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Abstract We define cut-free display calculi for knowledge logics where an
indiscernibility relation is associated to each set of agents, and where agents
decide the membership of objects using this indiscernibility relation. To do so,
we first translate the knowledge logics into polymodal logics axiomatised by
primitive axioms and then use Kracht’s results on properly displayable logics to
define the display calculi. Apart from these technical results, we argue that
Display Logic is a natural framework to define cut-free calculi for many other
logics with relative accessibility relations.
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1 Introduction

Background. Formallogic has been used by various authors to analyse and
reason about knowledge. The possible-worlds semantics for knowledge logics
initiated by Hintikka [Hin62] has been very fruitful for modelling reasoning
about knowledge (see e.g. the reference book [FHMV95]). This approach has
also been successfully used for reasoning about protocols in distributed sys-
tems (see e.g. [Hal87]). Starting from different postulates about knowledge,
Ortowska [Orlo89] has introduced knowledge logics based on the assumption
that the knowledge of agents depends on the degree of certainty with which
they perceive objects from a given domain. The semantical structures are of
the form (OB, AGT, (Rg)qcacr) where the elements of OB are interpreted
as objects for which data is stored in some information system in the sense
of [Paw81], AGT is a set of agents and (Rg)gcacr is a family of binary re-
lations over OB such that (0,0") € Rg iff 0 and o’ cannot be “distinguished”
by the set @ of agents. Thus Rg(0) = {0’ € OB : (0,0') € Rg} is the set of
objects which members of () cannot “distinguish” from o.

As is usual for modal logics, different notions of “distinguishability” can
be captured by imposing different conditions on each Rgy. Moreover, the
relations in (Rg)gcacr are not independent since it is required that (1)
Roug = RgN Ry for any Q, Q' € AGT and (2) Ry = OB x OB. Condition
(1) means that two sets of agents can distinguish more objects than each
one can individually, and (2) means that the empty set of agents cannot
distinguish any two objects.

In that setting, based on an alternative ontology, a knowledge operator
A(Q) : P(OB) — P(OB) is definable where A(Q)(X) C OB consists of
those objects which the set @ of agents can distinguish as belonging, or not
belonging, to some given X C OB:

AQ)X)={0€ OB : Rg(o) C X}U{o€ OB : Rg(o) C (OB\ X)}

Intuitively, an object o € OB is in A(Q)(X) if the objects that are Q-
indistinguishable from o are either all inside X, or all outside X. Actually,
A(Q) is similar to Aumann’s knowledge operator in the event-based approach
of knowledge [Aum76|, and also corresponds to the modal operator A in
logics of non-contingency (see e.g. [Hin62, MR66, Hum95, Kuh95]).

There are many existing logics based on Orlowska’s approach (see e.g.
[FdCO85, Orto89, Vak91, Bal97, Kon97a, Dem98a]). For instance, some of
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these logics, based on rough set theory [Paw82|, provide a fruitful frame-
work to model reasoning in the presence of incomplete information (see e.g.

[Vak91, Kon97al).

Our objectives. Formalising proof systems for such knowledge logics within
the display logic framework (see e.g. [Bel82]) is the main objective of the
paper. Existing proof systems for these logics are either Hilbert-style sys-
tems [Bal97, BO98, Dem98b| which are not amenable to mechanisation, or
are Rasiowa-Sikorski-style and Gentzen-style proof systems [Kon97a] which
require the use of nominals. Since adding nominals greatly increases the ex-
pressive power of the logics®, we wish to define calculi for the logics without
nominals. Such a motivation can be put in parallel with the definition of a
cut-free calculus for relation algebras that does not involve point variables
[Gor97].

To understand why we highly value the calculi in the display logic frame-
work (abbreviated by DL), it might be worth recalling that DL is a proof-
theoretical framework introduced in [Bel82] that admits a very general cut-
elimination theorem. Moreover, DL generalises the structural language of
Gentzen’s sequents in a rather abstract way by using multiple complex struc-
tural connectives instead of Gentzen’s comma. The term “display” comes
from the nice property that any occurrence of a structure in a sequent can
be displayed either as the entire antecedent or as the entire succedent of some
sequent which is structurally equivalent to the initial sequent.

Our contribution. The main contribution of the paper is the definition
of cut-free display calculi 6L for the knowledge logics described above. Since
these logics do not easily fit into the classical polymodal display framework
defined in [Kra96, Wan97|, we first define faithful translations of these knowl-
edge logics into polymodal logics L in which the modal operators are the
universal modality [U] [GP92] or are of the form [c; N...Nc,| where each c;
is a constant interpreted as a binary relation. The operator N is interpreted
as the intersection operation.

The crucial observation is that the polymodal logics L are properly dis-
playable in the sense of Kracht [Kra96]. That is, by applying the general

3See e.g. [PT91] where the intersection modal operator is modally defined only when
nominals are allowed.



results from [Kra96], the polymodal logics £~ admit cut-free display calculi
0LA. The rules of the display calculi £ for the knowledge logics mimic
those of the display calculi £ for the polymodal logics. Completeness is
then proved syntactically as is standard with DL (see e.g. [Gor96, Kra96]).
Alternatively, completeness can be shown starting from the Hilbert-style sys-
tem for the knowledge logics, but this way does not provide any insight into
the syntactic relationships between 6L and dL~. More importantly, the tech-
niques used here are applicable to other logics with relative accessibility re-
lations, which is why we emphasise the translations between the logics and
between the calculi.

Along the way, we also characterise the computational complexity of var-
ious basic manipulations found in display calculi based on Boolean negation.
For instance, checking that two sequents are structurally equivalent can be
done in quadratic-time in the size of the input sequents. Additionally, several
quantitative analyses about the size of the proofs obtained in the calculi for
the knowledge logics are given in the paper.

A very important feature of DL is the ability to combine several families
of structural operations. In the paper, we also show how to separate the
display logic inferences which reason about the algebra of modal terms (typ-
ically Boolean terms) from those that reason about the deducibility relation
of the logics. Hence, our contribution is not merely technical: we believe
that DL is a fairly natural framework for defining many other calculi for log-
ics with relative accessibility relations (see e.g. [BO98|). In that sense, the
present paper can be viewed as a case study that opens the door for further
investigation.

Related work. On one hand, Hilbert-style calculi for several logics with
relative accessibility relations, including some of the logics treated here, have
been defined in [Bal97, Dem98b]. But such systems are known to be par-
ticularly inefficient for mechanisation. On the other hand, Rasiowa-Sikorski
proof systems and sequent proof systems have been defined in [Kon97b] for
logics with relative accessibility relations, but these proof systems require the
use of nominals. Although some of the logics in [Kon97b| contain some of
the logics of the present paper, the extension with names is powerful since it
increases the expressive power of the logics. Indeed, even decidability has not
been shown for some of these logics (see partial positive decidability results



in [DK98]). Consequently, there is a need for calculi exclusively dedicated to
the language without names.*

Here we define such calculi in the general DL framework, thereby showing
that DL is powerful enough to deal with logics with relative accessibility
relations. Unlike in [Kon97al, where the use of nominals is essential, neither
nominals nor prefixed formulae are needed in the DL framework.

