
1

Model-based verification of a security protocol for
conditional access to services

G. Leduc, O. Bonaventure, L. Léonard, E. Koerner, C. Pecheur
Université de Liège, Institut d’Electricité Montefiore, B 28, B-4000 Liège 1, Belgium

Phone: + 32 4 3662691 Fax: + 32 4 3662989 E-mail: leduc@montefiore.ulg.ac.be

Abstract
We use the formal language LOTOS to specify and verify the robustness of the Equicrypt
protocol under design in the European OKAPI project for conditional access to multimedia
services. We state some desired security properties and formalize them. We describe a generic
intruder process and its modelling, and show that some properties are falsified in the presence of
this intruder. The diagnostic sequences can be used almost directly to exhibit the scenarios of
possible attacks on the protocol. Finally, we propose an improvement of the protocol which
satisfies our properties.

1. Introduction
The Equicrypt protocol is a conditional access protocol under design in the European ACTS
OKAPI project [GBM96]. It allows users to subscribe to multimedia services such as video on
demand. Equicrypt is designed to be equitable, meaning that any user or service provider can
potentially enter the system provided that it complies with this minimal protocol. This contrasts
with proprietary systems which all use different conditional access protocols and thus oblige
users to implement almost as many protocols as there are different service providers, which is a
severe limitation.
After a brief description of the Equicrypt protocol and its modelling in the formal language
LOTOS [ISO 8807, BoB87] at an appropriate abstraction level, we will describe the verification
process. We state some desired safety properties and formalize them. Then we describe a generic
intruder process and its modelling, and show that some properties are falsified in the presence of
this intruder. The diagnostic sequences can be used almost directly to exhibit the scenarios of
possible attacks on the protocol. Two of them are presented.
Our approach thus consists of using a generic formal language and its associated verification
methods and tools to verify security protocols. In this respect, we give a brief comparison with
other works and refer to [Mea95] for a more complete survey on this topic.
Special modal logics have been designed to verify security protocols. The most well-known such
logic is the BAN logic [BAN90], which is intentionally limited to authentication properties.
Other more expressive logics have been proposed, for example to model knowledge. Such logics
have been used successfully to verify several protocols, but have not proved very effective in

Model-based verification of a security protocol for conditional access to services

2

some other circumstances. For example, a thorough analysis of the Needham-Schroeder protocol
using the BAN logic is given in [BAN90]. However, this analysis did not find the security
problem subsequently reported in [Low95], although it was an authentication problem.
Another approach consists of using state-machines. In the Interrogator system [MCF87], the
participants are modelled as communicating state-machines and the network is assumed to be
under the control of an intruder, which can intercept messages, destroy or modify them, or pass
them through unmodified. Given a final state in which the intruder knows something which
should be secret, the tool searches exhaustively the state space to locate this state. The idea of
introducing an intruder was first proposed in [DEK82, DoY83] in another setting. We also base
our method on such an intruder. The NRL Protocol Analyser [KMM94, Mea94] is similar to the
Interrogator, but the goal is here to prove the unreachability of some undesirable states. It can
deal with infinite-state systems but the search is less automated than in the Interrogator. The
common point of the previous works is that some pathological target states have to be defined
prior to any search.
With model-checking, the method is different. It consists of specifying the desired properties in
some (usually temporal) logic, or as a reference specification. To our knowledge, the first
application of model-checking to the verification of security protocols is [Low96] where the
Needham-Schroeder authentication protocol was specified in CSP [Hoa 85] and model-checked
by the FDR tool. In this work the authentication properties were specified as correspondence
properties, like in [WoL93], which require that certain events can take place only if others have
taken place previously. Independently of [Low96], we have specified the Equicrypt protocol in
LOTOS and used the model-checker of the Eucalyptus toolbox to verify it [LBK+96]. The
present paper is an extended version of [LBK+96]. LOTOS had already been used to specify
security protocols in [Var89] but no verification was attempted.
The model-based methods are extremely powerful at finding subtle flaws in protocols, but are
less adequate to prove correctness when no bug is found. This is because they are applied on
simplified, though realistic, models of the systems. On the other hand, theorem provers [Kem89,
ChG90, Bol96] can provide such proofs and can also deal more easily with infinite-state systems.
However, the proofs are usually less automated, and when no proof has been derived for a given
property, it is not easy to know whether the property is wrong or whether the tool simply did not
find it. In particular, an attack that falsifies the property is not provided automatically.

