Skip to main content
Log in

Differentiation-Based Edge Detection Using the Logarithmic Image Processing Model

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The logarithmic image processing (LIP) model is a mathematical framework which provides a specific set of algebraic and functional operations for the processing and analysis of intensity images valued in a bounded range. The LIP model has been proved to be physically justified by that it is consistent with the multiplicative transmittance and reflectance image formation models, and with some important laws and characteristics of human brightness perception. This article addresses the edge detection problem using the LIP-model based differentiation. First, the LIP model is introduced, in particular, for the gray tones and gray tone functions, which represent intensity values and intensity images, respectively. Then, an extension of these LIP model notions, respectively called gray tone vectors and gray tone vector functions, is studied. Third, the LIP-model based differential operators are presented, focusing on their distinctive properties for image processing. Emphasis is also placed on highlighting the main characteristics of the LIP-model based differentiation. Next, the LIP-Sobel based edge detection technique is studied and applied to edge detection, showing its robustness in locally small changes in scene illumination conditions and its performance in the presence of noise. Its theoretical and practical advantages over several well-known edge detection techniques, such as the techniques of Sobel, Canny, Johnson and Wallis, are shown through a general discussion and illustrated by simulation results on different real images. Finally, a discussion on the role of the LIP-model based differentiation in the current context of edge detection is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.K. Pratt, Digital Image Processing, 2nd edition, John Wiley: New York, 1991.

    Google Scholar 

  2. J. Serra, Image Analysis and Mathematical Morphology, Academic Press, 1982.

  3. R.D. Duda and P.E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons: New York, 1973.

    Google Scholar 

  4. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, W.H. Freeman & Co.: San Francisco, 1982.

    Google Scholar 

  5. I.E. Gordon, Theories of Visual Perception, John Wiley & Sons: New York, 1989.

    Google Scholar 

  6. L.S. Davis, “A survey of edge detection techniques,” Comput. Graph. Image Proc., Vol. 4, pp. 248–270, 1975.

    Google Scholar 

  7. G.S. Robinson, “Edge detection by compass gradient masks,” Comput. Graph. Image Proc., Vol. 6, pp. 492–501, 1977.

    Google Scholar 

  8. G.B. Shaw, “Local and regional edge detectors: Some comparisons,” Comput. Graph. Image Proc., Vol. 9, pp. 135–149, 1979.

    Google Scholar 

  9. T. Peli and D. Malah, “A study of edge detection algorithms,” Comput. Graph. Image Proc., Vol. 20, pp. 1–21, 1982.

    Google Scholar 

  10. L. Hertz and R.W. Schafer, “Multilevel thresholding using edge matching,” Comput. Vis., Graph. Image Proc., Vol. 44, pp. 279–295, 1988.

    Google Scholar 

  11. L.J. VanVliet, I.T. Young, and G.L. Beckers, “Anonlinear Laplacian operator as edge detector in noise images,” Comput. Vis., Graph., Image Proc., Vol. 45, pp. 167–195, 1989.

    Google Scholar 

  12. I. Defee and Y. Neuvo, “Median-based zero-crossing edge detectors for closely spaced edges,” CVGIP: Graph. Models Image Proc., Vol. 53, pp. 196–203, 1991.

    Google Scholar 

  13. S. Venkatesh and L.J. Kitchen, “Edge evaluation using necessary components,” CVGIP: Graph. Models Image Proc., Vol. 54, pp. 23–30, 1992.

    Google Scholar 

  14. R.M. Haralick, “Digital step edges for zero-crossings of second directional derivatives,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-6, pp. 58–68, 1984.

    Google Scholar 

  15. V. Torre and T.A. Poggio, “On edge detection,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-8, pp. 147–163, 1986.

    Google Scholar 

  16. J. Canny, “A computational approach to edge detection,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-8, pp. 679–698, 1986.

