e
ol

%{} HOKKAIDO UNIVERSITY
N

x‘

<\

Title Arithmetic Boolean Expression Manipulator Using BDDs

Author(s) Minato, Shin-Ichi

Citation Form_al Methods in System Design, 10(2/3), 221-242
https://doi.org/10.1023/A:1008643722423

Issue Date 1997-04

Doc URL http://hdl.handle.net/2115/16892
Rights The original publication is available at www.springerlink.com
Type article (author version)

File Information

FMSD10-2-3.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

The Journal of Formal Methods in System Design, 7?7, 1-24 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Arithmetic Boolean Expression Manipulator
Using BDDs

SHIN-ICHI MINATO minato@aecl.ntt.jp
NTT LSI Laboratories, 3-1 Morinosato- Wakamiya, Atsugi-shi, Kanagawa Pref., 243-01 Japan.

Received 22, 22, 1995; Revised 22, 22, 1996
Editor:

Abstract. Recently, there has been a lot of works on LSI design systems using Binary Deci-
sion Diagrams (BDDs), which are efficient representations of Boolean functions. We previously
developed a Boolean expression manipulator, that can quickly calculate Boolean expressions by
using BDD techniques. It has greatly assisted us in developing VLSI design systems and solving
combinatorial problems.

In this paper, we present an Arithmetic Boolean Expression Manipulator (BEM-II), that is
also based on BDD techniques. BEM-II calculates Boolean expressions that contain arithmetic
operations, such as addition, subtraction, multiplication and comparison, and then displays the
results in various formats. It can solve problems represented by a set of equalities and inequalities,
which are dealt with in 0-1 linear programming. We discuss the algorithm and data structure
used for manipulating arithmetic Boolean expressions and show the formats used for displaying
the results.

The specifications for BEM-II are described and several application examples are presented.
Arithmetic Boolean expressions will be useful for various applications. They perform well in
terms of the total time for programming and execution. We expect BEM-II to facilitate research
and development of digital systems.

Keywords: Boolean function, BDD, Boolean expression, LSI CAD, combinatorial problem

Arithmetic Boolean Expression Manipulator
Using BDDs

1. Introduction

Manipulation of Boolean functions is an important technique for implementing
VLSI design systems and many other problems in computer science. Binary Deci-
sion Diagrams (BDDs), which were proposed by Akers[1] and Bryant[2], are graph
representations of Boolean functions. BDDs are attracting attention because they
enable us to manipulate Boolean functions efficiently in terms of time and space.
Algorithms based on conventional data structures, such as truth tables and cube
sets, can often be remarkably improved by using BDDs[3][4]. BDD techniques can
also be used for solving general covering problems[6][7].

In the research and development of digital systems, Boolean expressions are some-
times used to handle problems and procedures. It is a cumbersome job to calculate

2 SHIN-ICHI MINATO

Boolean expressions by hand, even if they have only a few variables. For example,
the Boolean expressions (a Ab) V (@AT)V (bAc), (aAb)V (aAc)V (@AD)V (GAT),
and (a Ab)V (@A) V (bAc)V (bAFT) represent the same function, but it is hard
to verify them by hand. If they have more than five or six variables, we might
as well give up. This problem motivated us to develop a Boolean Expression Ma-
nipulator (BEM)[8], which is an interpreter that uses BDDs to calculate Boolean
expressions. It enables us to check the equivalence and implications of Boolean
expressions quite easily. It has helped us in developing VLSI design systems and
solving combinatorial problems.

Although most discrete problems can be described by Boolean expressions, arith-
metic operators, such as addition, subtraction, multiplication and comparison, are
convenient for describing many practical problems, as seen in 0-1 linear program-
ming. Such expressions can be rewritten using logic operators only, but this can
make them complicated and hard to read. In many cases, arithmetic operators
provide simple problem descriptions of problems.

In this paper, we present a new Boolean Expression Manipulator, which we call
BEM-II, that allows the use of arithmetic operators. BEM-II can directly solve
problems represented by a set of equalities and inequalities, which are dealt with
in 0-1 linear programming. Of course, it can also manipulate ordinary Boolean ex-
pressions efficiently. We developed several output formats for displaying expressions
containing arithmetic operators.

The remainder of this paper is organized as follows. In Section 2, we explain
the BDD techniques for manipulating ordinary Boolean functions. In Section 3,
we explain our method for manipulating Boolean expressions that contains arith-
metic operators. In Section 4, we present the implementation of BEM-II and some
applications.

2. Boolean Expression Manipulation Using BDDs

A Binary Decision Diagram (BDD) is a directed graph representation of a Boolean
function (Fig. 1). BDDs have two terminal nodes, which we call the 0-terminal node
and I-terminal node, and many decision nodes with two edges, called the 0-edge
and I-edge. A BDD is derived by reducing a binary tree graph, which represents
the recursive execution of Shannon’s expansion.

The following reduction rules give a Reduced Ordered BDD (ROBDD), which
represents a Boolean function more efficiently (see [2] for details).

e Eliminate all redundant nodes which have two edges pointing to the same node.
e Share all equivalent sub-graphs.

ROBDDs provide canonical forms for Boolean functions when the variable order is
fixed. Most work on BDDs have been based on those reduction rules[9][10]. In the
following sections, for the sake of simplification, we refer to ROBDDs as BDDs.

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 3

Figure 1. A BDD for (z3-z2V z1).

F1 F2 F3 F4
X2)1 X2 X2
oAl 0
0 1
x1) 4 x1
0
0 1

(F1=22-71, F2 =22 @21, F3 =721, FA=22Vzl.)

Figure 2. A shared BDD.

