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Abstract. Ordinal Optimization has emerged as an efficient technique for simulation and optimization. Exponen-
tial convergence rates can be achieved in many cases. In this paper, we present a new approach that can further
enhance the efficiency of ordinal optimization. Our approach determines a highly efficient number of simulation
replications or samples and significantly reduces the total simulation cost. We also compare several different
allocation procedures, including a popular two-stage procedure in simulation literature. Numerical testing shows
that our approach is much more efficient than all compared methods. The results further indicate that our approach
can obtain a speedup factor of higher than 20 above and beyond the speedup achieved by the use of ordinal
optimization for a 210-design example.
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1. Introduction

Discrete-event systems (DES) simulation is a popular tool for analyzing systems and eval-
uating decision problems since real situations rarely satisfy the assumptions of analytical
models. While DES simulation has many advantages for modeling complex systems, ef-
ficiency is still a significant concern when conducting simulation experiments (Law and
Kelton, 1991). To obtain a good statistical estimate for a design decision, a large number
of simulation samples or replications is usually required for each design alternative. This
is due to the slow convergence of a performance measure estimator relative to the num-
ber of simulation samples or replications. The ultimate accuracy (typically expressed as a
confidence interval) of this estimator cannot improve faster thanO(1/

√
N), the result of

averaging i.i.d. noise, whereN is the number of simulation samples or replications (Fabian,
1971; Kushner and Clark, 1978). If the accuracy requirement is high, and if the total number
of designs in a decision problem is large, then the total simulation cost can easily become
prohibitively high.

Ordinal Optimizationhas emerged as an efficient technique for simulation and optimiza-
tion. The underlying philosophy is to obtain good estimates through ordinal comparison
while the value of an estimate is still very poor (Ho et al., 1992). If our goal is to find the
good designs rather than to find an accurate estimate of the best performance value, which is
true in many practical situations, it is advantageous to use ordinal comparison for selecting
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a good design. Further Dai (1996) shows that the convergence rate for ordinal optimiza-
tion can be exponential. This idea has been successfully applied to several problems (e.g.,
Cassandras et al., 1998; Gong et al., 1999; Patsis et al., 1997).

While ordinal optimization could significantly reduce the computational cost for DES
simulation, there is potential to further improve its performance by intelligently controlling
the simulation experiments, or by determining the best number of simulation samples among
different designs as simulation proceeds. The main theme of this paper is to further enhance
the efficiency of ordinal optimization in simulation experiments. As we will show in the
numerical testing in section 4, the speedup factor can be another order of magnitude above
and beyond the exponential convergence of ordinal optimization.

Intuitively, to ensure a high probability of correctly selecting a good design or a high
alignment probability in ordinal optimization, a larger portion of the computing budget
should be allocated to those designs that are critical in the process of identifying good
designs. In other words, a larger number of simulations must be conducted with those critical
designs in order to reduce estimator variance. On the other hand, limited computational
effort should be expended on non-critical designs that have little effect on identifying the
good designs even if they have large variances. Overall simulation efficiency is improved
as less computational effort is spent on simulating non-critical designs and more is spent on
critical designs. Ideally, one would like to allocate simulation trials to designs in a way that
maximizes the probability of selecting the best design within a given computing budget.
We present a new optimal computing budget allocation (OCBA) technique to accomplish
this goal.

Previous researchers have examined various approaches for efficiently allocating a fixed
computing budget across design alternatives. Chen (1995) formulates the procedure of allo-
cating computational efforts as a nonlinear optimization problem. Chen et al. (1996) apply
the steepest-ascent method to solve the budget allocation problem. The major drawback of
the steepest-ascent method is that an extra computation cost is needed to iteratively search
for a solution to the budget allocation problem. Such an extra cost could be significant if
the number of iterations is large. Chen et al. (1997) introduce a greedy heuristic to solve
the budget allocation problem. This greedy heuristic iteratively determines which design
appears to be the most promising for further simulation. However, the budget allocation
selected by the greedy heuristic is not necessarily optimal. On the other hand, Chen et
al. (2000) replace the objective function with an approximation and the use of Chernoff’s
bounds, and present an analytical solution to the approximation. The approach in Chen et al.
(2000) provides a more efficient allocation than the greedy approach and the steepest-ascent
method.

In this paper, we develop a new asymptotically optimal approach for solving the budget
allocation problem. The presented approach is even more efficient than the one given by
Chen et al. (2000). This is accomplished by replacing the objective function with a better
approximation that can be solved analytically. Further, Chernoff’s bounds are not used
in the derivation and fewer assumptions are imposed. The higher efficiency of this new
allocation approach is also shown in the numerical testing.