    Google Scholar 

  17. J.S. Chen and G. Medioni, “Detection, localization, and estimation of edges,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-11, pp. 191–198, 1989.

    Google Scholar 

  18. H.D. Tagare and R.J.P. DeFigueiredo, “On the localization performance measure and optimal edge detection,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-12, pp. 1186–1189, 1989.

    Google Scholar 

  19. H. Jeong and C.I. Kim, “Adaptative determination of filter scales for edge detection,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-14, pp. 579–585, 1992.

    Google Scholar 

  20. M.E. Jernigan and R.W. Wardel, “Does the eye contain optimal edge detection mechanisms?,” IEEE Trans. Syst., Man, Cyber., Vol. SMC-11, pp. 441–444, 1981.

    Google Scholar 

  21. L. Kitchen and A. Rosenfeld, “Edge evaluation using local coherence,” IEEE Trans. Systems, Man, Cyber., Vol. SMC-11, pp. 597–605, 1981.

    Google Scholar 

  22. W.H.H.J. Lunscher and P. Beddoes, “Optimal edge detector evaluation,” IEEE Trans. Syst., Man, Cyber., Vol. SMC-16, pp. 304–311, 1986.

    Google Scholar 

  23. H.L. Tan, S.B. Gelfand, and E.J. Delp, “A comparative cost function approach to edge detection,” IEEE Trans. Syst., Man, Cyber., Vol. SMC-19, pp. 1337–1349, 1989.

    Google Scholar 

  24. P.H. Eichel and E.J. Delp, “Quantitative analysis of a momentbased edge operator,” IEEE Trans. Syst., Man, Cyber., Vol. SMC-20, pp. 59–66, 1990.

    Google Scholar 

  25. G.N. Khan and D.F. Gillies, “Extracting contours by perceptual grouping,” Image Vision Comput., Vol. 10, pp. 77–88, 1992.

    Google Scholar 

  26. S. Jalali and J.F. Boyce, “Determination of optimal general edge detectors by global minimization of a cost function,” Image Vision Comput., Vol. 13, pp. 683–693, 1995.

    Google Scholar 

  27. R. Deriche, “Using Canny's criteria to derive a recursively implemented optimal edge detector,” Int. J. Comput. Vision, Vol. 1, pp. 167–187, 1987.

    Google Scholar 

  28. I.J. Cox, J.M. Rehg, and S. Hingorani, “A bayesian multihypothesis approach to edge grouping and contour segmentation,” Int. J. Comput. Vision, Vol. 11, pp. 5–24, 1993.

    Google Scholar 

  29. M.P. Dubuinon and A.K. Jain, “Contour extraction ofmoving objects in complex outdoor scenes,” Int. J. Comput. Vision, Vol. 14, pp. 83–105, 1995.

    Google Scholar 

  30. R.A. Gartenberg, F.O. Huck, and R. Narayanswamy, “Image recovery from edge primitives,” J. Opt. Soc. Am., Pt. A, Vol. 7, pp. 898–991, 1990.

    Google Scholar 

  31. P. Meer, S. Wang, and H. Wechsler, “Edge detection by associative mapping,” Pattern Recogn., Vol. 22, pp. 491–503, 1989.

    Google Scholar 

  32. J.S.P. Shu, “One-pixel-wide edge detection,” Pattern Recogn., Vol. 22, pp. 665–673, 1989.

    Google Scholar 

  33. R.P. Johnson, “Contrast-based edge detection,” Pattern Recogn., Vol. 23, pp. 311–318, 1990.

    Google Scholar 

  34. A. Kundu, “Robust edge detection,” Pattern Recogn., Vol. 23, pp. 423–440, 1990.

    Google Scholar 

  35. R.M. Haralick and J.S.J. Lee, “Context dependant edge detection and evaluation,” Pattern Recogn., Vol. 23, pp. 1–19, 1990.