As is well-known, other general proof-theoretical frameworks exist for
non-classical logics: Labelled Deductive Systems [Gab96] and Relational
Proof Systems [Orto88, Orlo91, Orto92] to name two. But the use of la-
bels in the former, and the use of explicit point variables in the latter is
somewhat akin to the use of names.

In any case, DL has already shown its generality since cut-free display cal-
culi have been defined for substructural logics [Res98, Gor98|, for modal and
polymodal logics [Wan94, Kra96, Wan97, DG98b|, for intuitionistic logics
[Gor95] and for relation algebras [Gor97]. Numerous enriched sequent-style
calculi such as prefixed sequent calculi and hypersequent calculi can be nat-
urally encoded in DL (see e.g. [Min97, Wan98|). Finally, two particular
display calculi have been mechanised using the proof assistant Isabelle by
Dawson [DG98a].

Plan of the paper. The rest of the paper is structured as follows. In Sec-
tion 2, we recall the definition of the knowledge logics under study [Orto89].
In Section 3, we introduce the required polymodal logics axiomatised by prim-
itive axioms and we recall their cut-free display calculi following [Kra96]. In
Section 4.1, we show how to translate knowledge logics into these polymodal
logics. Finally, Section 4.2 mainly contains the definition of the cut-free dis-
play calculi whereas Section 4.3 presents the cut-elimination theorem and
the completeness proof.

2 Logics with relative accessibility relations

Given a set Forg = {p;,p,,-.-} of propositional variables and a set Ay =
{01, 92, ...} of agent constants, the agent expressions o € A and the formulae

4A similar need exists for the Data Analysis Logic DAL, for which no Hilbert-style
axiomatisation without nominals is known, although its extension with nominals is ax-
iomatised in [Gar86].



¢ € For are inductively defined as follows for J; € Ay and p; € Fory:
a =060 | —a | aqUas | arNa

¢ u=L| T |p| diAds| d1Vee | 26 | Ala)d

Standard abbreviations include = and <. As usual in complexity theory,
for any syntactic object 0, we write |0| to denote its length (or size) for some
reasonably (unspecified) succinct encoding.

An A-interpretation m is a map m : A — P(Ag) such that Ag is a non-
empty set, P(Ag) is the set of all subsets of Ag, and for any oy, ay € A:

1. m(on Nag) = m(ag) Nm(az);
2. m(oq Uag) = m(ar) Um(a);
3. m(—aq) = Ag \ m(a).

For any a,3 € A we write & =L [resp. o = 3, a C ] when for any A-
interpretation m, m(a) = 0 [resp. m(a) = m(B), m(a) € m(B)]. The
relations = and C are known to be decidable (by decidability of classical
propositional logic).

Definition 2.1. A frame F is a structure F = (OB, Ag, (Rp)pca,y) such
that OB is a non-empty set of objects, Ag is a non-empty set of agents and
(Rp)pcag is a family of binary relations over OB such that
(a) for all Q,Q" C Ag, Roug = Rg N Ry (b) Ry = OB x OB.
A model M is a structure M = (OB, Ag, (Rp)pcag, m) such that F =
(OB, Ag, (Rp)pcag) is a frame and m : Forg UA — P(OB) U P(Ayg) is a
mapping such that m(p) C OB for all p € Fory, and the restriction of m to
A is an A-interpretation. As usual, we say that the model M is based on F.

\Y

Let M = (OB, Ag, (Rp)pcag,m) be a model and o € OB. The formula
¢ is satisfied by the object o € OB in M & M, 0 = ¢ where the satisfaction
relation = is inductively defined as follows:

M,o0=p E o m(p), for any p € For,

either M, o' = ¢ for all o' € R4 (0)
Mo Do) & { or M, o' = —¢ for all o' € Ryya)(0).
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We omit the standard conditions for the propositional connectives and
the logical constants. A formula ¢ is ¢rue in a model M (written M = @)
E forall o € OB, M,o0 k= ¢. A formula ¢ is true in a frame F (written
F = 9) & 4 is true in every model based on F. In the sequel, by a B-logic®
L we understand a pair (L, X™) such that L C For and XM is a class of
models based on a given class of frames. A formula ¢ € L is said to be
L-valid & ¢ is true in all the models in XM. A formula ¢ € L is said to be
L-satisfiable & ¢ is not L-valid.

We write Ta = (For, X$') [resp. Ba = (For, X3'), S55 = (For, X24) |
to denote the B-logic such that a model (OB, Ag, (Rp)pcag,m) € X [resp.
€ XM, e X & forall ) #Q C Ag, Rg is reflexive [resp. Ry is reflexive
and symmetric, Rg is an equivalence relation |.

Both Ba and S5 were introduced in [Orto89] and they are the very ob-
ject of study in the present paper. By taking one’s favourite (mono)modal
logic L, one can easily define the corresponding B-logic £ when L is char-
acterised by a class of standard Kripke frames closed under intersection.
However, in Ba and S5, the standard necessity operator [a] can be defined
by [a]¢ = ¢ A A(e)¢, and this might not always be the case for a B-logic
derived from an arbitrary (mono)modal logic L. Furthermore, Vakarelov’s
copying construction (see e.g. [Vak91]), used in the proof of the forthcom-
ing Theorem 3.1 is known to behave badly with transitive relations. Hence,
displaying S4, will still remain an open question at the end of the present
paper. Decidability of S4A-satisfiability is also open.

In what follows, a B-logic £ = (For, X) is said to be closed under in-

tersection & there exists a class C of standard Kripke frames of the form
(W, R) such that

1. C is closed under intersection: that is, for all (W7, Ry), (W, Rs) € C if
W1 N W2 7é (Z) then (W1 N WQ,Rl N R2) € C; and

2. X contains exactly the class of models (OB, Ag, (Rp)pcag,m) such
that for all ) # P C Ag, (OB, Rp) € C.

54ogic with Boolean terms”



3 Polymodal logics axiomatised by primitive
axioms

In this section, we investigate polymodal logics £ that are not our main
object of study (after all we want to display the B-logics from [Orlo89)).
However, as stated in Section 1, these polymodal logics share with the B-
logics various properties that help to understand the B-logics themselves.

3.1 Hilbert-style axiomatisation

Given a set Forg = {p;, P, .-} of atomic propositions and a set My =
{co,c1, ...} of modal constants, the modal terms a € M (which are different
from U) and the formulas ¢ € Forn for the N-logics are inductively defined
as follows for ¢, € My and p; € Fory:

an=c¢; | ajNay

¢ u=L| T | p | diAd | Ve | 26 | [a]o | [U]¢

Standard abbreviations include (a), (U), = and <.

Definition 3.1. An N-frame is a structure (W, (Ra)acmyquy) where W is a
non-empty set of states and (Ra)aemyquy is a family of binary relations over
W such that Ry =W x W and Ry~ = Ra N Ry for all a,b € M.

