Skip to main content
Log in

Minimum Weight and Dimension Formulas for Some Geometric Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The geometric codes are the duals of the codes defined by the designs associated with finite geometries. The latter are generalized Reed–Muller codes, but the geometric codes are, in general, not. We obtain values for the minimum weight of these codes in the binary case, using geometric constructions in the associated geometries, and the BCH bound from coding theory. Using Hamada's formula, we also show that the dimension of the dual of the code of a projective geometry design is a polynomial function in the dimension of the geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Assmus, Jr. and J. D. Key, Polynomial codes and finite geometries, Chapter 16, pp. 1269-1343, Handbook of Coding Theory (V. Pless and W. C. Huffman, eds.), Elsevier (1998).

  2. E. F. Assmus, Jr. and J. D. Key, Designs and their Codes, Cambridge Tracts in Mathematics, Cambridge University Press, 103 (1992) (Second printing with corrections, 1993).

  3. I. F. Blake and R. C. Mullin, The Mathematical Theory of Coding, Academic Press, New York (1975).

    Google Scholar 

  4. W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney (November 1994).

  5. A. E. Brouwer and H. A. Wilbrink, Block designs, Handbook of Incidence Geometry (F. Buekenhout, ed.), Elsevier (1995) chap. 8, pp. 349-382.

  6. P. V. Ceccherini and J. W. P. Hirschfeld, The dimension of projective geometry codes, Discrete Math., Vol. 06,No. 107 (1992) pp. 117-126.

    Google Scholar 

  7. P. Delsarte, BCH bounds for a class of cyclic codes, SIAM J. Appl. Math., Vol. 19 (1970) pp. 420-429.

    Google Scholar 

  8. P. Delsarte, J. M. Goethals, and F. J. MacWilliams, On generalized Reed-Muller codes and their relatives, Inform. and Control, Vol. 16 (1970) pp. 403-442.

    Google Scholar 

  9. P. Delsarte, A geometric approach to a class of cyclic codes, J. Combin. Theory, Vol. 6 (1969) pp. 340-358.

    Google Scholar 

  10. P. Delsarte, On cyclic codes that are invariant under the general linear group, IEEE Trans. Inform. Theory, Vol. 16 (1970) pp. 760-769.

    Google Scholar 

  11. D. G. Glynn and J. W. P. Hirschfeld, On the classification of geometric codes by polynomial functions, Des. Codes Cryptogr., Vol. 6 (1995) pp. 189-204.

    Google Scholar 

  12. J. M. Goethals and P. Delsarte, On a class of majority-logic decodable cyclic codes, IEEE Trans. Inform. Theory, Vol. 14 (1968) pp. 182-188.

    Google Scholar 

  13. N. Hamada, The rank of the incidence matrix of points and d-flats in finite geometries, J. Sci. Hiroshima Univ. Ser. A–I, Vol. 32 (1968) pp. 381-396.

    Google Scholar 

  14. N. Hamada, On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes, Hiroshima Math. J., Vol. 3 (1973) pp. 153-226.

    Google Scholar 

  15. J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford (1985).

    Google Scholar 

  16. J. W. P. Hirschfeld and X. Hubaut, Sets of even type in P G(3, 4) alias the binary (85,24) projective code, J. Combin. Theory Ser. A, Vol. 29 (1980) pp. 101-112.

    Google Scholar 

  17. J. W. P. Hirschfeld and R. Shaw, Projective geometry codes over prime fields, Finite Fields: Theory, Applications, and Algorithms, Contemporary Math., Amer. Math. Soc., Providence, 168 (1994) pp. 151-163. (Las Vegas, 1993).

    Google Scholar 

  18. S. Packer, On sets of odd type and caps in Galois geometries of order four, PhD thesis, University of Sussex, 1995.

  19. S. Packer, On sets of odd type in P G(n, 4) with 21 Hermitian prime sections, Boll. Un. Mat. Ital. B, Vol. 11 (1997) pp. 203-225.

    Google Scholar 

  20. S. Packer, On sets of odd type in P G (4, 4) and the weight distribution of the binary [341,45] projective geometry code, J. Geom., to appear.

  21. A. Pott, On abelian difference set codes, Des. Codes Cryptogr., Vol. 2 (1992) pp. 263-271.

    Google Scholar 

  22. B. F. Sherman, On sets with only odd secants in geometries over G F (4), J. London Math. Soc., Vol. 27 (1983) pp. 539-551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calkin, N.J., Key, J.D. & Resmini, M.J.d. Minimum Weight and Dimension Formulas for Some Geometric Codes. Designs, Codes and Cryptography 17, 105–120 (1999). https://doi.org/10.1023/A:1008362706649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008362706649

Navigation