    Google Scholar 

  36. I.E. Abdou and W.K. Pratt, “Quantitative design and evaluation of enhancement/thresholding edge detectors,” in Proc. IEEE, 1979, Vol. 67, pp. 753–763.

    Google Scholar 

  37. D. Marr and E. Hildreth, “Theory of edge detection,” in Proc. Royal Soc. London B, 1980, Vol. 207, pp. 187–217.

    Google Scholar 

  38. T.G. Stockham, Jr., “Image processing in the context of a visual model,” in Proc. IEEE, 1972, Vol. 60, pp. 828–842.

    Google Scholar 

  39. M. Jourlin and J.C. Pinoli, “Logarithmic image processing,” Acta Stereol., Vol. 6, pp. 651–656, 1987.

    Google Scholar 

  40. M. Jourlin and J.C. Pinoli, “A model for logarithmic image processing,” J. Microsc., Vol. 149, pp. 21–35, 1988.

    Google Scholar 

  41. J.C. Dainty and R. Shaw, Image Science, Academic Press: London, 1974.

    Google Scholar 

  42. M. Born and E. Wolf, Principle of Optics, 2nd edition, Pergamon Press: New York, 1980.

    Google Scholar 

  43. L.M. Hurwick and D. Jameson, The Perception of Brightness and Darkness, Allyn & Bacon: Boston, 1966.

    Google Scholar 

  44. R.C. Gonzelez and P. Wintz, Digital Image Processing, 2nd edition, Addison-Wesley: Reading, 1987.

    Google Scholar 

  45. J.C. Pinoli, Contribution à la modélisation, au traitement et à l'analyse d'image, D.Sc. thesis, Department of Mathematics, University of Saint-Etienne, France 1987.

    Google Scholar 

  46. J.C. Pinoli, “Modélisation and traitement des images logarithmiques: Théorie and applications fondamentales,” Report No. 6, Department of Mathematics, University of Saint-Etienne, France, 1992.

    Google Scholar 

  47. J.C. Pinoli, “The logarithmic image processing model connections with human brightness perception and contrast estimators,” Submitted in a first revised form to JMIV.

  48. F. Mayet, M. Jourlin, and J.C. Pinoli, “Justifications physiques dumodèle LIP pour le traitement des images obtenues en lumière transmise,” to appear in Traitement du Signal.

  49. G. Deng, “Image and signal processing using the logarithmic image processing model,” Ph.D. thesis, Department of Electronic Engineering, La Trobe University, Australia, 1993.

    Google Scholar 

  50. G. Deng and L.W. Cahill, “Image modelling and processing using the logarithmic image processing model,” in Proc. IEEE Workshop on Visual Signal Process. and Com., Melbourne, Australia, 1993, pp. 61–64.

  51. M. Jourlin, J.C. Pinoli, and R. Zeboudj, “Contrast definition and contour detection for logarithmic images,” J. Microsc., Vol. 156, pp. 33–40, 1989.

    Google Scholar 

  52. J.C. Brailean, B.J. Sullivan, C.T. Chen, and M.L. Giger, “Evaluating the EM algorithm for image processing using a human visual fidelity criterion,” in Proc. ICASSP, 1991, pp. 2957–2960.

  53. J.C. Pinoli, “A contrast definition for logarithmic images in the continuous setting,” Acta Stereol., Vol. 10, pp. 85–96, 1991.

    Google Scholar 

  54. M. Jourlin and J.C. Pinoli, “Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model,” Signal Process., Vol. 41, pp. 225–237, 1995.

    Google Scholar 

  55. G. Deng, L.W. Cahill, and G.R. Tobin, “A study of the logarithmic image processing model and its application to image enhancement,” IEEE Trans. Image Process., Vol. 4, pp. 506–5122, 1995.

    Google Scholar 

  56. G. Deng and L.W. Cahill, “Multiscale image enhancement using the logarithmic image processing model,” Electron. Lett., Vol. 29, pp. 803–804, 1993.