An N-model M = (W, (Ra)aeMuquy,™) is a structure such that F =

(W, (Ra)aem) is an N-frame and m is a mapping m : Fory — P(W). M is
said to be based on F. \Y

Observe that the modal operator [U] is the standard universal modal
operator [GP92, Hem96]. The satisfiability relation =, and the associated
notions of L~-satisfiability and £Ln-validity are defined as usual for polymodal
logics. In what follows, by an N-logic £ we understand a pair (Forn, X™)
such that X is the class of all N-models based on a given class of N-frames.

For any B-logic L closed under intersection, we write L~ to denote the
corresponding N-logic, i.e. with the same conditions on the binary relations
of the N-models. Unless otherwise stated, in the rest of the paper, L denotes
a B-logic in {Ta, Ba,S5A}.



Let My(a) denote the set of modal constants (from My) that occur in a, let
Th(Ln) be the smallest set of N-formulae such that Th(Ln) is closed under
modus ponens, uniform substitution and necessitation for [U] and each [a],
and let Th(Ln) also contain every tautology of classical propositional logic
together with the formulae
(K) [a](p = q) A [a]p = [a]q for any a € MU {U}
(T) [a]p = p for any a € MU {U}

(B) p=[a]{a)p when £ = Ba
(5) (a)p = [a]{(a)p for a € M when £ = S5,
(5U) (U)p = [U|U)p
(V)
)
C)

(N

[Ulp=[a]p foraeM
[alp V [b]p = [aNb]p for a,b € M
[a]p < [b]p for a,b € M such that My(a) = My(b).

(A

Alternatively, the schemata (M) and (AC) can be replaced by:
[a]p = [b]p when My(a) C My(b).

Thus, each Th(Ln) can be seen as a traditional axiomatic Hilbert system
allowing us to write ¢ € Th(Ln) to mean that ¢ is derivable in Th(Ln). By
adapting constructions in [Vak91, Bal97] we can show that each such Hilbert
system is sound and complete with respect to the intended semantics:

Theorem 3.1. An N-formula ¢ is Ln-valid iff ¢ € Th(Lp).

Since the standard Kripke frame of the canonical model for Th(£Lp) is not
an N-frame, we make a substantial use of the copying technique from [Bal97].
The full proof is rather long and tedious and it is omitted here.

To express the next lemma, let My(¢) denote the set of modal constants
occurring in ¢, as before, but let M(¢) denote the set of modal expressions a
such that ¢ has a subformula of the form [a]i.

Lemma 3.2. If ¢ € Th(Ln), then there is a derivation (¢, ..., ¢,) of ¢ such
that for any i € {1,...,n}, My(¢;) C My(¢) and max{|a| : a € M(¢;)} <
maz{|al : a € M(9)}.



At first sight, this lemma may appear analogous to cut-elimination (elim-
ination of the introduction of irrelevant terms in a proof). However, the
idea of the proof of Lemma 3.2 consists in considering a fragment Thy(Ln) of
Th(Ln) restricted to M C M where M contains all possible modal expressions
a built using the constants from My(¢) such that |a| < maz{|b| : b € M(¢)}.
Completeness of Thy(Ln) with respect to L£n for this fragment of the lan-
guage including ¢ can then be obtained easily. The lemma follows since
Thy(Ln) € Th(Ln).

Lemma 3.2 is used to prove the forthcoming Theorem 3.8 that states that
the application of some rules in the forthcoming display calculus 6L can be
constrained.

3.2 Display calculi

As stated previously, there are numerous existing display calculi. We extend
Wansing’s [Wan94| formulation since it is tailored for classical polymodal
logics. Following Kracht’s terminology, each L can be properly displayed
([Kra96, Theorem 21]). That is, each £~ admits a display calculus 6Ln
for which cut-elimination holds since each L. satisfies the conditions (C1)-
(C8) from [Bel82]. Moreover, axioms from the Hilbert-style system Th(Ln)
for L are encoded in 6L by purely structural rules, i.e. rules that involve
only structure variables. In this section, we shall explicitly recall the display
calculus 0 L for £~ obtained by application of Kracht’s results. This allows
us to smoothly introduce various notions and to state properties that are
used to define the display calculi for the knowledge logics (see Section 4.2
and Section 4.3). Hence, this section is mainly included to make the paper
self-contained.

On the structural side, we have Boolean structural connectives * (unary),
o (binary), I (nullary) and the family (ea)acm,quy of modal structural con-
nectives. A structure X € struc(0Ln) is inductively defined as follows:

Xu=¢ | *X | X;0Xy | I | 03X

for ¢ € Forn, a € MU {U}. A sequent is defined as a pair of structures of the
form X - Y with X the antecedent and Y the succedent. The rules of 6L~ are
presented in Figures 1-5.



XFo oY

(1) php (cut) ——S

Figure 1: Fundamental logical axioms and cut rule

XoYHFZ XoYHFZ XFYoZ XFYoZ

XHZoxY YHxXo02Z XoxZFY xYoXF Z

*XFY X xY *xXFY XF*x*xY X eoqY

*Y F X Y F *X XFY XFY o XFY

Figure 2: Display postulates

The display postulates (reversible rules) in Figure 2 deal with the manip-
ulation of structural connectives. The expression

X}_.aY
.ax|_Y

should be understood as a rule schema. So a is just a metavariable, and Fig-
ure 2 contains a countably infinite set of rules. Such a distinction is necessary
in order to be able to apply scrupulously the cut-elimination theorem from
[Bel82]. All forthcoming rules obey the same reading.

In any structure Z, the structure X occurs negatively [resp. positively| E
X occurs in the scope of an odd number [resp. an even number] of occurrences
of x [Bel82]. In a sequent Z F Z', an occurrence of X is an antecedent part
[resp. succedent part] & it occurs positively in Z [resp. negatively in Z'] or
it occurs negatively in Z' [resp. positively in Z] [Bel82]. Two sequents X - Y
and X' - Y' are said to be structurally equivalent & there is derivation of
the first sequent from the second using only the display postulates defined in
Figure 2.

Theorem 3.3. [Bel82] For every sequent Z - Z' and every antecedent [resp.
succedent| part X of Z - Z', there is a structurally equivalent sequent X Y
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[resp. Y F X] that has X (alone) as its antecedent [resp. succedent|. X is said
to be displayed in X - Y [resp. Y I X].

The proof of Theorem 3.3 immediately gives the following corollary.
Corollary 3.4. Displaying requires linear-time w.r.t input sequent size.

Here, the good point for mechanisation is that although the display pos-
tulates from Figure 2 can be viewed as low level manipulations on structures,
displaying the occurrence of a structure is not a time-consuming task. The
problem® PDS of structural equivalence is the set of pairs of sequents that
are structurally equivalent (for some reasonably succinct encoding of the se-
quents). At first glance, the rules in Figure 2, which determine the notion of
structurally equivalent, do not guarantee that PDS can be solved in a tractable
way. Indeed,

1. All the rules in Figure 2 are reversible and therefore there is no mea-
sure that allows us to state that applying a rule to a sequent strictly
decreases its size with respect to this measure.