A set of BDDs representing multiple functions can be united into a graph consist-
ing of BDDs sharing their sub-graphs with each other. Manipulation efficiency is
improved by managing all the BDDs as a single graph (Fig. 2). We call such graphs
SBDDs (Shared BDDs)[11]. We can further reduce the operation time and memory
requirements by using attributed edges[11], which represent such logic operations as
inversion.

BDD packages using these techniques exhibit the following useful properties.

4 SHIN-ICHI MINATO

e They can generate BDDs for large-scale functions, some of which can not be
represented by previous methods.

e After generating BDDs, the equivalence of two functions can be checked in a
constant time.

e The time needed for logic operations is almost proportional to the graph size.

Using a BDD package, we can generate BDDs for Boolean functions specified
by Boolean expressions. Boolean expressions may consist of a number of input
variables and logic operators, such as AND, OR, NOT, and EXOR. A Boolean
function can be described with multiple expressions using intermediate variables
unless there are cyclic references. To generate BDDs for the expressions, we first
define the input variable order and create an BDD that has a single node for each
input variable. We then construct complicated BDDs by applying logic operations
to the initial BDDs according to the structure of the Boolean expressions.

The computation time for generating the BDDs depends on the length of the
Boolean expressions and the size of the BDDs to be generated. It is difficult to
estimate the time exactly. We know that the time for one logic operation is ap-
proximately proportional to the size of the BDDs. In many cases, the BDDs grow
larger with repeated logic operations, unless the expression is redundant. There-
fore, the final few logic operations take the most time, and roughly speaking, the
total computation time is approximately proportional to the size of the final BDDs.

BDD size largely depends on the order of the input variables. It is difficult to
derive a method that always yields the best order, but with some heuristic methods,
we can find an adequate order in many cases[11][12][13][15].

After generating BDDs for Boolean expressions, we can use them to:

e check for tautologies of the expressions,

e check for equivalence or implication between pairs of expressions,
e find a counterexample when the above checking fails.

e simplify complicated expressions,

e search for a solution (satisfiable input vector) to the expressions,

e enumerate the possible solutions to the expressions, and

evaluate the complexity of the expressions.

To utilize these capabilities, we previously developed a Boolean Expression Ma-
nipulator (BEM)[8]. This program is an interpreter with a lexical and syntax parser
for calculating Boolean expressions. It has helped us develop digital systems and
solve combinatorial problems. This program provides several formats for displaying
Boolean functions represented by BDDs, as follows.

Karnaugh map Karnaugh map representation is a good way to observe function
features. It is practical, however, only for less than five or six inputs. If there are

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 5)

more inputs but any of them are irrelevant to the function, we can reduce the map
by using only the relevant variables. This reduction can easily be done by using
BDD operations.
Sum-of-products format The sum-of-products format (also called the PLA for-
mat, cube set, or two-level logic) is another good way to display Boolean functions
since it clearly shows solutions that satisfy the function. Using the fast generation
method presented in [14], we can quickly generate an irredundant sum-of-products
(ISOP) format from BDDs. This format is suitable for tautology checking and
displaying counterexamples.
BDD representation Several kinds of Boolean functions, such as parity func-
tions, require an exponential-length sum-of-products format, while they can be
compactly represented in BDDs. In such cases, the functions can be described by
using multiple Boolean expressions with intermediate variables for the respective
BDD nodes. If a graphic utility is available, a schematic display of the BDDs using
circles and arrows will facilitate understanding.
Statistical information When the function is too complex to display all at once,
it is useful to output the statistical information, such as the number of solutions,
the density of the truth table (ratio of 0/1), the number of BDD nodes, the ISOP
format length, and the number of relevant input variables. This information can
be computed efficiently using BDD operations.
Satisfiable solutions We do not have to display Boolean functions completely
when we seek solutions or counterexamples to a problem. In many cases, any one
solution can be easily shown, even if the function is too complicated to display
all at once. By traversing the BDDs, we can find one of the solutions in a time
proportional to the number of inputs.

When each input variable has a cost, the minimum-cost solution can be computed
from the BDDs[6]. Namely, where

Cost = Z wi-x; (w; >0, x; €{0,1}),
i=1

we can find a solution for x1,xs, ..., x, which minimizes Cost. Searching for the
minimum-cost solution is done by backtracking through the BDDs. Using a cache-
based technique, we can find the minimum-cost solution in a time proportional to
the number of nodes in the BDDs.

This method enables us to solve various problems automatically by describing
them using Boolean expressions. Many NP complete problems can be solved im-
mediately if the BDDs for them can be generated in the main memory of the
computer. Of course, they are still problems in NP, so in general, the BDDs require
an exponential number of nodes and thus overflow the memory. However, there
are many practical examples where the BDDs become surprisingly compact. They
are therefore useful for researching digital systems and implementing prototype
programs.

6 SHIN-ICHI MINATO

3. Manipulation of Arithmetic Boolean Expressions

As we discussed above, although most discrete problems can be described by using
Boolean expressions, arithmetic operators are useful for describing many practical
problems. For example, a majority function with five inputs can be expressed
concisely by using arithmetic operators

r1 + o +x3+ 24+ T5 23
Using only Boolean expressions, this function become complicated:

(k1 ANza Axs)V (1 Axo Axy) V(21 Ao A xs)
V(zy Azg Axy) V(21 Axg Axs) V(21 Azg A xs)
V(g Axs Axg) V(22 Axs Axs) V (22 Axg A xs)
V(xs Azg A xs).

In this section, we describe an efficient method that uses BDDs to represent and
manipulate expressions with arithmetic operators.

3.1. Definitions

For manipulating Boolean expressions that include arithmetic operators, we de-
fine arithmetic Boolean expressions and Boolean-to-integer functions, which are
extended models of conventional Boolean expressions and Boolean functions.

