Skip to main content
Log in

A Duality Theory for a Class of Generalized Fractional Programs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In generalized fractional programming, one seeks to minimize the maximum of a finite number of ratios. Such programs are, in general, nonconvex and consequently are difficult to solve. Here, we consider a particular case in which the ratio is the quotient of a quadratic form and a positive concave function. The dual of such a problem is constructed and a numerical example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avriel, M., Diewert, W., Schaible, S. and Zang, I. (1988), Generalized Concavity. Plenum Press.

  • Barros, A. I. (1995), Discrete and fractional programming techniques for location models, Tinbergen Institute Research Series 89.

  • Barros, A. I., Frenk, J. B. G., Schaible, S. and Zhang, S. (1996a), Using duality to solve generalized fractional programming problems, Journal of Global Optimization, 8, 139–170.

    Google Scholar 

  • Barros, A. I., Frenk, J. B. G., Schaible, S. Zhang, S., (1996b), Anew algorithm for generalized fractional programs, Mathematical Programming 72, 147–175.

    Google Scholar 

  • Bector, C. R. (1968), Programming problems with convex fractional functions, Operations Research 16, 383–391.

    Google Scholar 

  • Bector, C. R., and Suneja, S. K. (1988), Duality in nondifferentiable generalized fractional programming, {tiAsia Pacific Journal of Operational Research} 5(2), 134–139.

    Google Scholar 

  • Boncompte, M., and Martinez-Legaz, J. E. (1991), Fractional programming by lower subdifferentiability techniques, Journal of Optimization Theory and Applications 68(1), 95–116.

    Google Scholar 

  • Chandra, S., Craven, B. D., and Mond, B. (1986), Generalized fractional programming duality: A ratio game approach, Australian Mathematical Society, Journal Series B, Applied Mathematics 28(2), 170–180.

    Google Scholar 

  • Crouzeix, J. P., Ferland, J. A., and Schaible, S. (1983), Duality in generalized linear fractional programming, {tiMathematical Programming} 27(3), 342–354.

    Google Scholar 

  • Hiriart-Urruty, J. B., and Lemarechal, C. (1993), Convex Analysis and Minimization Algorithms. Springer Verlag.

  • Jagannathan, R., and Schaible, S. (1983), Duality in generalized fractional programming via Farkas' Lemma, Journal of Optimization Theory and Applications 41(3), 417–424.

    Google Scholar 

  • Jefferson, T. R. and C. H. Scott (1978), Avenues of geometric programming I. Theory, New Zealand Operational Research, 6, 109–136.

    Google Scholar 

  • Martein, L., and Sodini, C. (1982), Un Algoritmo per un problema di programmazione frazionaria non lineare e non convessa, Publication No. 93, Serie A, Dipartimento di Ricerca Operativa e Scienze Statistiche, Università di Pisa, Italy.

    Google Scholar 

  • Peterson, E. L. (1976), Geometric Programming, SIAM Review 18, 1–52.

    Google Scholar 

  • Rockafellar, R. T. (1970), Convex Analysis. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Schaible, S. (1995), Fractional programming, in R. Horst and P. M. Pardalos (eds.), Handbook of Global Optimization, Kluwer, 495–608.

  • Scott, C. H., and Jefferson, T. R. (1989), Conjugate duality in generalized fractional programming, {tiJournal of Optimization Theory and Applications} 60(3), 475–483.

  • Scott, C. H. and Jefferson, T. R. (1996), A convex dual for quadratic-concave fractional programs, {tiJournal of Optimization, Theory and Applications}, to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, C.H., Jefferson, T.R. & Frenk, J.B.G. A Duality Theory for a Class of Generalized Fractional Programs. Journal of Global Optimization 12, 239–245 (1998). https://doi.org/10.1023/A:1008274708071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008274708071

Navigation