Skip to main content
Log in

The Existence of Partitioned Generalized Balanced Tournament Designs with Block Size 3

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A generalized balanced tournament design, GBTD(n, k), defined on a kn-set V, is an arrangement of the blocks of a (kn, k, k − 1)-BIBD defined on V into an n × (kn − 1) array such that (1) every element of V is contained in precisely one cell of each column, and (2) every element of V is contained in at most k cells of each row. Suppose we can partition the columns of a GBTD(n, k) into k + 1 sets B1, B2,..., Bk + 1 where |Bi| = n for i = 1, 2,..., k − 2, |Bi| = n−1 for i = k − 1, k and |Bk+1| = 1 such that (1) every element of V occurs precisely once in each row and column of Bi for i = 1, 2,..., k − 2, and (2) every element of V occurs precisely once in each row and column of Bi ∪ Bk+1 for i = k − 1 and i = k. Then the GBTD(n, k) is called partitioned and we denote the design by PGBTD(n, k). The spectrum of GBTD(n, 3) has been completely determined. In this paper, we determine the spectrum of PGBTD(n,3) with, at present, a fairly small number of exceptions for n. This result is then used to establish the existence of a class of Kirkman squares in diagonal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. R. Abel, A. E. Brouwer, C. J. Colbourn and J. H. Dinitz, Mutually orthogonal Latin squares (MOLS), to appear in the CRC Handbook of Combinatorial Designs.

  2. R. J. R. Abel, C. J. Colbourn, J. Yin, and H. Zhang, Existence of incomplete transversal designs with block size five and any index λ, preprint.

  3. A. E. Brouwer, The number of mutually orthogonal Latin squares, Math Centre Report ZW 123, June 1979.

  4. A. E. Brouwer and G. H. J. van Rees, More mutually orthogonal Latin squares, Discrete Mathematics, Vol. 39 (1982) pp. 263–281.

    Google Scholar 

  5. B. Du, On incomplete transversal designs with block size 5, Utilitas Math., Vol. 40 (1991) pp. 272–282.

    Google Scholar 

  6. M. Greig, Designs from projective planes, and PBD bases, preprint.

  7. D. Jungnickel, Latin squares, their geometries and their groups: A survey, in Coding Theory and Design Theory, Part II Design Theory (D. J. Ray-Chaudhuri, ed.), Springer-Verlag, New York (1990) pp. 166–225.

    Google Scholar 

  8. E. R. Lamken, A note on partitioned balanced tournament designs, Ars Combinatoria, Vol. 24 (1987) pp. 5–16.

    Google Scholar 

  9. E. R. Lamken, A few more partitioned balanced tournament designs, Ars Combinatoria, to appear.

  10. E. R. Lamken, Generalized balanced tournament designs, Transactions of the AMS, Vol. 18 (1990) pp. 473–490.

    Google Scholar 

  11. E. R. Lamken, Constructions for generalized balanced tournament designs, Discrete Mathematics, Vol. 131 (1994) pp. 127–151.

    Google Scholar 

  12. E. R. Lamken, The existence of generalized balanced tournament designs with block size 3, Designs, Codes and Cryptography, Vol. 3 (1992) pp. 33–61.

    Google Scholar 

  13. E. R. Lamken, The existence of doubly near resolvable (v, 3, 2) — BIBDs, J. of Combinatorial Designs, Vol. 2 (1994) pp. 417–440.

    Google Scholar 

  14. E. R. Lamken, The existence of doubly resolvable (v, 3, 2) — BIBDs, J. of Combinatorial Theory (A), Vol. 72 (1995) pp. 50–76.

    Google Scholar 

  15. E. R. Lamken, The existence of K S 3 (v; 2, 4)s, submitted.

  16. E. R. Lamken, 3-complementary frames and doubly near resolvable (v, 3, 2) — BIBDs, Discrete Mathematics, Vol. 88 (1991) pp. 59–78.

    Google Scholar 

  17. E. R. Lamken, The existence of 3 orthogonal partitioned incomplete Latin squares of type t n, Discrete Mathematics, Vol. 89 (1991) pp. 231–251.

    Google Scholar 

  18. E. R. Lamken, On near generalized balanced tournament designs, Discrete Mathematics, Vol. 97 (1991) pp. 279–294.

    Google Scholar 

  19. E. R. Lamken, Coverings, Orthogonally Resolvable Designs and Related Combinatorial Configurations, Ph.D. Thesis, University of Michigan, 1983.

