Moshirvaziri. A generalization of the construction of test problems for nonconvex optimization. {tiJournal of Global Optimization}, 5: 21–34, 1994.

  47. B. M. Mukhamediev. Approximate methods of solving concave programming problems. USSR Computational Mathematics and Mathematical Physics, 22(3): 238–245, 1982.

    Google Scholar 

  48. K. G. Murty and S. N. Kabadi. Some NP–complete problems in quadratic and nonlinear programming. {tiMathematical Programming}, 39: 117–129, 1987.

    Google Scholar 

  49. P. M. Pardalos. Integer and Separable Programming Techniques for Large–Scale Global Optimization Problems. PhD thesis, Computer Science Department, University of Minnesota, Minneapolis, 1985.

    Google Scholar 

  50. P. M. Pardalos and J. B. Rosen. Methods for global concave minimization: A bibliographic survey. SIAM Review, 28: 367–379, 1986.

    Google Scholar 

  51. P. M. Pardalos and J. B. Rosen. Constrained Global Optimization: Algorithms and Applications. Number 268 in Lecture Notes in Computer Science. Springer–Verlag, Berlin–Heidelberg, 1987.

    Google Scholar 

  52. A. T. Phillips. Parallel Algorithms for Constrained Optimization. PhD thesis, University of Minnesota, Minneapolis, 1988.

    Google Scholar 

  53. A. T. Phillips and J. B. Rosen. A parallel algorithm for constrained concave quadratic global minimization. Technical Report 87–48, Computer Science Department, Institute of Technology, University of Minnesota, Minneapolis, 1987.

    Google Scholar 

  54. A. T. Phillips and J. B. Rosen. A parallel algorithm for constrained concave quadratic global minimization. Mathematical Programming, 42: 421–448, 1988.

    Google Scholar 

  55. A. T. Phillips and J. B. Rosen. Guaranteed ξ–approximate solution for indefinite quadratic global minimization. Naval Research Logistics, 37: 499–514, 1990.

    Google Scholar 

  56. A. T. Phillips and J. B. Rosen. A parallel algorithm for partially separable non–convex global minimization: Linear constraints. Annals of Operations Research, 25: 101–118, 1990.

    Google Scholar 

  57. A. T. Phillips and J. B. Rosen. Sufficient conditions for solving linearly constrained separable concave global minimization problems. Journal of Global Optimization, 3: 79–94, 1992.

    Google Scholar 

  58. A. T. Phillips and J. B. Rosen. Computational comparison of two methods for constrained global optimization. Journal of Global Optimization, 5(4): 325–332, 1994.

    Google Scholar 

  59. J. B. Phillips, A. T., Rosen and M. van Vliet. A parallel stochastic method for the constrained concave global minimization problem. Journal of Global Optimization, 2(3): 243–258, 1992.

    Google Scholar 

  60. M. Raghavachari. On connections between zero–one integer programming and concave programming under linear constraints. Operations Research, 17: 680–684, 1969.

    Google Scholar 

  61. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, second edition, 1972.

    Google Scholar 

  62. J. B. Rosen. Global minimization of a linearly constrained concave function by partition of feasible domain. Mathematics of Operations Research, 8(2): 215–230, 1983.

    Google Scholar 

  63. J. B. Rosen and P. M. Pardalos. Global minimization of large–scale constrained concave quadratic problems by separable programming. Mathematical Programming, 34: 163–174, 1986.

    Google Scholar 

  64. J. B. Rosen and M. van Vliet. A parallel stochastic method for the constrained concave global minimization problem. Technical Report 87–31, Computer Science Department, Institute of Technology, University of Minnesota, Minneapolis, 1987.

    Google Scholar 

  65. H. S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex nlps and minlps with applications in process design. Computers & Chemical Engineering, 19(5): 551–566, 1995.

    Google Scholar 

  66. H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global optimization. Journal of Global Optimization, 8(2): 107–138, March 1996.

    Google Scholar 

  67. N. V. Sahinidis. Accelerating branch–and–bound in continuous optimization. Research Report UILU ENG 92–4031, University of Illinois, Urbana, 1992.