Arithmetic Boolean expressions are extended Boolean expressions which con-
tain not only logic operators, but also arithmetic operators, such as addition (4),
subtraction (—), and multiplication (x). Any integer number is allowed to be used
as a constant term in the expression, but input variables are restricted to either 0
or 1. Equality (=) and inequalities (<, >, <, >, #) are defined as operations which
return a value of either 1 (true) or 0 (false).

For example, (3 X z1 4+ z3) is an arithmetic Boolean expression with respect to
the variables z1, 22 € {0,1}. (3 x 21 + z2 < 4) is another example.

When ordinary logic operations are applied to integer values other than 0 and
1, we define them as bit-wise logic operations for binary-coded numbers, like in
many programming languages. For example, (3 V 5) returns 7. Under this mod-
eling scheme, conventional Boolean expressions become special cases of arithmetic
Boolean functions.

The value of the expression (3 X x1 4+ x2) becomes 0 when x; = z2 = 0, or
4 when 1 = o = 1. We can see that an arithmetic Boolean expression repre-
sents a function from binary-vector to integer: (B™ — I). We call this function
a Boolean-to-integer (B-to-I) function. The operators in arithmetic Boolean
expressions are defined as operations on B-to-I functions. We can calculate B-to-
I functions for arithmetic Boolean expressions by applying operations on B-to-I
functions according to the structure of the expressions.

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 7

12
|00 01 10 11
3 X x1 0 0 3 3
3 X x1+ X2 0 1 3 4
3Xxri+ae<4| 1 1 1 0

Figure 3. Computation of arithmetic Boolean expressions.

The procedure for obtaining the B-to-I function for the expression (3xx1+xz2 < 4)
is shown in Fig. 3. First, multiply the constant function 3 times input function x;
to obtain the B-to-I function for (3 x x1). Then add x2 to obtain the function
for (3 x &1 + x2). Finally we can get a B-to-I function for the entire expression
(3 X 21 +x2 < 4) by applying the comparison operator (<) to the constant function
4. We find that this arithmetic Boolean expression is equivalent to the expression
(71 V 72).

3.2. Representation of B-to-I Functions

Figure 3 showed how a B-to-I function can be obtained by enumerating the output
values for all possible combinations of the input values. This is impracticable when
there are many input variables since the number of combinations grows exponen-
tially. We thus need a more efficient way to represent B-to-I functions.

There are two ways to represent B-to-I functions using BDDs: Multi- Terminal
BDDs (MTBDDs) and BDD wvectors.

MTBDDs are the extended BDDs with multiple terminal nodes, each of which
has an integer value (Fig. 4). This method is natural and easy to understand;
however, we need to develop a new BDD package to manipulate multi-terminals.
Hachtel and Somenzi et al. have reported several works[16, 17] on MTBDDs. They
call MTBDD in other words, Algebraic Decision Diagrams (ADDs),

BDD vectors is the way to represent B-to-I functions with a number of usual
BDDs. By encoding the integer numbers into n-bit binary codes, a B-to-I function
can be decomposed into n pieces of Boolean functions that represent the respective
bits as either 1 or 0. These Boolean functions can then be represented with BDDs
which are shared each other (Fig. 5). This method was mentioned in [18].

Here we discuss which representation is more efficient in terms of size. We show
two typical examples that are in contrast to each other.

1. Assume a multi-terminal BDD with a large number of decision nodes and n
terminals with random values of n-bit integers (Fig. 6(a)). If we represent the
same function by using an n-bit BDD vectors, these BDDs can hardly share
their sub-graphs; therefore, the BDD vector requires about n times the number
of nodes as the multi-terminal BDD (Fig. 6(b)).

8 SHIN-ICHI MINATO

Figure 4. A multi-terminal BDD (MTBDD).

B-to-l function

x1 x2 | f(f2f1f0)
0 0 0(000)
0o 1 1(001)
1 0 3(011)
1 1 4(100)

Figure 5. A BDD vector.

2. Assume a B-to-I function for (1 +2 X 22 +4 X w3 + ... + 2" ! x x,). This
function can be represented by an n-nodes BDD vector. However, we need 2™
terminals to use a multi-terminal BDD (Fig. 7).

We show that the comparison between multi-terminal BDDs and BDD vectors can
be reduced to the variable-ordering problem. Assume the BDD shown in Fig. 8(a),
which was obtained by combining the BDD vector shown in Fig. 5 with what we
call bit-selection variables. If we change the variable order to move the bit-selection
variables from higher to lower position, the BDD becomes as shown in Fig. 8(b). In
this BDD, the sub-graphs with bit-selection variables correspond to the terminals
in the multi-terminal BDD. Namely, multi-terminal BDDs and BDD vectors can be
transformed into each other by changing the variable order, assuming bit-selection
variables. This observation indicates that the efficiency of the two representations

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 9

(n-bit |ntegers)

(a) MTBDD. (b) BDD vector.

Figure 6. An example where MTBDD is better.

A

) MTBDD. (b) BDD vector.

frnt o f2 1 f0

Figure 7. An example where BDD vector is better.

depends on the nature of the objective functions. If we know the functions to be
generated, the appropriate location of bit-selection variables will be found.

We then considered which representations are more favorable for implementing
arithmetic Boolean expression manipulator. In this application, we often generate
B-to-I functions from Boolean functions, as when we calculate F' x 2, F x 5, or
F x 100 from a certain Boolean function F. In such cases, the BDD vectors can be
conveniently shared with each other (Fig 9). However, multi-terminal BDDs cannot
be shared (Fig. 10). We therefore use BDD vectors for manipulating arithmetic
Boolean expressions.

