Skip to main content
Log in

Set-Valued Means of Random Particles

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Planar images of powder particles or sand grains can be interpreted as “figures”, i.e., equivalence classes of directlycongruent compact sets. The paper introduces a concept of set-valuedmeans and real-valued variances for samples of such figures. Inobtaining these results, the images are registered to have similarlocations and orientations. The method is applied to find a mean figure of a sample of polygonal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Aumann, “Integrals of set-valued functions,” J. Math. Anal. Appl., Vol. 12, pp. 1–12, 1965.

    Google Scholar 

  2. J.K. Beddow and T. Meloy, Testing and Characterization of Powder and Fine Particles, Heyden & Sons: London, 1980.

    Google Scholar 

  3. P.J. Besl and N.D. McKay, “A method for registration of 3D shapes,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. 14, pp. 239–256, 1992.

    Google Scholar 

  4. F.L. Bookstein, Morphometric Tools for Landmark Data: Geometry and Biology, Cambridge University Press: Cambridge, 1991.

    Google Scholar 

  5. G.E. Bredon, Introduction to Compact Topological Groups, Academic Press: London, 1972.

    Google Scholar 

  6. T.K. Carne, “The geometry of shape spaces,” Proc. Lond. Math. Soc., Vol. 61, pp. 407–432, 1990.

    Google Scholar 

  7. I.L. Dryden and K.V. Mardia, “Theoretical and distributional aspects of shape analysis,” in Probability Measures on Groups X, H. Heyer (Ed.), Plenum Press: New York, pp. 95–116, 1991.

    Google Scholar 

  8. I.L. Dryden and K.V. Mardia, “Multivariate shape analysis,” Sankhya A, Vol. 55, pp. 460–480, 1993.

    Google Scholar 

  9. M. Fréchet, “Les elements aleatoires de nature quelconque dans un espace distancie,” Ann. Inst. H. Poincaré, Vol. 10, pp. 235–310, 1948.

    Google Scholar 

  10. L.A. Galway, Statistical Analysis of Star-Shaped Sets, Ph.D. Thesis, Carnegie-Mellon University, 1987.

  11. C.R. Goodall, “Procrustes methods in the statistical analysis of shape,” J. Roy. Statist. Soc. B, Vol. 53, pp. 285–339, 1991.

    Google Scholar 

  12. J.C. Gower, “Generalized procrustes analysis,” Psychometrika, Vol. 40, pp. 33–51, 1975.

    Google Scholar 

  13. S. Hartmann, F. Mücklich, J. Ohser, W. Dreßler, and G. Petzow, “Quantitative Charakterisierung von Si 3 N 4-Gefügen durch räumliche Parameter.” Pract. Metallography, Special Issue, Vol. 24, pp. 263–274, 1993.

    Google Scholar 

  14. A.E. Hawkins, The Shape of Powder-Particle Outlines, Research Studies Press: Taunton, and J. Wiley & Sons: New York, 1993.

    Google Scholar 

  15. H. Karcher, “Riemannian center of mass and mollifier smoothing,” Comm. Pure Appl. Math., Vol. 30, pp. 509–541, 1977.

    Google Scholar 

  16. A. Kneip and T. Gasser, “Statistical tools to analyze data representing a sample of curves,” Ann. Statist., Vol. 20, pp. 1266–1305, 1992.

    Google Scholar 

  17. H. Le and D.G. Kendall, “The Riemannian structure of euclidean shape space: A novel environment for statistics,” Ann. Statist., Vol. 21, pp. 1225–1271, 1993.

    Google Scholar 

  18. K. Leichtweiß, Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften: Berlin, 1980.

    Google Scholar 

  19. G. Matheron, Random Sets and Integral Geometry, Wiley: New York, 1975.

    Google Scholar 

  20. J.A. Rice and B. Silverman, “Estimating the mean and covariance structure nonparametrically when the data are curves,” J. Roy. Statist. Soc. B, Vol. 53, pp. 233–243, 1991.

    Google Scholar 

  21. R.T. Rockafellar, Convex Analysis, Princeton Univ. Press: Princeton, NJ.

  22. D. Stoyan, “Geometrical means, medians and variances for samples of particles,” Part. Part. Syst. Charact(to appear).

  23. D. Stoyan and H. Stoyan, Fractals, Random Shapes and Point Fields, Wiley: Chichester, 1994.

    Google Scholar 

  24. R. Vitale, “An alternate formulation of mean value for random geometric figures,” J. Microscopy, Vol. 151, pp. 197–204, 1988.

    Google Scholar 

  25. O. Yu. Vorob'ev, Srednemernoje Modelirovanie(Mean-Measure Modelling) Nauka, Moscow (in Russian), 1984.

    Google Scholar 

  26. H. Ziezold, “On expected figures and a strong law of large numbers for random elements in quasi-metric spaces,” Trans. 7th Prague Conf. Inf. Th., Statist. Dec. Func., Random Processes (Prague, 1974), Reidel, Dordrecht, 1977, Vol. A, pp. 591–602.

    Google Scholar 

  27. H. Ziezold, “On expected figures in the plane,” in Geobild'89, Math. Res. Series, Vol. 51, Akademie-Verlag: Berlin, pp. 105–110, 1989.

    Google Scholar 

  28. H. Ziezold, “Mean figures and mean shapes applied to biological figures and shape distributions in the plane,” Biom. J., Vol. 36, pp. 491–510, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoyan, D., Molchanov, I.S. Set-Valued Means of Random Particles. Journal of Mathematical Imaging and Vision 7, 111–121 (1997). https://doi.org/10.1023/A:1008289104136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008289104136

Navigation