    Google Scholar 

  68. N. V. Sahinidis. Baron: A general purpose global optimization software package. Journal of Global Optimization, 8(2): 201–205, March 1996.

    Google Scholar 

  69. N. V. Sahinidis and I. E. Grossmann. Reformulation of the multiperiod MILP model for capacity expansion of chemical processes. Operations Research, 40, Supp. No. 1: S127–S144, 1992.

    Google Scholar 

  70. N. V. Sahinidis, I. E. Grossmann, R. E. Fornari, and M. Chathrathi. Optimization model for long range planning in the chemical industry. Computers and Chemical Engineering, 13: 1049–1063, 1989.

    Google Scholar 

  71. J. P. Shectman and N. V. Sahinidis. A finite algorithm for global minimization of separable concave programs. In, C. A. Floudas and P. M. Pardalos (eds.), State of the Art in Global Optimization: Computational Methods and Applications, Boston, MA, 1996.

  72. H. D. Sherali and A. Alameddine. A new reformulation–linearization technique for bilinear programming problems. Journal of Global Optimization, 2(4): 379–410, 1992.

    Google Scholar 

  73. H. D. Sherali and C. H. Tuncbilek. A reformulation-convexification approach for solving nonconvex quadratic programming problems. Journal of Global Optimization, 7(1): 1–31, July 1995.

    Google Scholar 

  74. R. M. Soland. Optimal facility location with concave costs. Operations Research, 22: 373–382, 1974.

    Google Scholar 

  75. U. H. Suhl and R. Szymanski. Supernode processing of mixed–integer models. Computational Optimization and Applications, 3: 317–331, 1994.

    Google Scholar 

  76. N. V. Thakur. Domain contraction in nonlinear programming: Minimizing a quadratic concave function over a polyhedron. Mathematics of Operations Research, 16(2): 390–407, 1990.

    Google Scholar 

  77. T. V. Thieu. Relationship between bilinear programming and concave programming. Acta Mathematica Vietnamica, 2: 106–113, 1980.

    Google Scholar 

  78. N. V. Thoai and H. Tuy. Convergent algorithms for minimizing a concave function. Mathematics of Operations Research, 5: 556–566, 1980.

    Google Scholar 

  79. N. V. Thoai and H. Tuy. Solving the linear complementarity problem through concave programming. {tiUSSR Computational Mathematics and Mathematical Physics}, 23(3): 55–59, 1983.

  80. H. Tuy. Concave programming under linear constraints. Soviet Mathematics, 5: 1437–1440, 1964.

    Google Scholar 

  81. H. Tuy. Effect of the subdivision strategy on convergence and efficiency of some global optimization algorithms. Journal of Global Optimization, 1(1): 23–36, 1991.

    Google Scholar 

  82. H. Tuy and R. Horst. Convergence and restart in branch–and–bound algorithms for global optimization. application to concave minimization and DC optimization problems. Mathematical Programming, 41: 161–183, 1988.

    Google Scholar 

  83. T. V. Tuy, H., Thieu and Thai N. Q. A conical algorithm for globally minimizing a concave function over a closed convex set. Mathematics of Operations Research, 10: 498–514, 1985.

    Google Scholar 

  84. V. Visweswaran and C. A. Floudas. New properties and computational improvement of the gop algorithm for problems with quadratic objective functions and constraints. Journal of Global Optimization, 3: 439–462, 1993.

    Google Scholar 

  85. P. B. Zwart. Computational aspects on the use of cutting planes in global optimization. In, Proceedings of the 1971 Annual Conference of the ACM, Association for Computing Machinery, pp. 457–465, 1971.

  86. P. B. Zwart. Nonlinear programming: Counterexamples to global optimization algorithms. Operations Research, 21: 1260–1266, 1973.

    Google Scholar 

  87. P. B. Zwart. Global maximization of a convex function with linear inequality constraints. Operations Research, 22: 602–609, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos V. Sahinidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shectman, J.P., Sahinidis, N.V. A Finite Algorithm for Global Minimization of Separable Concave Programs. Journal of Global Optimization 12, 1–36 (1998). https://doi.org/10.1023/A:1008241411395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008241411395

Navigation