For negative numbers, we use 2’s complement representation in our implementa-
tion. The most significant bit is used for the sign bit, whose BDD indicates under

10 SHIN-ICHI MINATO

bit-selection
variables MTBDD
BDD
vector bit-selection
variables

(a) BDD vector with bit-sel. variables. (b) MTBDD with bit-sel. variables.

Figure 8. Bit-selection variables.

F 2F 3F 100 F
LITTT T [T T T T LI I I

Figure 9. BDD vectors for arithmetic Boolean expressions.

which conditions the B-to-I function produces a negative value. This coding scheme
requires specifying the word-length to know which is sign bit. An easy way is to
allocate a long length in advance, but it limits the range of numbers. In our imple-
mentation, we supported variable word-length for each data, so there is no limit on
the range of numbers.

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 11

F 2F 3F 100 F
A AA F

Figure 10. MTBDDs for arithmetic Boolean expressions.

3.3. Handling B-to-I functions

This section explains how to handle B-to-I functions represented by BDD vectors.

Logic operations, such as AND, OR, and EXOR, are implemented as bit-wise
operations between two BDD vectors. Applying BDD operations to their respective
bits, a new B-to-I function is generated. We define two kinds of inversion operations:
bit-wise inversion and logical inversion. Logical inversion returns 1 only for O,
otherwise it returns 0.

Arithmetic addition can be composed using logic operations on BDDs by sim-
ulating a conventional hardware algorithm of full-adders which are designed as
combinational circuits. We use a simple algorithm for a ripple carry adder, which
computes from the lower bit to the higher bit, propagating carries. Other arith-
metic operations, such as subtraction, multiplication, division and shifting can be
composed in the same way. Exception handling should be considered for overflow
and division by zero.

Positive/negative checking is immediately indicated by the sign-bit BDD. Using
subtraction and sign checking, we can compose comparison operations between two
B-to-I functions. These operations generate a new B-to-I function that returns a
value of either 1 or 0 to express whether the equality or inequality is satisfied.

It is useful if we can find the upper (or lower) bound value of a B-to-I function
for all possible combinations of input values. This can be done efficiently by using
binary search. To find the upper bound, we first check whether the function can ever
exceed 2". If there is a case in which it does, we then compare it with 27 + 271,
otherwise with only 2"~1. In this way, all the bits can be determined from the
highest to the lowest, and eventually the upper bound is obtained. The lower
bound is found in the same way.

Computing the upper (or lower) bound is a unary operation for B-to-I functions;
it returns a constant B-to-I function and can be used conveniently in arithmetic
Boolean expressions. For example, the expression:

UpperBound(F) = F (F is an arithmetic Boolean expression)

12 SHIN-ICHI MINATO

3 3x1 3x1+x2 3x1+x2<4
f2 f1 fo f2 f1 fo f2 f1 f0 f2a f1 foO

x1
f2 f1 fo

Figure 11. Generation of BDD vectors for arithmetic Boolean expressions.

gives a function which returns 1 for the inputs that maximize F', otherwise it returns
0. Namely it computes the condition for maximizing F.

An example of calculating arithmetic Boolean expressions using BDD vectors is
shown in Fig. 11.

3.4. Display Formats for B-to-I Functions

We propose several formats for displaying B-to-I functions represented by BDDs.

Integer Karnaugh maps A conventional Karnaugh map displays a Boolean
function using a matrix of logic values (0, 1). We extended the Karnaugh map to
use integer numbers for each element (Fig. 12). We call this an integer Karnaugh
map. It is useful for observing the behavior of B-to-I functions. Like ordinary
Karnaugh maps, they are practical only for fewer than five or six input functions.
For a larger number of inputs, we can make an integer Karnaugh map with respect
to only six input variables, by displaying the upper (or lower) bound for the rest of
variables on each element of the map.

Bit-wise expressions When the objective function is too complicated for an
integer Karnaugh map, the function can be displayed by listing Boolean expressions
for respective bits of the BDD vector in the sum-of-products format. Figure 16
shows the bit-wise expression for the same function shown in Fig. 13.

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS

f=2a+3b-4c+d

~,, cd
ab™, 00 01 11 10

000 1|-3]|-4

0113 (4|0 |-1
115621
100 2| 3(-1(-2

Figure 12. An integer Karnaugh map.

f=2xa+3xb—4xc+d

V(bAEAd)V (bAC)

+ : (@hcAd)V(bAc)

fo i (@anbAB)V(@AcAd)V

fi s (@anb)V(and)V(@AbAd)
fo : (bAd)V (bAd)

Figure 13. A bit-wise expression

6 : aNbATAA
5: aAbATAd
4 :aAbATAd
3: (aAbATA)
2 : (aANbAcAd)
1 aANbAcAd)
0: @AbAcAd)
aAbAcAd)
—2 : aAbAcAd
-3 :aAbAcAd
—4 :aAbAcAd

<K< < <L

(
= (
F (

(

Figure 1. Case enumeration format.

ol ol ol

> > > > >
ol
> > > > >

o

AR R A

13

14 SHIN-ICHI MINATO

Bit-wise expression is not so helpful for showing the behavior of B-to-I functions,
but it does allow us to observe the appearance frequency of an input variable and
it can estimate a kind of complexity of the functions.

If a function never has negative values, we can suppress the expression for the
sign bit. If some higher bits are always zero, we can omit showing them. With this
zero suppression, a bit-wise expression becomes a simple Boolean expression if the
function returns only 1 or 0.

Case enumeration Using case enumeration, we can list all possible values of a
function and display the condition for each case using a sum-of-products format
(Fig. 14). This format is effective when there are many input variables but the
range of output values is limited.