2. There is at least one rule that can be applied to any sequent X - Y.

However, a closer examination of the rules allows us to show that PDS is in
the complexity class P.

Theorem 3.5. PDS requires quadratic-time in the size of the input sequents.

Proof: A sequent or structure is said to be reduced & it contains no struc-
tures of the form * x X and #(X oY) (see also the notion of normal form in
[Kra96]). Every sequent is structurally equivalent to a reduced sequent. Such
a sequent can be computed in linear-time by:

1. replacing * x X by X;
2. replacing *(X oY) by (xY o xX).

6A problem is understood as a set of strings as is usual in complexity theory.

11



FFED Ty (TH X ) 7 (40
X ¢ *¢ - X Xko YO dot kX
X|——|¢(|__|) _'¢|_X(_| )m(l_/\) m(/\l—)
XFgo SFX YFY o+ X XF ead
xFove TV avirxey VD ok eax BF) xrs CRD

Figure 3: Operational rules

Point 2. above may seem incongruous at first sight, but keep in mind that
o is overloaded & la Gentzen’s comma so that *(XoY) and (*YoxX) in the same
position are dual representations of the same formula. Thus, this procedure
is reminiscent of the way to compute a negated normal form for a formula
of classical propositional logic. There is however, one notable difference: the
rules in Figure 2 do not enforce the commutativity of o.

Let X F Y and X' F Y’ be sequents. Let ¢ be the leftmost formula that
occurs as a structure in X’. Assume this occurrence of ¢ is an antecedent
part (the case when it is a succedent part is analogous). If (XY, X' FY') €
PDS, then there is an antecedent part occurrence of ¢ in X' F Y’ such that
(pF Z,X'=Y") € PDS and (¢ F Z,X F Y) € PDS for some reduced structure Z.
So first display the leftmost structural occurrence of ¢ in X F Y such that the
succedent Z is reduced (actually Z is unique). Then, display any antecedent
part structural occurrence of ¢ in X' F Y’ such that the succedent Z' is reduced
(for each such occurrence, Z' is unique). If there is some Z' equal to Z, then
(XF Y, X'FY') € PDS otherwise (X - Y,X' - Y') ¢ PDS. Q.E.D.

In Figure 3 and in Figure 4, the constructs ([a] i), (F [a]), (necy) and
(nech) should be understood as rule schemata for a € MU {U}. Observe that
the symmetry between the rules (Figure 4) is not total. However, using the
basic structural rules (Figure 2), the missing rules are derivable (to weaken a
succedent for instance). The rules in Figure 4 induce that o is a commutative,
associative, idempotent, binary operation with neutral element I. This is

“A formula ¢ that is a subformula of another formula ¢ is not a structural occurence.
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XF1Z XFZ s I-Y XHT

— (I — () (@) — (@)
IToXF2Z XHF1oZ *I =Y Xt *I
X2 X2
Yoxtz (Werh) oyt z (weak:)
X]_O(XQOX3)|_Z( ) Zl_xlo(XQOX3)( )
assoc assSoc,
(X10X2)OX3|_Z : Zl_(XIOXQ)OX:J,
L Gom) 22 Gom) Y o) TR (o

IEX XHIT
(neca)

X+ el (M%)

Figure 4: Other basic structural rules

exactly the behaviour of the comma in Gentzen’s calculus for classical logic.
Such a refined decomposition of the properties of o, partly explains how a
large number of substructural logics can be displayed (see e.g. [Gor98]).

The structural rules in Figure 5 are translations of the primitive axioms
of Ln into primitive display rules [Kra96]. We invite the reader to consult
[Kra96] for a precise definition of primitivity since its exact definition is not
pertinent here. Anyway, a primitive axiom is always a Sahlqvist formula
[Sah75]. Primitivity of the axioms guarantees a display calculus satisfying
the conditions (C1)-(C8) [Bel82] and therefore enjoying cut-elimination.

All the rules in Figure 5 are indeed rule schemata for a,b,d € M, except
for (refla), (syma), (transa) where a € MU {U}. Alternatively, the rules
l()u;eakil,b), (weaky y,), (comap), (assyy,q) and (assyp4) can be replaced

Y xoy xXFY
* oy xX Y

when My(a) C My(b). As usual in DL, this possible replacement highlights
that it is often better to consider low level rules which may be omitted to
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xeg xX Y xo kX Y .
xry  refla) oy (unia)
x oy xX Y

(transa), (L = S5A)

*.a.a*XFY

*ea %(Zo*x ey xX) F Y
Xoxeg*xZHY

(syma), (£ # Ta)

*op xX Y
xoy pAXEY

xog xX Y * oy pxKHEY

~a > - k!
* @y p ¥X F Y (wea a,b)

k? —=r
(wea a,b) * 0png *XE Y (comayb)

* ®anbynd *X FY * ®2n(bnd) *X FY
asSa b g

(a332a,b,d)

* ®an(bnd) *X FY * ®(anbynd *X FY

Figure 5: Other structural rules

obtain other similar calculi via structural variation (see [Gor98]).

Theorem 3.6. [Kra96] An Ln-formula ¢ € Th(Ln) iff I F ¢ is derivable in
6Ln.

Theorem 3.7. [Bel82] 0L enjoys cut-elimination, i.e. if there is a proof of
XF Yin L, then there is a cut-free proof of X+ Y in §Ln.

In Figure 3, each complex term a € M is associated with its own modal
structural connective e5. In [Wan97], Wansing defines a display calculus
for PDL~ where each program constant c has a corresponding modal struc-
tural connective ec. PDL™ is defined in [Wan97] as the Propositional Dy-
namic Logic containing the operators U (non-deterministic choice), ; (com-
position), ? (test) with the program constants interpreted using serial and
single-alternative binary relations. Thus, Wansing [Wan97] implicitly uses
the valid equivalences:

[aUblg < [a]¢ A [blo [2;b]¢ < [a][b]¢ [07]¢ & (¢ = ¢)

14



For L, we cannot make use of such an economical encoding (by only consid-
ering the family (ec)ccm,qu;) since the intersection operator N is not modlly
definable [GT75], which is the source of several problems.

For each modal expression a € MU {U}, the (refla)-rule can be viewed
as a cut-rule in disguise. Indeed, reading this rule upwards, given X - Y,
one has to choose which a to consider in order to apply some (refla)-rule
for some a € MU {U}. Theorem 3.8 below states that if I - ¢ is derivable
in 6Ln, there are at most maz{|b| : b € M(¢)}" choices for a where n =
card(My(¢)). Modulo associativity and commutativity of N, the number of
choices drastically decreases.

