Skip to main content
Log in

The Nonexistence of Ternary [38, 6, 23] Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

It has been shown by Bogdanova and Boukliev [1] that there exist a ternary [38,5,24] code and a ternary [37,5,23] code. But it is unknown whether or not there exist a ternary [39,6,24] code and a ternary [38,6,23] code. The purpose of this paper is to prove that (1) there is no ternary [39,6,24] code and (2) there is no ternary [38,6,23] code using the nonexistence of ternary [39,6,24] codes. Since it is known (cf. Brouwer and Sloane [2] and Hamada and Watamori [14]) that (i) n3(6,23) = 38> or 39 and d3(38,6) = 22 or 23 and (ii) n3(6,24) = 39 or 40 and d3(39,6) = 23 or 24, this implies that n3(6,23) = 39, d3(38,6) = 22, n3(6,24) = 40 and d3(39,6) = 23, where n3<>(k,d) and d<>3(n,k) denote the smallest value of n and the largest value of d, respectively, for which there exists an [n,k,d] code over the Galois field GF(3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Bogdanova and I. G. Boukliev, Newlinear codes of dimension 5 overGF.3/, Proceedings of the Fourth International Workshop on Algebraic and Combinatorial Coding Theory, Novgorod, Russia, September (1994) pp. 41-43.

  2. A. E. Brouwer and N. J. A. Sloane, Tables of Codes, in R. Brualdi, W. C. Huffman and V. Pless (eds.), Handbook of Coding Theory, North-Holland, Amsterdam, to appear.

  3. M. van Eupen, Four nonexistence results for ternary linear codes, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 800-805.

    Google Scholar 

  4. M. van Eupen, Some new results for ternary linear codes of dimension 5 and 6, IEEE Trans. Inform. Theory, Vol. 41 (1995) pp. 2048-2051.

    Google Scholar 

  5. M. van Eupen, N. Hamada and Y. Watamori, The nonexistence of ternary [50; 5; 32] codes, Designs, Codes and Cryptography, Vol. 7 (1996) pp. 235-237.

    Google Scholar 

  6. M. van Eupen and R. Hill, An optimal ternary [69; 5; 45] code and related codes, Designs, Codes and Cryptography, Vol. 4 (1994) pp. 271-282.

    Google Scholar 

  7. M. van Eupen and P. Lisončk, Classification of some optimal ternary linear codes of small length, Designs, Codes and Cryptography, Vol. 10 (1997) pp. 63-84.

    Google Scholar 

  8. N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math., Vol. 116 (1993) pp. 229-268.

    Google Scholar 

  9. N. Hamada, A survey of recent work on characterization of minihypers in PG(t, q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. Syst. Sci., Vol. 18 (1993) pp. 161-191.

    Google Scholar 

  10. N. Hamada, The nonexistence of ternary [29, 6, 17] codes, Math. Japonica, Vol. 46 (1997) pp. 253-264.

    Google Scholar 

  11. N. Hamada and T. Helleseth, A characterization of some ternary codes meeting the Griesmer bound, Amer. Math. Soc. Contemp. Math., Vol. 168 (1994) pp. 139-150.

    Google Scholar 

  12. N. Hamada, T. Helleseth and ø. Ytrehus, On the construction of [q 4 + q 2q,5, q 4q 3 + q 2 − 2q; q] codes meeting the Griesmer bound, Designs, Codes and Cryptography, Vol. 2 (1992) pp. 225-229.

    Google Scholar 

  13. N. Hamada, T. Helleseth and ø. Ytrehus, The nonexistence of [51, 5, 33; 3] codes, Ars Combin., Vol. 35 (1993) pp. 25-32.

    Google Scholar 

  14. N. Hamada and Y. Watamori, The nonexistence of some ternary linear codes of dimension 6 and the bounds for n 3.6, d/, 1 ≤ d≤ 243, Math. Japonica, Vol. 43 (1996) pp. 577-593.

    Google Scholar 

  15. N. Hamada and Y. Watamori, The nonexistence of [71; 5; 46I 3] codes, J. Statist. Plann. Inference, Vol. 52 (1996) pp. 379-394.

    Google Scholar 

  16. R. Hill and D. E. Newton, Optimal ternary linear codes, Designs, Codes and Cryptography, Vol. 2 (1992) pp. 137-157.

    Google Scholar 

  17. I. N. Landgev, The nonexistence of some optimal ternary codes of dimension five, to appear in Designs, Codes and Cryptography.

  18. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Vol. 20, Addison-Wesley Publishing Company, Massachusetts (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, N., Van Eupen, M. The Nonexistence of Ternary [38, 6, 23] Codes. Designs, Codes and Cryptography 13, 165–172 (1998). https://doi.org/10.1023/A:1008278312966

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008278312966

Navigation