Arithmetic sum-of-products format It would be useful if we could display
a B-to-I function as an expression using arithmetic operators. There is a trivial
way of generating such an expression by using the case enumeration format. When
the case enumeration method gives the values v1,va,...,v,, and their conditions
f1s f2y -y fm, we can create the expression (v1 X f1 +ve X fo+ ...+ vy X fin).

Using this method, (2 x a+ 3 x b —4 x ¢+ d) would be displayed as

6xabcd+5xabtd+4dxabed+3x(abcd+abed)
+2x(abcd+abecd)+(abcd+abed)—(abecd+abcd)
—2xabcd—3xabcd—4xabced.

This expression seems too complicated compared to the original one, which has a
linear form. Here we propose a method for eliminating the negative literals from
the above expression and making an arithmetic sum-of-products expression which
consists of arithmetic addition, subtraction, and multiplication operators only. Our
method is based on the following expansion:

F = xcxFi+7x Iy
= .IX(Fl—Fo)—FFo,

where F' is the objective function, and Fy and Fj are sub-functions obtained by
assigning 0 and 1 to input variable . By recursively applying this expansion to
all the input variables we can generate an arithmetic sum-of-products expression
containing no negative literals. We can thereby extract a linear expression from a
B-to-I function if it is possible. For example, the B-to-I function for 2 x (a 4+ 3 x
b) — 4 x (a + b) can be displayed in a reduced format as (—2 x a + 2 X b).

The arithmetic sum-of-products format seems unsuitable for representing ordi-
nary Boolean functions. For example, (a Ab) V (¢ A d) becomes —a bcd-+abc—
ab4+acd—ac+a—cd+ c This expression is more difficult to read than the
original one.

4. Applications of Arithmetic Boolean Expression Manipulator

Using the techniques described above, we developed an arithmetic Boolean expres-
sion manipulator. This program, called BEM-II, is an interpreter with a lexical

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 15

Table 1. Operators in BEM-II
(The upper operators are exe-
cuted prior to the lower ones).

)

! (logical) ~(bit-wise) + -(unary)

* /(quotient) %(remainder)

+ —(binary)

<< >> (bit-wise shift)

< <= > >= == 1= (relation)

& (bit-wise AND)

~ (bit-wise EXOR)

| (bit-wise OR)

?: (if-then-else)

UpperBound() LowerBound()

and syntax parser for calculating arithmetic Boolean expressions and displaying
the results in various formats. This section gives the specifications for BEM-II and
discusses some applications.

4.1. BEM-II Specification

BEM-II has a C-shell-like interface, both for interactive execution from the key-
board and for batch jobs from a script file. It parses the script only from left
to right. Neither branches nor loop controls are supported. The list of available
operators is shown in Table 1, and an execution example is shown in Fig. 15.

In BEM-II scripts, we can use two kind of variables, input variables and register
variables. Input variables, denoted by strings starting with a lower-case letter,
represent the inputs of the functions to be computed. They are assumed to have
a value of either 1 or 0. Register variables, denoted by strings starting with an
upper-case letter, are used to identify the memory to which a B-to-I function to be
saved temporarily. We can describe multi-level expressions using these two types
of variables, for example: F =a +b ; G =F + c.

Calculation results are displayed as expressions with input variables only, not using
register variables. BEM-II allows 65,535 different input variables to be used. There
is no limit on the number of register variables.

BEM-II supports such logical operators such as AND, OR, EXOR, and NOT,
and such arithmetic operators as plus, minus, multiply, division, shift, equality,
inequality, and upper/lower bound. The syntax of expressions generally conforms to
C language specifications. The expression A : B ? C means if-then-else, equivalent

16 SHIN-ICHI MINATO

% bemII

*x*x*x* Arithmetic Boolean Expression Manipulator (Ver. 4.2) *x**x
> symbol a b c d

>F = 2%a + 3*%b - 4xc + d

> print /map F

ab:cd
| 00 01 11 10
00 | 0 1 -3 -4
01 | 3 4 0 -1
11 | 5 6 2 1
10 | 2 3 -1 -2

> print /bit F
+-: la&c&!'dl| 'b&c
2: a&b&!cl lakc&!'d|lb&'!c&d]| 'b&c
1: a& b | a&dl| 'la&bé&!d
0O: b&!'d| 'b&d
> print F > 0
a&bla&lc|lb&l!cl| lc&d
> M = UpperBound(F)
> print M
6
> print F ==
a&b&lc&d
>C=(F>-1) & (F<4)
> print C
a&kc&dl|l!la&!c&!dl b&cl 'b&!lc
> print /map C
ab:cd
00 0

_ O P -

_ O O R K
= = 2O
Or P, OO

Figure 15. An example of executing BEM-II.

to
((A'=0) *B) + ((A==0) % C).

BEM-II generates BDD vectors of B-to-I functions for given arithmetic Boolean
expressions. Since BEM-II can generate huge BDDs with millions of nodes, limited
only by memory size, we can manipulate large-scale and complicated expressions. It
is enough to calculate expressions that used to be manipulated by hand, of course.
The results can be displayed in the various formats presented in earlier sections.

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 17

The input variables are assumed to have either 1 or 0, but multi-valued variables
are sometimes used in real problems. In such cases, we can use register variables to
deal with multi-valued variables. For example, X = x0 + 2*x1 + 4%x2 + 8*x3 rep-
resents a variable having the integer value from 0 to 15. In another way,

X = x1 + 2%x2 + 3%x3 + 4xx4 represents a variable having 1 to 4, under the
one-hot constraint (x1 + x2 + x3 + x4 == 1).