  20. E. R. Lamken, W. H. Mills and R. M. Wilson, Four pairwise balanced designs, Designs, Codes and Cryptography, Vol. 1 (1991) pp. 63–68.

    Google Scholar 

  21. E. R. Lamken and S. A. Vanstone, The existence of partitioned balanced tournament designs of side 4n + 1, Ars Combinatoria, Vol. 20 (1985) pp. 29–44.

    Google Scholar 

  22. E. R. Lamken and S. A. Vanstone, The existence of partitioned balanced tournament designs of side 4n + 3, Annals of Discrete Mathematics, Vol. 34 (1987) pp. 319–338.

    Google Scholar 

  23. E. R. Lamken and S. A. Vanstone, The existence of partitioned balanced tournament designs, Annals of Discrete Mathematics, Vol. 34 (1987) pp. 339–352.

    Google Scholar 

  24. E. R. Lamken and S. A. Vanstone, Existence results for doubly near resolvable (v, 3, 2) — BIBDs, Discrete Mathematics, Vol. 120 (1993) pp. 135–148.

    Google Scholar 

  25. E. R. Lamken and S. A. Vanstone, Balanced tournament designs with almost orthogonal resolutions, J. of Australian Math. (A), Vol. 49 (1990) pp. 175–195.

    Google Scholar 

  26. E. R. Lamken and S. A. Vanstone, Skewtransversals in frames, J. of Combinatorial Math. and Combinatorial Computing, Vol. 2 (1987) pp. 37–50.

    Google Scholar 

  27. E. R. Lamken and S. A. Vanstone, Orthogonal resolutions in odd balanced tournament designs, Graphs and Combinatorics, Vol. 4 (1988) pp. 241–255.

    Google Scholar 

  28. E. R. Lamken and S. A. Vanstone, The existence of factored balanced tournament designs, Ars Combinatoria, Vol. 19 (1985) pp. 157–160.

    Google Scholar 

  29. E. R. Lamken and S. A. Vanstone, On the existence of (2, 4; 3, m, h)-frames for h = 1, 3 and 6, J. of Combinatorial Math. and Combinatorial Computing, Vol. 3 (1988) pp. 135–151.

    Google Scholar 

  30. E. R. Lamken and S. A. Vanstone, I. The existence of K S k (v; μ, λ): The main constructions, Utilitas Math., Vol. 27 (1985) pp. 111–130.

    Google Scholar 

  31. E. R. Lamken and S. A. Vanstone, II. The existence of K S k (v; μ, λ): Special constructions, Utilitas Math., Vol. 27 (1985) pp. 131–155.

    Google Scholar 

  32. R. C. Mullin and D. R. Stinson, Holey SOLSOMS, Utilitas Mathematica, Vol. 25 (1984) pp. 159–169.

    Google Scholar 

  33. R. C. Mullin and W. D. Wallis, The existence of Room squares, Aequationes Math, Vol. 13 (1975) pp. 1–7.

    Google Scholar 

  34. P. J. Schellenberg, G. H. J. van Rees and S. A. Vanstone, The existence of balanced tournament designs, Ars Combinatoria, Vol. 3 (1977) pp. 303–318.

    Google Scholar 

  35. D. R. Stinson, Room squares with maximum empty subarrays, Ars Combinatoria, Vol. 20 (1985) pp. 159–166.

    Google Scholar 

  36. D. R. Stinson and L. Zhu, On the existence of three MOLS with equal sized holes, Australian J. of Combinatorics, Vol. 4 (1991) pp. 33–47.

    Google Scholar 

  37. S. A. Vanstone, Doubly resolvable designs, Discrete Mathematics, Vol. 29 (1980) pp. 77–86.

    Google Scholar 

  38. S. A. Vanstone, On mutually orthogonal resolutions and near resolutions, Ann. of Discrete Mathematics, Vol. 15 (1982) pp. 357–369.

    Google Scholar 

  39. R. M. Wilson, Constructions and uses of pairwise balanced designs, Proc. NATO Advanced Study Institute in Combinatorics (M. Hall Jr and J. H. van Lint, eds.), Nijenrode Castle, Breukelen (1974) pp. 19–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamken, E.R. The Existence of Partitioned Generalized Balanced Tournament Designs with Block Size 3. Designs, Codes and Cryptography 11, 37–71 (1997). https://doi.org/10.1023/A:1008250908638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008250908638

Navigation