In addition to presenting a new and more efficient approach to determine the simula-
tion budget allocation, in this paper, we will i) compare several different budget allocation
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procedures through a series of numerical experiments; ii) demonstrate that our budget al-
location approaches are much more efficient than the popular two-stage Rinott procedure;
iii) show that our approach is robust and the most efficient in different settings; iv) show that
the speedup factor becomes even larger when the number of designs increase; v) demon-
strate that additional significant speedup can be achieved above and beyond the exponential
convergence of ordinal optimization.

The paper is organized as follows: In the next section, we formulate the optimal computing
budget allocation problem. Since our approach is based on the Bayesian model, we also
provide a brief discussion of that model for completeness. Section 3 presents an asymptotic
allocation rule for OCBA. The performance of the technique is illustrated with a series of
numerical examples in Section 4. Section 5 concludes the paper.

2. Problem Statement

Suppose we have a complex discrete event system. A general simulation and optimization
problem for such a DES system can be defined as

min
θi∈2

J(θi ) ≡ E[L(θi , ξ)] (1)

where2, the search space, is an arbitrary, huge, structureless but finite set;θi is the system
design parameter vector for designi, i = 1,2, . . . , k; J, the performance criterion which
is the expectation ofL, the sample performance, as a functional ofθ , andξ , a random
vector that represents uncertain factors in the systems. Note that for the complex systems
considered in this paper,L(θ, ξ) is available only in the form of a complex calculation via
simulation. The system constraints are implicitly involved in the simulation process, and
so are not shown in (1). The standard approach is to estimate E[L(θi , ξ)] by the sample
mean performance measure

J̄i ≡ 1

Ni

Ni∑
j=1

L(θi , ξi j ),

whereξi j represents thej -th sample ofξ and Ni represents the number of simulation
samples for designi . Denote by

σ 2
i : the variance for designi , i.e.,σ 2

i = Var(L(θi , ξ)). In practice,σ 2
i is unknown before-

hand and so is approximated by sample variance.

b: the design having the smallest sample mean performance measure, i.e.,J̄b ≤ mini J̄i ,

δb,i ≡ J̄b − J̄i .

As Ni increases,J̄i becomes a better approximation toJ(θi ) in the sense that its cor-
responding confidence interval becomes narrower. The ultimate accuracy of this estimate
cannot improve faster than 1/

√
N. Note that each sample ofL(θi , ξi j ) requires one simula-

tion run. A large number of required samples ofL(θi , ξi j ) for all designs may become very
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time consuming. On the other hand, ordinal optimization (Ho et al., 1992) concentrates on
ordinal comparison and achieves a much faster convergence rate. Dai (1996) shows that an
alignment probability of ordinal comparison can converge to 1.0 exponentially fast in most
cases. Such an alignment probability is also called the probability of correct selection or
P{CS}. One example ofP{CS} is the probability that designb is actually the best design.
To take advantage of such an exponential convergence, our approach is developed under
the framework of ordinal comparison. Furthermore, instead of equally simulating all de-
signs, we will further improve the performance of ordinal optimization by determining the
best numbers of simulation samples for each design. Stating this more precisely, we wish
to chooseN1, N2, . . . , Nk such thatP{CS} is maximized, subject to a limited computing
budgetT ,

max
N1,...,Nk

P{CS}

s.t. N1+ N2+ · · · + Nk = T.

Ni ∈ N, i = 1, . . . , k. (2)

Here N is the set of non-negative integers andN1 + N2 + · · · + Nk denotes the total
computational cost assuming the simulation times for different designs are roughly the same.
To solve problem (2), we must be able to estimateP{CS}. There exists a large literature on
assessingP{CS} based on classical statistical models (e.g., Goldsman and Nelson, 1994;
Banks, 1998 give an excellent survey on available approaches). However, most of these
approaches are only suitable for problems with a small number of designs. Recently, Chen
(1996) introduced an estimation technique that approximatesP{CS} for ordinal comparison
when the number of designs is large based on a Bayesian model (Bernardo and Smith, 1994).
This technique has the added benefit of providing sensitivity information that is useful in
solving problem (2). We will incorporate this technique within our budget allocation
approach.

Many performance measures of interest are taken over some averages of a sample path
or a batch of samples. Thus, the simulation output tends to be normally distributed in
many applications. In this paper we assume that the simulation output,L(θ, ξ), is normally
distributed. However, we will demonstrate that our approach works equally well when for
non-normal distributions.