BEM-II can be used for solving many kind of combinatorial problems. Using
BEM-II, we can generate BDDs for constraint functions of combinatorial problems
specified by arithmetic Boolean expressions. This enables us to solve 0-1 linear
programming problems by handling equalities and inequalities directly, without
coding complicated procedures in a programming language. BEM-II can also solve
problems which are expressed by non-linear expressions. BEM-II features its cus-
tomizability. We can compose scripts for various applications much more easily
than developing and tuning a specific program.

Here we show the application of BEM-II to several practical problems.

4.2. Subset-Sum Problem

BEM-II can be utilized for many combinatorial problems. Subset-sum problem
is one example of a problem that can easily be described by arithmetic Boolean
expressions and be solved by BEM-II. This problem is to find a subset whose
total is equal to a given number b, chosen from a given set of positive integers
{a1,a3,as,...,a,}. Tt is a basic and important problem for many applications
including VLSI CAD systems.

In BEM-II script, we use n input variables for representing whether the i-th
number is chosen or not. The constraint of these input variables can be described
with simple arithmetic Boolean expressions. The followings is an example of BEM-
IT script for a subset-sum problem.

symbol x1 x2 x3 x4 x5
S = 2xx1 + 3*x2 + 3*x3 + 4*x4 + 5%xb5
C (s == 12)

C means the condition of the input variables to satisfy the constraint. This expres-
sion is almost the same as the definition of the problem. We can easily read and
write the script.

BEM-II is convenient not only to solve the problem but also to analyze the nature
of the problem. We can analyze the behavior of the constraint functions in various
format. An example of execution is shown in Fig. 16.

18 SHIN-ICHI MINATO

% bemII

*x*x*x* Arithmetic Boolean Expression Manipulator (Ver. 4.2) *x**x
> symbol x1 x2 x3 x4 x5

> S = 2%x1 + 3*%x2 + 3*x3 + 4*xx4 + 5%xb

> print /map S

x1 x2 : x3 x4 x5

| 000 001 011 010 | 110 111 101 100
00 | 0 5 9 4 | 7 12 8 3
01 | 3 8 12 7 | 10 15 11 6
11 | 5 10 14 9 | 12 17 13 8
10 | 2 7 11 6 | 9 14 10 5
>C = (s ==12)
> print C

x1 & x2 & x3 & x4 & 'x5 | 'x1 & x2 & 'x3 & x4 & x5 |
Ix1 & 'x2 & x3 & x4 & x5

> print /map C 7?7 S : 0O

x1 x2 : x3 x4 x5

| 000 001 011 010 110 111 101 100

|
00 | 0 0 0 0 | 0 12 0 0
01 | 0 0 12 0 | 0 0 0 0
11 | 0 0 0 0 | 12 0 0 0
10 | 0 0 0 0 | 0 0 0 0
> print /map (S >= 12)7 S : 0

x1 x2 : x3 x4 x5

| 000 001 011 010 110 111 101 100

I
00 | 0 0 0 0| 0 12 0 0
01 | 0 0 12 0| 0 15 0 0
11 | 0 0 14 0| 12 17 13 0
10 | 0 0 0 0| 0 14 0 0
> quit

Figure 16. Execution of BEM-II for a subset-sum problem.

4.3. 8-Queens Problems

8-Queens problem is another example of BEM-II application. BDD-based compu-
tation is not so remarkably effective in this problem, but it is a good example to
show that BEM-II is very convenient to describe the problem.

We first allocate 64 input variables corresponding to the squares on a chessboard.
These represent whether or not there is a queen on that square. The constraints
that the input variables should satisfy are expressed as follows:

e The sum of eight variables in the same column is 1.

e The sum of eight variables in the same row is 1.

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 19

Table 2. Results for N-queens problems.

N | #Variable #BDD #Solution Time(s)

8 64 2450 92 6.1
9 81 9556 352 18.3
10 100 25944 724 68.8
11 121 94821 2680 1081.9

e The sum of variables on the same diagonal line is less than 2.

These constraints can be described with simple arithmetic Boolean expressions
as:

Fl = (x11 + x12 + x13 + ... + x18 ==
F2 (x21 + x22 + x23 + ... + x28 ==

=
N S

C=F1&F2¢& ...

BEM-II analyzes the above expressions directly. This is much easier than creating a
specific program in a programming language. The script for the 8-Queens problem
took only ten minutes to create.

Table 2 shows the results when we applied this method to the N-Queens prob-
lems. In our experiments, we solved the problem up to N = 11. When seeking
only one solution, we can solve the problem for a larger N by using a conventional
algorithm based on backtracking. However, the conventional method does not enu-
merate all the solutions nor count the number of solutions for larger Ns. The
BDD-based method generates all the solutions simultaneously and keeps them in
a BDD. Therefore, if an additional constraint is appended later, we can revise the
script quite easily, without rewriting the program from the beginning. This cus-
tomizability makes BEM-II very efficient in terms of the total time for programming
and execution.

4.4. Traveling Salesman Problem

Traveling salesman problem (TSP) can also be solved by using BEM-II. The prob-
lem is finding the minimum cost path to visit all the cities once and return the start
city.

Assume n is the total number of cities. We allocate n(n — 1)/2 input variables
from 12 to (1), Where z;; represents the path between i-th city and j-th city.
Using this variable scheme, the constraints of the TSP can be expressed as follows.

e Each city has two path (coming in and going out):
Ti2 +T13 + T4+ ...+ Ty = 2
I12+$23+I24+...+I2n:2

20 SHIN-ICHI MINATO

Table 3. Results for TSP.

n | #solutions BDD size time(s)

8 2520 2054 8.7
9 66136 20160 28.8
10 181440 19972 216.5

Tin + Top + ...+ T(n—1)n = 2
e All the cities are connected:

stepl
LetFlzl, Fg,Fg,...,FnZO.

