Skip to main content
Log in

Dynamics of Peptide Folding: Transition States and Reaction Pathways of Solvated and Unsolvated Tetra-Alanine

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A new approach is proposed for enclosing all stationary states, including saddle points of all orders, of a potential energy surface based on the αBB deterministic branch and bound global optimization algorithm. This method is based on rigorous optimization methods and offers a theoretical guarentee of enclosing all solutions to the equation ∇V=0. This method is applied to the ECEPP/3 (Empirical Conformational Energy Program for Peptides) potential energy surfaces of unsolvated and solvated tetra-alanine. By analyzing the topography of the potential energy surfaces, we calculate reaction pathways, transition rate matrices, time-evolution of occupation probabilities, and rate disconnectivity graphs, and we identify appropriate criteria for the selection of a reaction coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Westerberg, K.M. and Floudas, C.A. (1999),J. Chem. Phys. 110(18):9259.

    Google Scholar 

  2. Maranas, C.D. and Floudas, C.A. (1995), J. Global Opt. 7 143

    Google Scholar 

  3. Andoulakis, I.P., Maranas, C.D. and Floudas, C.A. (1995), J. Global Opt. 7(4): 337.

    Google Scholar 

  4. Adjiman, C. and Floudas, C.A. (1996),J. Global Opt. 9: 23.

    Google Scholar 

  5. Adjiman, C., Dallwig, S., Floudas, C.A. and Neumaier, A. (1998), Computers and Chem. Eng. 22(9): 1137.

    Google Scholar 

  6. Adjiman, C., Androulakis, I.P. and Floudas, C.A. (1998), Computers and Chem. Eng. 22(9): 1159.

    Google Scholar 

  7. Jarrold, M.F. (1994), in Clusters of Atoms and Molecules, H. Haberland (ed.). Springer, Berlin, Chap. 2.7, 163.

  8. Kunz R.E. and Berry, R.S. (1995),J. Chem. Phys. 103(5): 1904.

    Google Scholar 

  9. Becker, O.M. and Karplus, M. (1997), J. Chem. Phys. 106(4): 1495.

    Google Scholar 

  10. Czerminski, R. and Elber, R. (1990),J. Chem. Phys. 92(9): 5580.

    Google Scholar 

  11. Némethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S. and Scheraga, H.A. (1992), J. Phys. Chem. 96: 6472.

    Google Scholar 

  12. Tsai, C.J. and Jordan, K.D. (1993), J. Phys. Chem. 97: 11227.

    Google Scholar 

  13. Cerjan, C.J. and Miller, W.H. (1981),J. Chem. Phys. 75(6): 2800.

    Google Scholar 

  14. Simons, J., Jorgensen, P., Taylor, H. and Ozment, J. (1983), J. Phys. Chem. 87: 2745.

    Google Scholar 

  15. Banerjee, A., Adams, N., Simons, J., Shepard, R. (1985), J. Phys. Chem. 89: 52.

    Google Scholar 

  16. O'Neal, D., Taylor, H. and Simons, J. (1984), J. Phys. Chem. 88:1510.

    Google Scholar 

  17. Culot, P., Dive, G., Nguyen, V.H. and Ghuysen, J.M. (1992), Theor. Chim. Acta 82:189.

    Google Scholar 

  18. Augspurger, J.D. and Scheraga, H.A. (1987), J. Phys. Chem. 91: 4105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westerberg, K., Floudas, C. Dynamics of Peptide Folding: Transition States and Reaction Pathways of Solvated and Unsolvated Tetra-Alanine. Journal of Global Optimization 15, 261–297 (1999). https://doi.org/10.1023/A:1008341702093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008341702093

Navigation