After the simulation is performed, a posterior distribution ofJ(θi ), p(J(θi )|L(θi , ξi j ), j =
1, . . . , Ni ), can be constructed based on two pieces of information: (i) prior knowledge of
the system’s performance, and (ii) current simulation output. If we select the observed best
design (designb), the probability that we selected the best design is

P{CS} = P{designb is actually the best design}
= P{J(θb) < J(θi ), i 6= b | L(θi , ξi j ), j = 1, . . . , Ni , i = 1,2, . . . , k}. (3)

To simplify the notation used, we rewrite Eq. (3) asP{ J̃b < J̃i , i 6= b}, whereJ̃i denotes
the random variable whose probability distribution is the posterior distribution for designi .
Assume that the unknown meanJ(θi ) has the conjugate normal prior distribution. We
consider non-informative prior distributions. This implies that no priori knowledge is given
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about the performance of any design alternative before conducting the simulation. In that
case, DeGroot (1970) shows that the posterior distribution ofJ(θi ) is

J̃i ∼ N

(
J̄i ,
σ 2

i

Ni

)
.

After the simulation is performed,̄Ji can be calculated,σ 2
i can be approximated by the

sample variance;P{CS} can then be estimated using a Monte Carlo simulation. However,
estimatingP{CS} via Monte Carlo simulation is time-consuming. Since the purpose of
budget allocation is to improve simulation efficiency, we need a relatively fast and inex-
pensive way of estimatingP{CS} within the budget allocation procedure. Efficiency is
more crucial than estimation accuracy in this setting. We adopt a common approximation
procedure used in simulation and statistics literature (Brately et al., 1987; Chick, 1997; Law
and Kelton, 1991). This approximation is based on the Bonferroni inequality.

Let Yi be a random variable. According to the Bonferroni inequality,P{∩k
i=1(Yi < 0)} ≥

1−∑k
i=1[1− P{Yi < 0}]. In our case,Yi is replaced by( J̃b− J̃i ) to provide a lower bound

for the probability of correct selection. That is,

P{CS} = P

{
k⋂

i=1,i 6=b

(
J̃b − J̃i < 0

)}
≥ 1−

k∑
i=1,i 6=b

[
1− P

{
J̃b − J̃i < 0

}]

= 1−
k∑

i=1,i 6=b

P
{

J̃b > J̃i

}
= APCS.

We refer to this lower bound of the correct selection probability as theApproximate Proba-
bility of Correct Selection(APCS). APCScan be computed very easily and quickly; no extra
Monte Carlo simulation is needed. Numerical tests show that the APCS approximation can
still lead to highly efficient procedures (e.g., Chen, 1996; Inoue and Chick, 1998). We
therefore useAPCSto approximateP{CS} as the simulation experiment proceeds. More
specifically, we consider the following problem:

max
N1,...,Nk

1−
k∑

i=1,i 6=b

P
{

J̃b > J̃i

}
s.t.

k∑
i=1

Ni = T andNi ≥ 0. (4)

In the next section, an asymptotic allocation rule with respect to the number of simulation
replications,Ni will be presented.

3. An Asymptotic Allocation Rule

First, we assume the variables,Ni ’s, are continuous. Second, our strategy is to tentatively
ignore all non-negativity constraints; allNi ’s can therefore assume any real value. Let
Ni = αi T . Thus,

∑k
i=1 αi = 1. Before the end of this section, we will show how allαi ’s
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become positive and hence allNi ’s are positive. Based on this idea, we first consider the
following:

max
N1,...,Nk

1−
k∑

i=1,i 6=b

P
{

J̃b > J̃i

}

s.t.
k∑

i=1

Ni = T. (5)

For the objective function,

k∑
i=1,i 6=b

P{ J̃b > J̃i } =
k∑

i=1
i 6=b

∫ ∞
0

1√
2πσb,i

(x−δb,i )2
2σ2

b,i dx

=
k∑

i=1
i 6=b

∫ ∞
− δb,i
σb,i

1√
2π

e
t2

2 dt,

where a new variable is introduced,σ 2
b,i = σ 2

b
Nb
+ σ 2

i
Ni

, for notation simplification (δb,i is
defined in section 2). Then, letF be the Lagrangian relaxation of (5):

F = 1−
k∑

i=1
i 6=b

∫ ∞
− δb,i
σb,i

1√
2π

e
t2

2 dt − λ
(

k∑
i=1

Ni − T

)
.