Theorem 3.8. Let ¢ be an L--formula such that I + ¢ is derivable in
0L~. Then, there is a cut-free derivation of I + ¢ in 0L such that any
instance of the rule (refla) in this derivation satisfies My(a) C My(¢) and
la| < mazx{|a|:a € M)}

The proof of Theorem 3.8 follows from Lemma 3.2 when one considers the
proof of Kracht’s results on properly displayable logics [Kra96]. By induction
on the formation of ¢ we can also prove

Proposition 3.9. ¢ - ¢ is cut-free derivable in 6L for all £L,-formulae ¢.

In the rest of the paper, we therefore assume that the identity rule (/d)
from Figure 1 is of the form i F v where 1 is a formula variable.

4 Displaying logics with relative accessibility
relations

In this section, we first show how L-satisfiability can be faithfully translated
into Ln-satisfiability. The translation shall then be the key point to define
the display calculus £ that mimics the rules of dLn.

4.1 Satisfiability-preserving maps

In this section, we assume that £ is a B-logic closed under intersection.
This is the only place in the paper where £ is not necessarily a member of
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{Tr,Bn,S5,}. We reproduce here some arguments from [Dem98b] in order
to generalise the translation from LKO (our S5x) into S57'Y (our (S5a)n)
defined in [Dem98b] to L closed under intersection.

Assume ¢ € For and let Ag(¢) denote the set of agent constants occurring
in ¢. Without loss of generality, we can assume that if card(Ao(¢)) = n, then
Ao(¢) = {01,...,0,}. Indeed, L-satisfiability and L-validity are not sensitive
to the renaming of constants. When A(¢) = (), ¢ is L-valid iff ¢ is Ln-valid
iff ¢ is valid in classical propositional logic. So assume in the sequel that
n > 1, that is Ag(¢) # (0. For any integer k£ € {0,...,2" — 1} we write bit;(k)
for the i*" bit of the natural number k in binary form and write o} to denote
the agent expression oy N ...N «, where for any i € {1,...,n},

w6 if bity(k) =0
@i = —0; otherwise.

For any agent expression a € A such that Ag(a) C {dy,...,6,}, either a =L
or there is a unique set Y = {oj,..., 0]} such that o = of, U... U} .
Suppose « € A occurs in ¢ in some subformula A(«)y such that o 1 and
a=a; U...Uaj for some {iy,...,5} C {0,...,2" — 1}. The normal form®
of a, written N(«), is merely the expression o U...U ;. In the case when
a =1, N(a) € 6, N —6;. We write N(¢) to denote the formula obtained
from ¢ by replacing each occurrence of a by N(«). N(¢) is unique modulo
associativity and commutativity of U and N, and N(¢) can be computed in
deterministic time 2°(¢) for some polynomial p(m).

Using the technique from [Dem98b], we shall define a mapping g from For
into Forn that takes advantage of the normal forms and such that g(¢) =
fs(N(¢)) where f,; is homomorphic for the propositional connectives:

- for any p € Fory, fy(p) = p; fo(L) =1L fo(T) = T;
- fo(A(og, U... U a;‘l)1ﬁ) e, N...N i, |7 fo(¥) Ve, NNy ] fo(¥);
- fo(A(0L 0 =00)0) E (U f5(0) V [U]f4 (1)

Note that f, depends on ¢ only because card(A¢(¢)) = n. The definition
of fs can be refined by the renaming technique (see e.g. [Min88]) so that

8The canonical disjunctive normal form for classical propositional logic [Lem65,
Kon97al.
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fs(1) is not copied twice in the conditions defining fs(A(a)y). It suffices
to appropriately associate a new proposition p, ., to fs(1): the details are
omitted here.

Lemma 4.1. ¢ € For is L-satisfiable iff g(¢) is Ln-satisfiable.

Proof: For the direction from left to right, assume there exist an £-model
M = (OB, Ag, (Rg)gcag,m) and o € OB such that M, o = N(¢). Let M’
be the Ln-model (OB, (Ra)aeMuquy, ™) such that:

1. forall k € {0,...,2" — 1}, R, £ Ronar)

2. for all c € My \ {cg, ..., com1} R & RY, (arbitrary value)
3. forallaeM R, & NeeMy(a) Fc

4. R. < OB x OB

def

5. for all p € Fory, m'(p) = m(p).

Writing sub(¢) for the set of subformulae of ¢ including ¢, one can show by
structural induction that for any o' € OB and any ¢ € sub(¢): M, o = ¢
iff M', 0’ = g(¢). Therefore M', 0 = g(9).

For the direction from right to left, assume there exist an £~-model M’ =
(W', (Ra)aeMuquy> m') and w € W' such that M, w = g(¢). Let M =
(W', Ag, (Rg)ocag, m) where:

1. Ag={0,...,2" -1}

Ly

2. the restriction of m to Fory is m/

3. fori € {1,...,n}, m(6;) = {k € Ag : bit;(k) = 0}. The interpreta-
tion of the other constants in {d,;1,...} is not constrained until the
restriction of m to A is an A-interpretation, which is always possible.

4. Ry = W' x W' and for any § # Q C Ag, Rg = Nieq RL, -

The construction of M is designed to guarantee that for any k£ € {0,...,2" —
1}, m(aj) is non-empty, as otherwise Ry, (ox) has to be the universal relation.
Indeed, m(«j) is equal to {k}. The definition of M is correct and M is an
L-model. By structural induction one can show that for any 1 € sub(¢) and

any w' € W': M w' = g(v) iff M,w' E 1. Hence M,w = ¢. Q.E.D.

Since g(—¢) < —g(¢) is Ln-valid, Lemma 4.1 also entails that ¢ is L-valid
iff g(¢) is Ln-valid.
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pFX YFo

}_
XF Aa)d (- Ale) A(@)pF oo eg +Y (Bla)F)
Figure 6: Operational rules
xo,xX Y xo,xX Y _
xry  efle) ey (ransa), (£=554)
* 0y k(Zo* e, xX) Y * o5 xX - Y

(Syma)a (L 7é TA) (Eﬁ,a)a with 6 Lo

Xoxe,*xZFY xo, X Y

Figure 7: Additional structural rules

4.2 The display calculi

The display calculus 0L defined below is composed of axioms and inference
rules that partly mimic those of 0L5. As for dLn, the Boolean structural
connectives are x (unary), o (binary), I (nullary). But now we introduce
a new family (e,),ca of (unary) modal structural connectives. A structure
X € struc(dL) is inductively defined as follows for ¢ € For and « € A:

Xu=¢ | «X | X10Xy | I | e,

The fundamental logical axioms and cut rule (Figure 1), the basic structural
rules (Figure 2 and Figure 4 with obvious modifications) and the operational
rules (Figure 3) for §£ are by definition those for 6L except that the rules
introducing [a]¢ (as antecedent and succedent) are replaced by the rules
introducing A(a)¢ (as antecedent and succedent) described in Figure 6. The
additional structural rules for § L are presented in Figure 7.