    Google Scholar 

  57. J.C. Brailean, D. Little, M.L. Giger, C.T. Chen, and B.J. Sullivan, “Applications of the EM algorithm to radiographic images,” Med. Phys., Vol. 19, pp. 1175–1182, 1992.

    Google Scholar 

  58. C. Bron, P. Gremillet, D. Launey, M. Jourlin, H.P. Gautschi, T. Bächi, and J. Schüpbach, “Three-dimensional electron microscopy of entire cells,” J. Microsc., Vol. 157, pp. 115–126, 1990.

    Google Scholar 

  59. P. Gremillet, M. Jourlin, C. Bron, J. Schüpbach, H.P. Gautschi, and T. Bächi, “Dedicated image analysis techniques for threedimensional reconstruction from serial sections in electron microscopy,” Mach. Vision. Appli., Vol. 4, pp. 263–270, 1991.

    Google Scholar 

  60. P. Corcuff, P. Gremillet, M. Jourlin, Y. Duvault, F. Leroy, and J.L. Leveque, “3D reconstruction of human air by confocal microscopy,” J. Soc. Cosm. Chem., Vol. 44, pp. 1–12, 1993.

    Google Scholar 

  61. P. Gremillet, M. Jourlin, and J.C. Pinoli, “LIP model-based three-dimensional reconstruction and visualisation of HIV infected entire cells,” J. Microsc., Vol. 174, pp. 31–38, 1994.

    Google Scholar 

  62. B. Roux and R.M. Faure, “Recognition and quantification of clinker phases by image analysis,” Acta Stereol., Vol. 11, pp. 149–154, 1992.

    Google Scholar 

  63. H. Konik, B. Laget, and M. Calonnier, “Segmentation d'images par utilisation de pyramides à bases locales,” Traitement du Signal, Vol. 10, pp. 283–295, 1993.

    Google Scholar 

  64. N. Dunford and J.T. Schwartz, Linear Operators, Part I, General Theory, 2nd edition, John Wiley and Sons: New York, 1988.

    Google Scholar 

  65. E. Kreyszig, Introductory Functional Analysis with Applications, 2nd edition, John Wiley & Sons: New York, 1989.

    Google Scholar 

  66. W.A.J. Luxemburg and A.C. Zaanen, Riesz Spaces, North Holland: Amsterdam, 1971.

    Google Scholar 

  67. G. Choquet, Topology, Academic Press, 1966.

  68. A.R. Mitchell and D.F. Griffiths, The Finite Difference Method in Partial Differential Equation, John Wiley: New York, 1980.

    Google Scholar 

  69. A. Ralston, A First Course in Numerical Analysis, Mac Graw Hill: New York, 1965.

    Google Scholar 

  70. R.W. Hornbeck, Numerical Methods, Quantum Publishers Inc.: New York, 1975.

    Google Scholar 

  71. K.S. Shanmugam, F.M. Dickey, and J.A. Green, “An optimal frequency domain filter for edge detection in digital pictures,” IEEE Trans. Patt. Anal. Mach. Intellig., Vol. PAMI-1, pp. 37–49, Jan. 1979.

    Google Scholar 

  72. R. Deriche, “Optimal edge detection using recursive filtering,” in Proc. of 1987 IEEE Int. Conf. on Computer Vision, 1987, pp. 501–505.

  73. R.A. Boie, I.J. Cox, and P. Rehak, “On optimum edge detection using matched filters,” in Proc. of 1988 IEEE Int. Conf. on Computer Vision and Pattern Recognition, 1986, pp. 100–108.

  74. D. Geman, S. Geman, C. Graffigne, and P. Dong, “Boundary detection by constrained optimisation,” IEEE Trans. Patt. Anal. Mach. Intellig., Vol. PAMI-12, pp. 609–628, July 1990.