2. Presentation of the Equicrypt protocol
The following is a short summary of the Equicrypt protocol [LBQ+96] under design in the
OKAPI project [GBM96].

2.1. Structure
The aim of the Equicrypt system is to control the access to multimedia services broadcast on a
public channel (the main examples being cable or satellite TV programs or Video On Demand

Model-based verification of a security protocol for conditional access to services

3

services). Scrambling is used to make the data usable by authorized users only, using a special
decoding device. To avoid requiring different decoders for every accessed service (provider), a
unique decoder uses a public-key cryptography protocol to subscribe to and decode different
services. An independent entity known as the Trusted Third Party (TTP) acts as a registering
authority trusted by both users and providers.
The Equicrypt system (fig. 1) thus involves three kinds of entities:

• the Set Top Units (STU) of users,
• the Service Providers (SPv),
• the Trusted Third Party (TTP).

The communications between SPvs and STUs use an insecure (broadcast) channel, whereas their
communications with the TTP use secure channels. The environment of this system is composed
of video servers producing video images (through the source interface) and users watching these
images (through the tv interface) and subscribing to services (through cmd interface). Every Set
Top Unit contains an Access Control Unit (ACU) which is basically a smart card that executes
the security functions. In fact, it is the ACU that acts on the user’s behalf in the Equicrypt
system, and contains the critical security information.

sourcetv

TTP

SPvSTU

Video
serverUser

cmd

Equicrypt
system

Broadcast
channel

Environment
Fig. 1: The overall system

2.2. Operations
Subscribing to services via TTPs occurs in three main phases:
• ACU certification: a Certification Authority checks that the ACU performs sanely (e.g. will

not trick the TTP or reveal concealed information) and assigns it a hard-wired certification
number.

• ACU registration: an ACU gets registered by a TTP. It uses a zero-knowledge protocol
[GQ88] to prove the validity of its registration identifier w.r.t. its certificate without disclosing
the latter.

Model-based verification of a security protocol for conditional access to services

4

• Service subscription: an ACU asks for access to a service. The SPv gets the ACU’s
registration information from the TTP. If this succeeds, the SPv sends to the ACU a key
allowing it to descramble the desired service. Cryptography is used to protect against
eavesdroppers.

ACU certification is an administrative procedure that does not concern us. We shall specify
certified ACUs, and describe ACU registration and service subscription, as well as the
broadcasting of the service in itself.

2.3. Modelling of encryption operations
The TTP algorithms involve several encryption operations, for which we give an abstract view
only. Each scheme uses peer encryption and decryption keys KE and KD and functions E(_, _)
and D(_, _) such that D(KD, E(KE, m)) = m for any message m. In the simple cases such as secret
key cryptography, KE = KD is the shared secret key. In public key cryptography, KE is public and
KD is private for encryption (or vice-versa for authenticity).

2.4. Description of operations
All the messages have the following structure:

Number: Source ! Destination: Message_id "parameters_list#

Therefore we omit the source and destination in parameters_list.

We also use the more compact notation {m}K to denote the message m encrypted with the key K,
that is {m}K = E(K, m).

Identification and keys:

During certification, a user’s ACU that has the serial identification number A is assigned a
certificate Ca correlated to (a hash value of) its identity A, in such a way that they operate as peer
encryption/decryption keys, that is D(A, {m}Ca

) = m. Then the ACU generates peer keys Ka
p

and Ka
s , respectively public and private (secret), and chooses an identification number A' which

can be seen as an alias of A for privacy purposes. Ka
s will remain internal to the user’s ACU.

A service provider B has peer public and private keys K b
p and Kb

s and advertises Kb
p with

proposed services. For each provided service S, it also keeps a key KS.

Let Nta be a nonce1 (called challenge) generated by the TTP T to authenticate user A; and let Nab
be another nonce (called ticket) generated by user A to authenticate the service provider B.