In Figure 6 and Figure 7, o and  belong to A. Since 0L satisfies the
conditions (C1)-(C8) [Bel82], §L enjoys cut-elimination. Section 4.3 contains
a soundness and completeness proof as well as a cut-elimination theorem
established by backward translation, using only the fact that 0L enjoys
cut-elimination, thereby highlighting the relationships between these calculi.
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4.3 Soundness, completeness and cut-elimination

To prove soundness of §L with respect to L-validity, we use the mappings
a: struc(0L) — For and s : struc(6L) — For defined below when £ # Ta:

a(¢) = s(¢) = ¢ for any ¢ € For

a(I) = 7 s(I) I

a(*X = -s(X) s(*X) = —a(X)

a(XoY) = a(X)Aa(Y) s(Xo¥) = s(X)Vs(Y)
a(e.X) = a(X)V-A(a)a(X) s(e.X) = s(X) A A(a)s(X)

In the case when £ = T, the definition of a(e,X) must be changed to
a(e.X) = a(X) V A" (a)a(X)

where A~ () is the backward modality associated with A(«). That is, as is
standard with DL, we extend the language by adding the family {A~(«) :
a € A} of “reverse” unary modal operators. The satisfiability relation = is
modified appropriately by adding the clause:

_ . [ either M, o' = ¢ forall o € R;ja) (0)
Mo A7(@) & { or M, o = —¢ for all o € R;}a)(o)

where Rr_n%a) is the converse relation of R, ).
In the case when £ € {Ba,S5a}, there is no need to introduce new

modalities since the relations in the corresponding models are symmetric.
Theorem 4.2. If XY is derivable in 6L, then a(X) = s(Y) is L-valid.

The proof is by induction on the length of the given derivation of X - Y.
The maps a and s are slight variants of standard translations that can be
found for instance in [Kra96]. The interest of a and s is not only in the
soundness proof but also in the way the structural connectives should be
interpreted depending on their occurrence, either as antecedent parts or as
succedent parts.

Corollary 4.3. (soundness) If I - ¢ is derivable in 6L, then ¢ is L-valid.
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In order to prove completeness, we define a reverse map g ! such that
any Ln-formula ¢ is Ln-valid iff g1 (¢) is L-valid.

Let ¢ be an Ln-formula such that My(¢) = {c1,...,cn}. Let n be the
smallest natural number such that 2" — 1 > m. As usual, for any k£ €
{0,...,2" — 1}, we define the agent expression o} = a; N ...N a, where for
any i € {1,...,n}, if bit;(k) = 0, then oy = &; otherwise a; = —d;. We define
the mapping g,* : MU {U} U struc(6L,) — AU struc(dL) as follows

- g, is homomorphic for the Boolean connectives and the Boolean struc-
tural connectives;

gD EL gt =piforicew; g (MET;  g,' (L) =L
- for all k € {0,...,2" — 1}, g7 ' (ci) = of;
- for all c € My \ {co,.-.,com 1}, g, (c) = d; (arbitrary value);

d

- 9.1 (U) E 6N =6y 9.t (anb) = g, (a) U g, '(b);
- g ([2]) = gt () A Algr (@) g5 (¥); 9 (%aX) = & -14)0, " (X).

One can check that N(g,'(¢)) = g, '(¢), and that g(g,*(4)) is Ln-valid iff ¢
is Ln-valid since p A ([a]p V [a]-p) < [a]p is Ln-valid. Hence, by Lemma 4.1,
¢ is Lo-valid iff g, '(¢) is L-valid providing a definition for g~

Let Ao(¢) [resp. Ao((3)] denote the set of agent constants (from Ay) occur-

ring in the formula ¢ [resp. in the agent expression f3].

Lemma 4.4. Let ¢ be an L-formula with Ay(¢) = {01,...,0,} and, in the
(Cp.q)-rule, let (3) be the condition Ag(3) C Ag(¢). Then, I I ¢ has a cut-free
proof satisfying (3) in L iff I - g, '(g(¢)) has a cut-free proof satisfying (3)
in 6L.

Proof: First, one can show that I - ¢ admits a cut-free proof in dL iff
I ++ N(¢) admits a cut-free proof in JL as follows. One can easily observe
that to each occurrence of o € A in ¢ there is a matching occurrence of
N(c) € Ain N(¢). Let II be a cut-free proof of I - ¢ satisfying the condition
of the lemma. Let IT' be the proof obtained from II by:

- replacing every occurrence of a € A in a formula by N(«);

- replacing every instance of some (Cg o)-rule by an appropriate instance
Of the (EN(ﬂ)’N(a))—rule.
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Then IT' is a cut-free proof of I - N(¢) satisfying the condition of the lemma.
Conversely, let IT be a cut-free proof of I F N(¢) satisfying the condition
of the lemma. Let IT' be the proof obtained from II by:

- replacing every occurrence of o € A in a formula by o' such that o =
N(a/) and the agent expressions satisfy the matching mentioned at the
beginning of the proof;

- replacing every instance of any (Cg,)-rule by an appropriate instance
of the (Cg,o)-rule, with o satisfying the condition as above.

Then II' is a cut-free proof of I F ¢ satisfying the condition of the lemma.
Second, g '(g(¢)) = h(N(¢)) where h : For — For is a formula mapping
defined as follows:
- for any i € w, h(p;) < p;;
- h is homomorphic for the Boolean connectives;

- h(A(@)) = (Fh($) A A(@) k(1)) V (h(v) A A(a) ().

Let (4) be the condition that I F A(a)y admits a cut-free proof in §L iff
IF (= ANA()=9Y)V(YAA(a)y) admits a cut-free proof in §L. If (4) holds,
then I - h(N(¢)) admits a cut-free proof in 6L iff I - N(¢) admits a cut-free
proof in 6£. Condition (4) can be proved by checking the following points:

- for any structure X and any formula v, the sequent X - =) admits a
cut-free proof in 6L iff X - *) admits a cut-free proof in 0 .C;

- for any structure X and any formula ¢, the sequent X - A(«)y admits
a cut-free proof in 6L iff X - A(a)—1) admits a cut-free proof in §£;

- for all formulae 1,1, the sequent I I ¢) admits a cut-free proof in 6L
iff I (YAY)V (Y A1) admits a cut-free proof in §.L.

Q.E.D.

Theorem 4.5. For any L-formula ¢, if I F g(¢) has a cut-free proof in §Ln,
then I F ¢ has a cut-free proof in 6 L.
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Proof: Consider a cut-free derivation of I - g(¢) satisfying the restrictions
stated in Theorem 3.8. In the case when Ay(¢) = ), a cut-free derivation of
I+ ¢ in 6L can be fairly easily obtained: after all ¢ is simply a formula of
classical propositional logic.

In the rest of the proof, assume that Ay(¢) = {01,...,d,}, that is Ay(¢) is
non-empty. We show that in the given cut-free proof of I - g(¢), for every
sequent X F Y with cut-free proof II, the sequent g,*(X) F g, (Y) admits a
cut-free proof, say g, *(I), in §£. So, we shall conclude g, *(I)  g,*(9(9))
admits a cut-free derivation in §£. By Lemma 4.4, I F ¢ admits a cut-free
derivation in 4 L.