Furthermore, the Karush-Kuhn-Tucker (KKT) (Walker, 1999) conditions of this problem
can be stated as follows.

∂F

∂Ni
= ∂F

∂
(
− δb,i

σb,i

) ∂
(
− δb,i

σb,i

)
∂σb,i

∂σb,i

∂Ni
− λ

= −1

2
√

2π
exp

[
−δ2

b,i

2σ 2
b,i

]
δb,iσ

2
i

N2
i (σ

2
b,i )

3/2
− λ = 0, for i = 1,2, . . . , k, andi 6= b. (6)

∂F

∂Nb
= −1

2
√

2π

k∑
i=1
i 6=b

exp

[
−δ2

b,i

2σ 2
b,i

]
δb,iσ

2
b

N2
b(σ

2
b,i )

3/2
− λ = 0, (7)

λ

(
k∑

i=1

Ni − T

)
= 0, andλ ≥ 0.

We now examine the relationship betweenNb and Ni for i = 1,2, . . . , k, and i 6= b.
From Eq. (6),

−1

2
√

2π
exp

[
−δ2

b,i

2σ 2
b,i

]
δb,i

(σ 2
b,i )

3/2
= −λN2

i

σ 2
i

, for i = 1,2, . . . , k, andi 6= b. (8)
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Plugging (8) into (7), we have

k∑
i=1
i 6=b

−λN2
i σ

2
b

N2
bσ

2
i

− λ = 0.

Then

Nb = σb

√√√√ k∑
i=1,i 6=b

N2
i

σ 2
i

or αb = σb

√√√√ k∑
i=1,i 6=b

α2
i

σ 2
i

. (9)

We further investigate the relationship betweenNi andNj , for anyi, j ∈ {1,2, . . . , k}, and
i 6= j 6= b. From Eq. (6),

exp

 −δ2
b,i

2
(
σ 2

b
Nb
+ σ 2

i
Ni

)
 · δb,iσ

2
i /N2

i(
σ 2

b
Nb
+ σ 2

i
Ni

)3/2 = exp

 −δ2
b,i

2

(
σ 2

b
Nb
+ σ 2

j

Nj

)
 · δb, jσ

2
j /N2

j(
σ 2

b
Nb
+ σ 2

j

Nj

)3/2 . (10)

To reduce the total simulation time for identifying a good design, it is worthwhile to con-
centrate the computational effort on good designs. Namely,Nb should be increased relative
to Ni , for i = 1,2, . . . , k, andi 6= b. This is indeed the case in the actual simulation ex-
periments. And this assumption can be supported by considering a special case in Eq. (9):
Whenσ1 = σ2 = · · · = σk,

Nb =
√√√√ k∑

i=1,i 6=b

N2
i .

Therefore, we assume thatNb À Ni , which enables us to simplify Eq. (10) as

exp

 −δ2
b,i

2
(
σ 2

i
Ni

)
 · δb,iσ

2
i /N2

i(
σ 2

i
Ni

)3/2 = exp

 −δ2
b, j

2

(
σ 2

j

Nj

)
 · δb, jσ

2
j /N2

j(
σ 2

j

Nj

)3/2 .

On rearranging terms, the above equation becomes

exp

1

2

δ2
b, j

σ 2
j

Nj

− δ
2
b,i

σ 2
i

Ni

 N1/2
j

N1/2
i

= δb, jσi

δb,iσj
.

Taking the natural log on both sides, we have

δ2
b, j

σ 2
j

Nj + log(Nj ) =
δ2

b,i

σ 2
i

Ni + log(Ni )+ 2 log

(
δb, jσi

δb,iσj

)
,
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or

δ2
b, j

σ 2
j

αj T + log(αj T) =
δ2

b,i

σ 2
i

αi T + log(αi T)+ 2 log

(
δb, jσi

δb,iσj

)
,

which yields

δ2
b, j

σ 2
j

αj T + log(αj ) =
δ2

b,i

σ 2
i

αi T + log(αi )+ 2 log

(
δb, jσi

δb,iσj

)
. (11)

To further facilitate the computations, we intend to find an asymptotic allocation rule.
Namely, we consider the case thatT → ∞. While it is impossible to have an infinite
computing budget in real life, our allocation rule provides a simple means for allocating
simulation budget in a way that the efficiency can be significantly improved, as we will
demonstrate in numerical testing later. AsT →∞, all the log terms become much smaller
than the other terms and are negligible. This implies

δ2
b, j

σ 2
j

αj =
δ2

b,i

σ 2
i

αi

Therefore, we obtain the ratio betweenαi andαj or betweenNi andNj as:

Ni

Nj
= αi

αj
=
(
σi /δb,i

σj /δb, j

)2

for i = 1,2, . . . , k, andi 6= j 6= b. (12)

Now we return to the issue of nonnegative constraint forNi , which we temporarily ignored.
Note that from Eq. (9) and Eq. (12), allαi ’s have the same sign. Since

∑k
i=1 αi = 1 and

Ni = αi T , it implies that allαi ’s ≥ 0, and henceNi ’s ≥ 0, wherei = 1,2, . . . , k.
In conclusion, if a solution satisfies Eq. (9) and Eq. (12), then KKT conditions must

hold. According to the KKT Sufficient Condition, this solution is a local optimal solution
to Eq. (4). We therefore have the following result:

THEOREM1 Given a total number of simulation samples T to be allocated to k competing
designs whose performance is depicted by random variables with means J(θ1), J(θ2), . . . ,

J(θk), and finite variancesσ 2
1 , σ

2
2 , . . . , σ

2
k respectively, as T→ ∞, the Approximate

Probability of Correct Selection (APCS) can be asymptotically maximized when

(1) Ni
Nj
=
(
σi /δb,i

σj /δb, j

)2
, i, j ∈ {1,2, . . . , k}, and i 6= j 6= b,

(2) Nb = σb

√∑k
i=1,i 6=b

N2
i

σ 2
i

.

where Ni is the number of samples allocated to design i ,δb,i = J̄b− J̄i , and J̄b ≤ mini J̄i .
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Remark 1. In the case ofk = 2 andb = 1, Theorem 1 yields

N1 = σ1

√
N2

2

σ 2
2

,

Therefore,

N1

N2
= σ1

σ2
.

This evaluated result is identical to the well-known optimal allocation solution fork = 2.

Remark 2. To gain better insight into this approach, consider another case wherek = 3
andb = 1, which yields

N2

N3
= σ 2

2 δ
2
1,3

σ 2
3 δ

1
1,2

.

We can see how the number of simulation samples for design 2,N2, is affected by different
factors. For a minimization problem, when̄J3 increases (we are more confident of the
difference between design 1 and design 3) orσ2 increases (we are less certain about design 2),
N2 increases as well. On the other hand, whenJ̄2 increases (we are more confident of the
difference between design 1 and design 2) orσ3 increases (we are less certain about design 3),
N2 decreases. The above relationship betweenN2 and other factors is consistent with our
intuition.

With Theorem 1, we now present a cost-effective sequential approach based on OCBA
to select the best design fromk alternatives with a given computing budget. Initially,n0

simulation replications for each ofk design are conducted to get some information about
the performance of each design during the first stage. As simulation proceeds, the sample
means and sample variances of each design are computed from the data already collected
up to that stage. According to this collected simulation output, an incremental computing
budget,1, is allocated based on Theorem 1 at each stage. Ideally, each new replication
should bring us closer to the optimal solution. This procedure is continued until the total
budgetT is exhausted. The algorithm is summarized as follows.

A Sequential Algorithm for Optimal Computing Budget Allocation (OCBA)

Step 0. Performn0 simulation replications for all designs;l ← 0; Nl
1 = Nl

2 = · · · = Nl
k

= n0.

Step 1. If
∑k

i=1 Nl
i ≥ T , stop.

Step 2. Increase the computing budget (i.e., number of additional simulations) by1 and
compute the new budget allocation,Nl+11, Nl+1

2 , . . . , Nl+1
k , using Theorem 1.

Step 3.Perform additional max(0, Nl+1
i − Nl

i ) simulations for designi , i = 1, . . . , k.

l ← l + 1. Go to Step 1.
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In the above algorithm,l is the iteration number. As simulation evolves, designb, which
is the design with the largest sample mean, may change from iteration to iteration, although
it will converge to the optimal design as thel goes to infinity. Whenb changes, Theorem 1
is directly applied in step 2. However, the older designb may not be simulated at all in this
iteration in step 3 due to extra allocation to this design in earlier iterations.

In addition, we need to select the initial number of simulations,n0, and the one-time
increment,1. Chen et al. (1999) offers detailed discussions on the selection. It is well
understood thatn0 cannot be too small as the estimates of the mean and the variance may be
very poor, resulting in premature termination of the comparison. A suitable choice forn0 is
between 5 and 20 (Law and Kelton, 1991; Bechhofer et al., 1995). Also, a large1 can result
in waste of computation time to obtain an unnecessarily high confidence level. On the other
hand, if1 is small, we need to the computation procedure in step 2 many times. A suggested
choice for1 is a number bigger than 5 but smaller than 10% of the simulated designs.