Repeat step2 for n times.

step2
Let Fi = x93 Vo133V ...V 21, F,.
Let Fy = x19F1 V xo3F3V ...V 2o, F)y.

Let F,, = 21, F1V 2o, Fo V...V I(n—l)nanl-
step3 Condition C = Fy AFs A... N F,.

The logical product of all the above constraint expressions becomes the solution to
the TSP. BEM-II feeds this expressions directly, and generates BDDs representing
all the possible paths to visit n cities. As mentioned in previous section, we can
specify the cost (distance) of each path, and find an optimal solution to the problem
after generating BDDs. Experimental results are shown in Table 3. We can solve
the problem up to n = 10. This seems poor since conventional method solves more
than n = 1000. However, our method computes all the solutions at once, and the
additional constraints can be specified flexibly. For example,

e There is a path which should be used, or not be used.
e There is a city which sould be visited first (second, third, ...).
e The start city and goal city are different.

These constraints can easily be expressed by arithmetic Boolean expressions, and
BEM-II feeds them directly to solve the modified problems. It is not too late to
develop the application specific program after trying BEM-II.

4.5. Timing Analysis for Logic Circuits

For designing high-speed digital systems, timing analysis of logic circuits is impor-
tant. The orthodox approach is to traverse the circuit to find the active path with

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 21

Table 4. Results of timing analysis.

Circuit In Out Gate Number of BDD nodes
(Timing data) (Logic data)

cm138a 6 8 29 235 129
sel8 12 2 43 926 268
alu2 10 6 434 16,883 4,076
alud 14 8 809 97,318 9,326

alupla 25 5 114 22,659 2,889
mult6 12 12 411 57,777 9,496
too_large 39 3 1044 730,076 10,789
C432 36 7 255 1,689,576 10,827

the topologically maximum length. Takahara[l19] proposed a new timing analysis
method using BEM-II. This method calculates B-to-I functions representing the
delay time with respect to the values of the primary inputs. Using this method,
we can completely analyze the timing behavior of a circuit for any combination of
input values.

The B-to-I functions for the delay time can be described by a number of arithmetic
Boolean expressions, each of which specifies the signal propagation on each gate.
For example, on a two-input AND gate with delay D, where T, and T} are the
signal arrival times at the two input pins, and V, and V}, are their final logic values,
the signal arrival time at output pin 7T, is expressed as:

T.=Ty,+ D when (T, <Tp) and (V, = 1),

T.=T,+ D when (T, <T}) and (V, = 0),

T.=T,+ D when (T, > Tp) and (V, = 1),

T.=T,+ D when (T, > T;) and (V, =0).

These rules can be described by an arithmetic Boolean expression as
Tc =D + ((Ta > Tb)? (Vb? Ta:Tb):(Va? Tb:Ta)).

By calculating such expressions for all the gates in the circuit, we can generate
BDD vectors for the B-to-I functions of the delay time. Table 4[19] shows the
experimental results for practical benchmark circuits. The size of the BDDs for
the delay time is about 20 times greater than that of the BDDs for the Boolean
functions of the circuits.

The generated BDDs maintain the timing information for all of the internal nets
in the circuit. Utilizing BEM-II, we can then analyze the circuits in various ways.
For example, we can easily compare the delay times between two nets in the circuit.

4.6. Scheduling Problem in Data Path Synthesis

Scheduling is one of the most important subtasks that must be solved to perform
data path synthesis. Miyazaki[20] proposed a method for solving scheduling prob-
lems using BEM-II. The problem is to find the minimum cost scheduling for a
procedure specified by a data-flow graph under such constraints as the number of

22

clock /@
cycle
_ x13 |x23 NI

No

SHIN-ICHI MINATO

operation No.
opl op2 op3 op4 op5 op6 op7
x11 x21 x31 x41 x51 X61 X71
el |0 O
x12 2 Axzz |xa2 X52 762 X72
c2

c3

x14 x24 x34 %/ x54 x64 X74
c4

Figure 17. An example of data-flow graph.

operation units and the maximum clock cycles (Fig. 17). While this scheduling
problem can be solved by using linear programming, BEM-II can also be utilized.

Assume m is the total number of operations that appear in the data-flow graph,
and n is the maximum number of clock cycles. We then allocate m X n input
variables from x11 to ®,,, where z;; represents the i-th operation executed on the
j-th clock cycle. Using this variable coding, the constraints of scheduling problem
can be represented as follows.

1.

Each operation has to executed once:
T11+ x4+ ...+, =1
Z21 —|—£C22+...—|—£C2n:1

Tml + Tmo+ ...+ Ty =1

The same kind of operations cannot be executed simultaneously beyond the
number of operation units. For example, when there are two adders, and the
a-th, b-th, and c-th operations require an adder:

Ta1l + Tp1 + T < 2

Ta2 + Tp2 + Tz < 2

Tan + Ton + Ten S 2.

If two operations have a dependency in the data-flow graph, the operation in
the upper stream has to be executed before the one in the lower stream.
Let Ci =1 X211 +2X 2129+ ...+n X T1p.

ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS 23

Table 5. Results of scheduling problem.

data #all #optimal c-step #multi- #ALU |BDD time(s)
solutions |solusions plier size
DiffEq 108 3 4 2 2 321 2.1
Tseng 12 4 5 0 3 321 1.3
EWF 4200 167 14 2 3 | 1261 27.0

Let Co=1X 291 +2X 299+ ...+ 0 X Top.

Let Cop, =1 X X1 +2 X o + ... + 1 X Ty
Then, (C; < Cj) is the condition that the i-th operation is executed before j-th
one.