As expected, the proof is by induction on the length of the derivations.
When X Y is of the form 1 | 1, the base case is immediate. Similarly, the
proof poses no difficulty when the last rule is a basic structural rule (from
Figure 2 and Figure 4) or an operational structural rule introducing a Boolean
connective (Figure 3). This is due to the fact that g, ' is homomorphic for
the Boolean connectives and the Boolean structural connectives.

In what follows, we write

5 (dp)

to denote that the sequent s is obtained from the sequent s’ by an unspeci-
fied finite number (possibly zero) of applications of display postulates from
Figure 2.

Now, let us treat the case when the last rule is (F [a]). The proof

I
X eq7)
is transformed into
g, (1) g, (1)

X'+ e 1) X'+ eg1

x 0 % U xX/ (dp) X ox e, ¥ - endf (weak,)
/ ] (Tefla) 7 7 - (dp)
WA X'Fequloeaxyl Ty
Xy X F AQ)y - )

X'oX' Fo'AA(a)y
X'FoY'AA(a)y

(contr))
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with o = g,'(a), ¢' = g, (¢) and X' = g, }(X).
Using the same notation, let us treat the case when the last rule is ([a] ).
The proof
10
b F X

Tau - eaX (fa] F)

is transformed into

. égﬁ H(I) Ve
/ x/ / !

A()Y' - o X 0 ey x 1) (Afe) F)
A()Y' - oy x 1) 0 0,X'
* o, %) F 0, X o xA(a)y)
' e X o xA(a)yY
Yo Ala)y)' - e X
YA A()Y - o X (

(com,)
(dp)
(refly)

(dp)
AF)

When the last applied rule is an instance of any of the rules (refla),
(syma), (transa) then the corresponding applied rule in §£ is an instance of
one of (refly), (symy), (trans,) respectively.

In order to conclude let us treat the cases when the last rule is (unia) or
(weak;’b) (the other cases can then be easily obtained). The proof

gH
* oy xX Y

vea X Fy (Unia)

is transformed into
: g, ' (T0)
* ®5,n—d1 *ggl(x) = gn_l(Y)
* @13y %G, (X) F g, ' (Y)

(Csin—s1,97"(2))

Similarly, the proof



is transformed into
> g, ()
*® 1) %9, ' (X) =g, (Y)
* ®-la)ugrl(b) *gﬁl(x) = QZI(Y

) (Cyrt@urd)sr'@)
Q.E.D.

Corollary 4.6. If an L-formula ¢ is £-valid, then I - ¢ has a cut-free proof
in 0L.

Corollary 4.7. Let ¢ be an L-formula such that II is a cut-free proof of
I+ g(#) in 6LA. Then I F ¢ has a cut-free proof IT' in 6L of size O(2!").

For any «, # € A, the (Cp,)-rule can be viewed as a cut-rule in disguise.
Indeed, by reading the proof upwards, given * e, *xX = Y, one has to choose
which ' to consider in order to apply the (Cg ,o)-rule, for 5° € A. Corol-
lary 4.8 states that if I - ¢ is derivable in §£, then there are at most 22"
choices for ' where n = card(Ao(¢)). At first glance, the implicit cut rule
may seem problematic. However, simply considering each agent expression
to be a representative of the class having the same normal form with respect
to N allows to reduce the non-determinism. Indeed, less choices for (' are
then possible.

Corollary 4.8. Let ¢ be an L-formula such that I - ¢ admits a derivation
in 0L (and recall that N is defined with respect to ¢). Then I - N(¢) [resp.

I F ¢| admits a cut-free derivation II [resp. II'] in §£ such that each instance
of the (Cg,)-rule in II [resp. IT'] satisfies Aq(5) C Ag(¢) and N(B) = S.

Instead of having a countably infinite set of Cg ,-rules, let us replace them
by a single rule. To do so, consider the (C)-rule below:

xeogxX FY o(oz)l—o(ﬁ)( )
xo, X Y -

where o : A — For is defined as follows:

o(6;) =p; foricw o(—a) E =o(a)

o(aUB) = o(a) v o(B) o(anB) = o(a) Ao(B)
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Observe that in the C-rule, o and 3 are agent expression variables used
partly as indices for modal structural connectives. This kind of rule is out of
the scope of the application of the standard conditions (C1)-(C8) in [Bel82].
Let us define the display calculus 7L from dL by deleting the Cg ,-rules,
and by adding the (C)-rule. The advantage of 67 L over 6L is twofold:

1. no semantic condition has to be checked since F provides a calculus for
checking 3 C «;

2. a single rule replaces an infinite set of rules.

Although 61 L is not an orthodox display calculus, we can now easily show
that

Theorem 4.9. I ¢ has a cut-free proof in § L iff ¢ is L-valid.

Proof: Each cut-free proof of I F ¢ in §£ can be simply transformed into a
cut-free proof of I+ ¢ in 67 L. Q.E.D.

The idea behind the definition of the (C)-rule consists in defining two
relations 1 and F4: the relation F; is dedicated to deducibility in the logic
whereas 5 is dedicated to some semantic relation in the algebra of modal
terms. In the particular case of £, the relation 5 can be defined from F; via
the map o.

5 Concluding remarks

For various logics with relative accessibility relations, we have defined cut-
free display calculi by taking advantage of semantical relationships with poly-
modal logics axiomatised by primitive axioms. The cut-elimination and com-
pleteness proofs are totally syntactic and use a backward translation. As we
mentioned in the introduction, these logics seem to have non-standard prop-
erties when viewed from the traditional polymodal viewpoint (for instance
the family of relations in the models is indexed by sets). For these reasons,
they have remained on the fringe of mainstream research about logics for
reasoning about knowledge. We have shown that these logics are amenable
to an analysis in terms of Display Logic, bringing them into the field of “dis-
playable logics”. Further general results about DL are now applicable to
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these logics. Among the continuations of this work, the definition of decision
procedures based on our calculi is first in the list (following [Dem98b], satisfi-
ability for Ta, Ba and S5 can be shown to be EXPTIME-complete). This
is a non-trivial task since most display calculi enjoy the subformula property,
but not the substructure property. Decision procedures for particular cut-free
display calculi are known: for example, the restriction to flat structural rules
[Res98], or the restriction to calculi without the contraction rule [Wan97]°.
But this is not the case in general, and is an avenue for further work for
which the techniques in [Kra96, Res98| could be helpful.

References

[Aum76] R. Aumann. Agreeing to disagree.  Annals of Statistics,
4(3):1236-1239, 1976.

[Bal97] Ph. Balbiani. Axiomatization of logics based on Kripke models
with relative accessibility relations. In [Oe97], pages 553-578,
1997.

[Bel82] N. Belnap. Display logic. Journal of Philosophical Logic, 11:375—
417, 1982.

[BO9S| Ph. Balbiani and E. Orlowska. A hierarchy of modal logics with
relative accessibility relations. Journal of Applied Non-Classical
Logics, special issue in the Memory of George Gargov, 1998. To
appear.