4. Numerical Testing and Comparison with Other Allocation Procedures

In this section, we test our OCBA algorithm and compare it with several different allocation
procedures by performing a series of numerical experiments. We also apply our OCBA to
a buffer resource allocation problem, which has 210 design alternatives.

4.1. Different Allocation Procedures

In addition to the OCBA algorithm, we test several procedures and compare their perfor-
mances. Among them, equal allocation represents the sole use of ordinal optimization,
the greedy allocation and CCY are developed based a same Bayesian framework given in
section 2, and Rinott is highly popular in simulation literature. We briefly summarize the
compared allocation procedures as follows.

Equal Allocation

This is the simplest way to conduct simulation experiments and has been widely applied.
The simulation budget is equally allocated to all designs. Namely, all designs are equally
simulated and then we focus on ordinal comparison. Such a way is equivalent to the sole use
of ordinal optimization. As we noted in previous sections, ordinal optimization can ensure
that P{CS} converges to 1.0 exponentially fast even if we simulate all design alternatives
equally, that is,Ni = T/k for eachi . The performance of equal allocation will serve as a
benchmark for comparison.

Greedy Allocation

The greedy procedure offered by Chen et al. (1997) is developed based on the Bayesian
framework presented in section 2. They introduce an approach for approximately estimating
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the gradient ofP{CS}with respect toNi . Since we intend to maximize the resultingP{CS},
a greedy approach selects and simulates a subset of promising designs in each iteration,
then repeats the process until the total budget is exhausted. Since the gradient ofP{CS}
with respect toNi is an indication of how muchP{CS} can be improved if we perform
additional simulations on designi , the promising designs are defined as those which have
large gradients. More specifically, in each iteration, we select the set of designs with top-
m largest gradients. Then the computing budget for this iteration is equally allocated to
thesem designs. Obviously, the budget allocation selected by the greedy heuristic is not
necessarily optimal.

Chen, Chen and Y¨ucesan Procedure (CCY)

This is also developed based on the Bayesian framework presented in section 2 and is
proposed by Chen et al. (2000). Similar to the OCBA algorithm, CCY is an asymptotic
solution to an approximation problem. However, Chernoff’s bounds are used and further
assumptions are imposed in the development of CCY. At a theoretical level, the OCBA
algorithm is superior to CCY. As we show later in the numerical experiments, the OCBA
algorithm indeed performs better than the CCY procedure, although both outperform other
compared procedures. CCY allocates simulation budget according to:

(1)
Ni

Ns
=
(
σi /δb,i

σs/δb,s

)2

for i = 1, . . . , k andi 6= s 6= b,

(2)
Nb

Ns
= σb

σs

 k∑
i=1
i 6=b

(
δ2

b,s

δ2
b,i

)1/2

,

wheres is the design having the second smallest sample mean performance measure.

Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been widely applied in the simulation lit-
erature (Law and Kelton, 1991). Unlike the OCBA approach, the two-stage procedures
are developed based on the classical statistical model. See Bechhofer et al. (1995) for
a systematic discussion of two-stage procedures. In the first stage, all designs are simu-
lated forn0 samples. Based on the sample variance estimate(S2

i ) obtained from the first
stage, the number of additional simulation samples for each design in the second stage is
determined by:

Ni = max
(
0, d(S2

i h2/d2e − n0
)
, for i = 1,2, . . . , k,

whered•e is the integer “round-up” function,d is the indifference zone,h is a constant
which solves Rinott’s integral (h can also be found from the tables in Wilcox, 1984). In
short, the computing budget is allocated proportionally to the estimated sample variances.
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Figure 1. P{CS} vs. T using five different allocation procedures for experiment 1. Normal distributions with
10 designs. The computation costs in order to attainP{CS} = 99% are indicated.

The major drawback is that only the information on variances is used when determining
the simulation allocation, while the OCBA algorithm, the CCY procedure and the greedy
approach utilize the information on both means and variances. As a result, the performance
of Rinott’s procedure is not as good as others. We do, however, include it in our testing due
to its popularity in the simulation literature.

4.2. Numerical Experiments

The numerical experiments include a series of generic tests plus a test on the buffer allocation
problem. In all the numerical illustrations, we estimateP{CS} by counting the number of
times we successfully find the true best design (design 0 in this example) out of 10,000
independent applications of each selection procedure.P{CS} is then obtained by dividing
this number by 10,000, representing the correct selection frequency.