The logical product of all the above constraint expressions becomes the solution to
the scheduling problem. Using BEM-II, we can easily specify the cost of operation
and the other constraints. BEM-II analyzes the above expressions and tries to
generate BDDs that represent the solutions. If it succeeds in generating BDDs in
main memory, we can immediately find a solution to the problem and count the
number of solutions. Otherwise it may abort. Table 5[20] shows the experimental
results for benchmark data from the High-Level Synthesis Workshop (HLSW). The
BDDs for constraint functions can be generated in a feasible memory and space.

5. Conclusion

We have developed an arithmetic Boolean expression manipulator (BEM-II) that
can easily solve many kind of combinatorial problems, by using arithmetic Boolean
expressions. BEM-II can directly analyze the equalities and inequalities in the con-
straints and costs of the problem, and generates BDDs that represent the solutions.
It is therefore not necessary to write a specific program to solve the problem in a
programming language. Besides the examples we have shown, BEM-II can also be
utilized for minimum-tree problems, magic squares, crypt-arithmetic problems, etc.
Although the computation speed is second to well-optimized heuristic algorithms
for large-scale problems, the customizability of BEM-II makes it very efficient in
terms of total time for programming and execution. We expect it to be a useful
tool for researching and developing digital systems.

Acknowledgments

The author wish to acknowledge the interesting discussions with Atsushi Takahara,
Toshiaki Miyazaki, Hiroshi Okuno, and Masayuki Yanagiya.

24

SHIN-ICHI MINATO

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Akers: Binary Decision Diagrams, IEEE Trans. Comput., Vol. C-27, No. 6, pp. 509-516,
June 1978.

. R. Bryant: Graph-Based Algorithms for Boolean Function Manipulation, IEEE Trans. Com-

put., Vol. C-35, No. 8, pp. 677-691, Aug. 1986.

S. Minato, N. Ishiura and S. Yajima: Fast Tautology Checking Using Shared Binary Decision
Diagram - Benchmark Results -, Proc. IFIP International Workshop on Applied Formal
Methods for Correct VLSI Design, pp. 580-584, Nov. 1989.

Y. Matsunaga and M. Fujita: Multi-level Logic Optimization Using Binary Decision Dia-
grams, Proc. ICCAD’89, pp. 556-559, Nov. 1989.

J. Burch, E. Clarke, K. McMillan and D. Dill: Sequential Circuit Verification Using Symbolic
Model Checking, Proc. ACM/IEEE DAC’90, pp.618-624, June 1992.

B. Lin and F. Somenzi: Minimization of Symbolic Relations, Proc. IEEE ICCAD’90, pp. 88-
91, Nov. 1990.

S. Jeong and F. Somenzi: A New Algorithm for the Binate Covering Problem and its Appli-
cation to the Minimization of Boolean Relations, Proc. IEEE ICCAD’92, pp. 417-420, Nov.
1992.

S. Minato, N. Ishiura and S. Yajima: “Symbolic Simulation Using Shared Binary Decision
Diagram”, Record of 1989 IEICE National Convention, SA-7-5, pp.1.206-207, (in Japanese)
Sep. 1989.

K. Brace, R. Rudell and R. Bryant: “Efficient Implementation of a BDD Package”,
ACM/IEEE Proc. 27th DAC, pp. 40-45, June 1990.

R. Bryant: “Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams”, CMU
CS technical report, No. CMU-CS-92-160, July 1992.

S. Minato, N. Ishiura and S. Yajima: Shared Binary Decision Diagram with Attributed Edges
for Efficient Boolean Function Manipulation, ACM/IEEE Proc. 27th DAC, pp. 52-57, June
1990.

M. Fujita, Y. Matsunaga and T. Kakuda: On Variable Ordering of Binary Decision Diagrams
for the Application of Multi-level Logic Synthesis, Proc. the European Conference on Design
Automation, pp.50-54, 1991

S. Minato: Minimum-Width Method of Variable Ordering for Binary Decision Diagrams,
IEICE Jpn. Trans. Fundamentals, Vol. E75-A, No. 3, pp. 392-399, Mar. 1992.

S. Minato: ‘Fast Generation of Irredundant Sum-of-Products Forms from Binary Decision Di-
agrams’, Proceedings of the Synthesis and Simulation Meeting and International Interchange
(SASIMI'92, Japan), pp. 64-73, Mar. 1992.

R. Rudell: “Dynamic Variable Ordering for Ordered Binary Decision Diagrams”, Proc.
IEEE/ACM ICCAD’93, pp. 42-47, Nov. 1993.

I. Bahar, E. Frohm, C. Gaona, G. Hachtel, W. Macil, A. Pardo and F. Somenzi: “Algebraic
Decision Diagrams and Their Applications”, Proc. IEEE/ACM ICCAD’93, pp. 188-191, Nov.
1993.

G. Hachtel, E. Macii, A. Pardo, and F. Somenzi: “Probabilistic Analysis of Large Finite State
Machines”, Proc. ACM/IEEE DAC’94, pp. 270-275, June 1994.

E. Clarke, K. McMillan, X. Zhao, M. Fuyjita and J. Yang: Specttral Transforms for Large
Boolean Functions with Applications to Technology Mapping, Proc. ACM/IEEE DAC’93,
pp. 54-60, June 1993.

A. Takahara: “A Timing Analysis Method for Logic Circuits”, Record of 1993 IEICE National
Convention, A-120, p. 1-120, (in Japanese), Mar. 1993.

T. Miyazaki: “Boolean-Based Formulation for Data Path Synthesis”, IEEE Asia-Pacific Con-
ference on Circuits and Systems (APCCAS’92), pp. 201-205, Dec. 1992.

Received Date: 77, 77, 77
Accepted Date: 77, 77, 77
Final Manuscript Date: June 23, 1996.