[Dem98a] S. Demri. A class of decidable information logics. Theoretical
Computer Science, 195(1):33-60, 1998.

[Dem98b] S. Demri. A logic with relative knowledge operators. Journal of
Logic, Language and Information, 1998. To appear.

[DG98a]  J. Dawson and R. Goré. A mechanised proof system for relation
algebra using display logic. In JELIA’98, pages 264-278. LNAI
1489, Springer-Verlag, 1998.

9The decision procedure for PDL~ in [Wan97] can be extended in order to prove that
several polymodal logics using constants as modal indices are decidable, when restricted
to formulae with modal operators of possibility force only. In the case of PDL™, modal
operators of possibility force are logically equivalent to modal operators of necessity force.

26



[DGI8b]

[DK98]

[FACO85]
[FHMV95]
[Gab96]

[Gar86|

[Gor95]

[Gor96]

[Gor97]

[Gor98|

[GP92]

[GT75]

S. Demri and R. Goré. Cut-free display calculi for nominal tense
logics. Technical Report TR-ARP-07-98, Automated Reasoning
Project, Australian National University, June 1998.

S. Demri and B. Konikowska. Relative similarity logics are de-
cidable: reduction to FO? with equality. In JELIA’9S, pages
279-293. LNAI 1489, Springer-Verlag, 1998.

L. Farinas del Cerro and E. Orlowska. DAL - A logic for data
analysis. Theoretical Computer Science, 36:251-264, 1985.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about
Knowledge. The MIT Press, 1995.

D. Gabbay. Labelled Deductive Systems. Oxford University Press,
1996.

G. Gargov. Two completeness theorems in the logic for data
analysis. Technical Report 581, ICS, Polish Academy of Sciences,
Warsaw, 1986.

R. Goré. Intuitionistic logic redisplayed. Technical Report TR-
ARP-1-95, ARP, RSISE, Australian National University, January
1995, http://arp.anu.edu.au/~rpg.

R. Goré. On the completeness of classical modal display logic. In
H. Wansing, editor, Proof theory of modal logic, pages 137-140.
Kluwer Academic Publisher, 1996.

R Goré. Cut-free display calculi for relation algebras. In D. van
Dalen and M. Bezem, editors, CSL96, pages 198-210. Springer-
Verlag, LNCS 1258, 1997.

R. Goré. Substructural logics on display. Logic Journal of the
IGPL, 6(3):451-504, 1998.

V. Goranko and S. Passy. Using the universal modality: gains
and questions. Journal of Logic and Computation, 2(1):5-30,
1992.

R. Goldblatt and S. Thomason. Axiomatic classes in proposi-
tional modal logic. In J. Crossley, editor, Algebra and Logic,
pages 163-173. Springer-Verlag, Lecture Notes in Mathematics
450, 1975.

27



[Hal87]
[Hem96]
[Hin62]
[Hum95]
[Kon97a]
[Kon97b]

[Kra96]

[Kuh95]

[Lem65]
[Min8g]

[Min97]

[MR66]

[0e97]

[Orlo88]

J. Halpern. Using reasoning about knowledge to analyze dis-
tributed systems. Ann. Rev. Comput. Sci., 2:37-68, 1987.

E. Hemaspaandra. The price of universality. Notre Dame Journal
of Formal Logic, 37(2):173-203, 1996.

J. Hintikka. Knowledge and Belief. Cornell University Press,
1962.

L. Humberstone. The logic of non-contingency. Notre Dame
Journal of Formal Logic, 36(2):214-229, 1995.

B. Konikowska. A logic for reasoning about relative similarity.
Studia Logica, 58(1):185-226, 1997.

B. Konikowska. A logic for reasoning about similarity. In /[0e97],
pages 462-491, 1997.

M. Kracht. Power and weakness of the modal display calculus.
In H. Wansing, editor, Proof theory of modal logic, pages 93-121.
Kluwer Academic Publisher, 1996.

S. Kuhn. Minimal logic of non-contingency. Notre Dame Journal
of Formal Logic, 36(2):230-234, 1995.

E. Lemmon. Beginning Logic. Chapman and Hall, 1965.

G. Mints. Gentzen-type and resolution rules part I: proposi-
tional logic. In P. Martin-Lof and G. Mints, editors, International
Conference on Computer Logic, Tallinn, pages 198-231. Springer
Verlag, LNCS 417, 1988.

G. Mints. Indexed systems of sequents and cut-elimination. Jour-
nal of Philosophical Logic, 26(6):671-696, 1997.

H. Montgomery and R. Routley.  Contingency and non-
contingency bases for normal modal logics. Logique et Analyse,
9:318-328, 1966.

E. Orlowska (ed.). Incomplete Information: Rough Set Analy-
sis. Studies in Fuzziness and Soft Computing. Physica-Verlag,
Heidelberg, 1997.

E. Orlowska. Relational interpretation of modal logics. In
H. Andréka, D. Monk, and I. Németi, editors, Algebraic logic.

28



[Orlo89]

[Orto91]

[Or1092]
[Paw81]
[Paw82)
[PTY1]

[Res98]

[Sah75)

[Vak91]
[Wan94|
[Wan97|

[Wan98§]

Colloquia Mathematica Societatis Janos Bolyai 54, pages 443—
471. North Holland, 1988.

E. Orlowska. Logic for reasoning about knowledge. Zeitschr. f.
Math. Logik und Grundlagen d. Math., 35:559-568, 1989.

E. Orlowska. Relational proof systems for some AI logics. In
Ph. Jorrand and J. Kelemen, editors, FAIR’91, pages 33-47.
Springer-Verlag, LNAT 535, 1991.

E. Orlowska. Relational proof system for relevant logics. The
Journal of Symbolic Logic, 57(4):1425-1440, December 1992.

7. Pawlak. Information systems theoretical foundations. Infor-
mation Systems, 6(3):205-218, 1981.

7. Pawlak. Rough sets. International Journal of Information and
Computer Sciences, 11:341-356, 1982.

S. Passy and T. Tinchev. An essay in combinatory dynamic logic.
Information and Computation, 93:263-332, 1991.

G. Restall. Displaying and deciding substructural logics 1: logics
with contraposition. Journal of Philosophical Logic, 27(2):179-
216, 1998.

H. Sahlqvist. Completeness and correspondence in the first and
second order semantics for modal logics. In S. Kanger, editor, 3rd
Scandinavian Logic Symposium, pages 110-143. North Holland,
1975.

D. Vakarelov. Modal logics for knowledge representation systems.
Theoretical Computer Science, 90:433—-456, 1991.

H. Wansing. Sequent calculi for normal modal propositional log-
ics. Journal of Logic and Computation, 4(2):125-142, April 1994.

H. Wansing. Proof-theoretic aspects of intensional and non-
classical logics, December 1997. Habilitation Thesis.

H. Wansing. Translation of hypersequents into display sequents.
Logic Journal of the IGPL, 6(5):719-733, 1998.

29