Experiment 1. Normal Distribution

There are ten design alternatives. SupposeL(θi , ξ)) ∼ N(i,62), i = 0,1, . . . ,9. We want
to find a design with the minimum mean. It is obvious that design 0 is the actual best design.
In the numerical experiment, we compare the convergence ofP{CS} for different allocation
procedures. We haven0 = 10 and1 = 20.

Different computing budgets are tested. Figure 1 shows the test results using OCBA
and the other four different procedures discussed in section 4.1. Note that the simulation
variance of each design is 36, while the difference of two adjacent designs’ means is only 1.
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Given such a high noise ratio, we see that with the total computation cost as low as 700
simulation samples, the probability of correctly selecting the best design is already higher
than 80% even using the simple equal allocation. This demonstrates the advantage of
applying ordinal optimization.

We see that all procedures obtain a higherP{CS} as the available computing budget
increases. However, OCBA achieves a sameP{CS} with a lower amount of comput-
ing budget than other procedures. In particular, we indicate the computation costs in
order to attainP{CS} = 99% for different procedures in Figure 1. While ordinal op-
timization is efficient, our OCBA can further reduce the simulation time by 75% for
P{CS} = 99%.

It is worth noting that Rinott’s procedure does not perform much better than the simple
equal allocation. This is because Rinott’s procedure determines the number of simulation
samples for all designs using only the information of sample variances. On the hand, Rinott’s
procedure is much slower than the greedy allocation, CCY and OCBA. This is because when
determining budget allocation, the latter three procedures exploit the information of both
sample means and variances, while Rinott’s procedure does not utilize the information
of sample means. The sample means can provide the valuable information of relative
differences across the design space.

CCY is more efficient than the greedy allocation since CCY intends to optimize the
simulation efficiency. Finally, our OCBA is even faster than CCY; the computation costs
for attainingP{CS} = 99% are 1,100 vs. 1,400 samples.

Experiment 2. Uniform Distribution

We consider a non-normal distribution for the performance measure:L(θi , ξ)) ∼ Uniform
(i − 10.5, i + 10.5), i = 0,1, . . . ,9. The endpoints of the uniform distribution are chosen
such that the corresponding variance is close to that in experiment 1. Again, we want to
find a design with the minimum mean; design 0 is therefore the actual best design. All
other settings are identical to experiment 1. Figure 2 contains the simulation results for
the five allocation procedures. We can see that the relative performances of the different
procedures are very similar to what we saw in experiment 1. OCBA is the fastest and is
more than three times faster than Rinott and equal allocation.

Experiment 3. Normal Distribution with Larger Variance

This is a variant of experiment 1. All settings are preserved except that the variance of
each design is doubled. Namely,L(θi , ξ)) ∼ N(i,2 · 62), i = 0,1, . . . ,9. Figure 3
contains the simulation results for the five allocation procedures. We can see that the
relative performances of different procedures are very similar with what we see in previous
experiments, except that bigger computing budgets are needed in order to obtain the same
P{CS}, due to larger variance. Also, OCBA is more than four times faster than equal
allocation.
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Figure 2. P{CS} vs. T using five different allocation procedures for experiment 2. Uniform distributions with
10 designs. The computation costs in order to attainP{CS} = 99% are indicated.

Figure 3. P{CS} vs.T using three different allocation procedures for experiment 2. Normal distributions with 10
designs. The computation costs in order to attainP{CS} = 99% are indicated.

Experiment 4. Flat & Steep Case

This is another variant of experiment 1. We consider three generic cases illustrated in
Figure 4.1 (also shown in Ho et al., 1992): neutral, flat, and steep. The neutral case is already
presented in experiment 1. In the flat case,L(θi , ξ)) ∼ N(9−3

√
9− i ,62), i = 0,1, . . . ,9;
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Figure 4.1.Illustration of three generic cases: neutral, flat, steep.

and in the steep caseL(θi , ξ)) ∼ N
(
9− ( 9−i

3

)2
,62

)
, i = 0,1, . . . ,9. In the flat case,

good designs are closer; a larger computing budget is therefore needed to identify the best
design given the same simulation estimation noise. On the other hand, it is easier to correctly
select the best design in the steep case since the good designs are further spread out. The
numerical results in Figures 4.2 and 4.3 support this conjecture. In either case, OCBA is
the fastest and is more than three times faster than equal allocation.