    Google Scholar 

  75. G.R. Dattatreya and L.N. Kanal, “Detection and smoothing of edge contours in images by one-dimensional Kalman techniques,” IEEE Trans. System Man and Cybernetics, Vol. SMC-20, pp. 159–165, Jan./Feb. 1990.

    Google Scholar 

  76. S.E. Reichenbach, S.K. Park, and R.A. Gartenberg, “Optimal, small kernels for edge detection,” in Proc. of 1990 IEEE Int. Conf. on Pattern Recognition, 1990, pp. 57–63.

  77. S. Sarkar and K.L. Boyer, “Optimal, efficient, recursive edge detection filters,” in Proc. of 1990 IEEE Int. Conf. on Pattern Recognition, 1990, pp. 931–936.

  78. H.L. Tan, S.B. Gelfand, and E.J. Delp, “A cost minimisation approach to edge detection using simulated annealing,” IEEE Trans. Patt. Anal. Mach. Intellig., Vol. PAMI-14, pp. 3–18, Jan. 1991.

    Google Scholar 

  79. O. Monga, R. Deriche, and J.M. Rocchisani, “3D edge detection using recursive filtering: Application to scanner images,” CVGIP: Graphical Models and Image Processing, Vol. 53, pp. 76–87, Jan. 1991.

    Google Scholar 

  80. M. Unser, A. Aldroubi, and M. Eden, “Recursive regularisation filters: design, properties, and applications,” IEEE Trans. Patt. Anal. Mach. Intellig., Vol. PAMI-13, pp. 272–277, March 1991.

    Google Scholar 

  81. R. Wilson and A.H. Bhalerao, “Kernel designs for efficient multiresolution edge detection and orientation estimation,” IEEE Trans. Patt. Anal. Mach. Intellig., Vol. PAMI-14, pp. 384–389, March 1992.

    Google Scholar 

  82. J.J. Clark, “Authenticating edges produced by zero-crossing algorithms,” IEEE Trans. Patt. Anal. Mach. Intellig., Vol. PAMI-11, pp. 43–57, Jan. 1989.

    Google Scholar 

  83. Y. Lu and R.C. Jain, “Behavior of edges in scale space,” IEEE Trans. Patt. Anal. Mach. Intellig., Vol. PAMI-11, pp. 337–356, April 1989.

    Google Scholar 

  84. D.J. Williams and M. Shah, “Normalized edge detector,” in Proc. of 1990 IEEE Int. Conf. on Pattern Recognition, 1990, pp. 942–946.

  85. M.M. Fleck, “Some defects in finite-difference edge finders,” IEEE Trans. Pattern Anal. Mach. Intellig., Vol. PAMI-14, pp. 337–345, March 1992.

    Google Scholar 

  86. A. Witkin, “Scale space filtering,” in Proc. Int. Joint Conf. Artificial Intel., Karlsruhe, 1983, pp. 1019–1021.

  87. P.P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice-Hall, 1993.

    Google Scholar 

  88. I. Daubechies, Ten Lecturers on Wavelets, SIAM, 1992.

  89. Y.F. Wong, “Nonlinear scale-space filtering and multiresolution system,” IEEE Trans. Image Processing, Vol. 4, pp. 774–787, 1995.

    Google Scholar 

  90. R.R. Coifman and M.V. Wickerhauser, “Adapted waveform ‘de-Noising’ for medical signals and images,” IEEE Engineering in Medicine and Biology, pp. 578–586, 1995

  91. D.L. Donoho, I.M. Jonhnston, G. Kerkyacharian, and D. Picard, “Wavelet Shrinkage: Asymptopia,” J. Roy. Statist. Soc. B, Vol. 140, pp. 301–369, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, G., Pinoli, JC. Differentiation-Based Edge Detection Using the Logarithmic Image Processing Model. Journal of Mathematical Imaging and Vision 8, 161–180 (1998). https://doi.org/10.1023/A:1008277328822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008277328822

Navigation