Experiment 5. Bigger Design Space

This is also a variant of experiment 1. To see the performance of the OCBA algorithm
within a bigger design space, we increase the number of designs to 100.L(θi , ξ)) ∼
N(i /10,12), i = 0,1,2, . . . ,98,99. Note that we have the range of the means for
these 100 designs the same as those in earlier 10-design experiments, which is from
0 to 10. Since the performances of Rinott’s procedure and equal allocation are very
close, and the performances of CCY and the greedy allocation are also close, we will
test and compare only OCBA, greedy and the equal allocation in the remaining experi-
ments.

Figure 5 depicts the simulation results. The speedup factor of using OCBA is increased
to 22 in these experiments. This is because a larger design space gives the OCBA algorithm
more flexibility in allocating the computing budget.
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Figure 4.2. P{CS} vs. T using three different allocation procedures for the flat case in experiment 4. Normal
distributions with 10 designs.

Figure 4.3. P{CS} vs. T using three different allocation procedures for the steep case in experiment 4. Normal
distributions with 10 designs. The computation costs in order to attainP{CS} = 99% are indicated.

Experiment 6. A Buffer Resource Allocation Problem

A 10-node network shown in Figure 6.1 is used to test different buffer allocation procedures
including our OCBA. Details about the network can be found in Chen and Ho (1995). There
are 10 servers and 10 buffers that are connected as a switching network. There are two classes
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Figure 5. P{CS} vs. T using three different allocation procedures for experiment 5. Normal distributions with
100 designs. The computation costs in order to attainP{CS} = 99% are indicated.

Figure 6.1.A 10-node network.

of customers with different arrival distributions, but with the same service requirements.
We consider both exponential and non-exponential distributions (uniform) in the network.
Both classes arrive at any of nodes 0 through 3, and leave the network after having gone
through three different stages of service. The routing is class dependent. Such a network
could be the model for a large number of real-world systems, such as a manufacturing
system, a communication or a traffic network.

Finite buffer sizes at all nodes are assumed. In this design problem, we are interested in
distributing optimally limited buffer spaces to different nodes. Specifically, we consider
the problem of allocating 12 buffer units, among the 10 different nodes numbered from 0
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Figure 6.2. P{CS} vs. T using three different allocation procedures for experiment 6. Note thex-axis is in log
scale. There are 210 designs. The computation costs in order to attainP{CS} = 99% are indicated.

to 9. We denote the buffer size of nodei by Bi . Thus,

B0+ B1+ B2+ · · · + B9 = 12.

There are three constraints for symmetry reasons:

B0 = B1 = B2 = B3, B4 = B6, andB5 = B7.

Totally there are 210 design alternatives for consideration. The objective is to select a
design with minimum expected time to process the first 100 jobs from a same initial state
(that is [B0, B1, B2, . . . , B9] = [1,1,1,1,2,1,2,1,1,1]).

Figure 6.2 depicts the simulation results for the three allocation procedures. Once again,
we can see that the relative performances of different procedures are very similar to what
we saw in the previous experiments, except that bigger computing budgets are needed in
order to obtain the sameP{CS}, due to the larger design space. The speedup factor of
using OCBA is about 23, which is even bigger than that in experiment 5. Note that in
Figure 6.2, thex-axis is in log scale since the differences of the computation costs using
different approaches are very large.

In addition, we can see that OCBA is much more efficient even whenT is small, despite
that our algorithm is developed based on asymptotic allocation. This is also true in earlier
numerical experiments.

5. Conclusions

We present a highly efficient procedure to identify the best design out ofk (simulated)
competing designs. The purpose of this technique is to further enhance the efficiency of or-
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dinal optimization in simulation experiments. The objective is to maximize the simulation
efficiency, expressed as the probability of correct selection within a given computing bud-
get. Our procedure allocates replications in a way that optimally improves an asymptotic
approximation to the probability of correct selection. We also compare several different
allocation procedures, including a popular two-stage procedure in simulation literature.
Numerical testing shows that our approach is much more efficient than all compared meth-
ods. Comparisons with the crude ordinal optimization show that our approach can achieve
a speedup factor of 3∼ 4 for a 10-design example. The speedup factor is even higher with
the problems having a larger number of designs. For a buffer resource allocation problem,
in which there are 210 designs, our approach is more than 20 times faster than crude ordinal
optimization. Although our procedure allocates the available computing budget based on
an asymptotic derivation, all of our numerical results indicate that our procedure is highly
effective when the computing budget is small. While ordinal optimization can converge
exponentially fast, our simulation budget allocation procedure provides a way to further
significantly improve overall simulation efficiency.
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