1 A nonce is a random number generated with the purpose of being used once (i.e. in at most one run of the
protocol).

Model-based verification of a security protocol for conditional access to services

5

Registration:
1: A ! T:Register request "A', Ka

p #
If T accepts the request, it generates and sends a random challenge Nta.

2: T ! A:Register challenge "{Nta}Ka
 p #

3: A ! T:Register response "{Nta}Ca
#

T checks D(A, {Nta}Ca
) = Nta. If so, A is registered with its public key Ka

p

and its alias A', that is T stores the tuple "$, A', Ka
p # in its directory.

3': T ! A:Register ack

The real algorithm also involves a random number introduced by the ACU for preventing the
TTP from guessing Ca. We ignore this in our model.

Subscription:
4: ? ! B: Subscribe request "A', S, {Nab}Kb

 p #
The ? indicates that the source (user Id) is not part of the message.
B gets Nab = D(K b

s , {Nab}Kb
 p). If this nonce Nab has been used in a

previous subscription, B ignores the request, otherwise the protocol
continues.

5: B ! T:Check request "A'#
6+: T ! B:Check answer "A', true, Ka

p #
6-: T ! B:Check answer "A', false, –#

A negative answer is provided to B if A is not registered or blacklisted. If
the answer is positive, then B sends A the message 7+ containing the
service key KS, otherwise B sends message 7-.

7+: B ! All: Subscribe answer "S, true, {Nab, KS}Ka
 p #

Only A can get "Nab, KS# = D(Ka
s , {Nab, KS}Ka

 p). A then checks Nab and, if
correct, registers KS and sends the acknowledgement message 8. Note that
the ACU certification ensures that the service key KS will remain
concealed in the ACU and thus never be sent to other users.

7-: B ! All: Subscribe answer "S, false, {Nab, –}Ka
 p #

8: ? ! B: Subscribe ack "{A', S}Ka
 s #

It contains A’s signature. B checks whether D(Ka
p , {A', S}Ka

 s) = "A', S#
and keeps {A', S}Ka

 s as a proof of delivery.

Model-based verification of a security protocol for conditional access to services

6

Broadcasting:

The broadcasting of the video service can then be a sequence of messages of the form:

repeat select a new control word CW;
send CW encrypted with KS (message 9 below);
send a couple of images scrambled with CW (message 10 below);
until the service is over.

9: B ! All: Send control word "S, {CW}KS
#

ACUs knowing KS get CW = D(KS, {CW}KS
) and keep it in the (decoder of

the) hosting set top box.
10: B ! All: Send image "S, {image}CW#

The (decoders of the) set top boxes knowing the CW descramble the image
as D(CW, {image}CW).

In practice, the control words have to be sent a bit more ahead of the scrambled images, because
the decryption of {CW}KS

 takes some time, but we do not consider this issue here.

3. Formal specification
The specification has been written in LOTOS, which is a standardized formal description
language suitable for the description of distributed systems. It is made up of two components:
• A process algebra, mostly inspired by CCS [Mil 89] and CSP [Hoa 85], with a structured

operational semantics. It describes the behaviour of processes and their interactions. LOTOS
has a rich set of operators (multiway synchronization and abstraction like in CSP, disabling,
…), and an explicit internal action like in CCS. LOTOS is briefly introduced in the appendix.

• An algebraic datatype language, ACT ONE [EM85]. A type is defined by its signature (sorts +
operations on the sorts) and by equations to give a meaning to the operations.

3.1. Behaviour
The LOTOS specification models both the Equicrypt system and the environment that it interacts
with as two processes EquicryptSystem and Environment (fig. 1). The EquicryptSystem is
composed of four main LOTOS processes, modelling its three main components (TTP, SPvs and
STUs) and the common broadcast channel.
The service provider is split into a process that handles control words and scrambles images, and
a process handling the subscriptions (fig. 2).

Model-based verification of a security protocol for conditional access to services

7

Scrambler Subscription
Handler

ServiceProvider

To broadcast channel From Users

video
server

To/from TTP

Fig. 2: The structure of the Service Provider

The set top unit contains a descrambler and the ACU, itself decomposed into a process handling
registration, one handling subscription to new services and one decoding control words for
subscribed services (fig. 3). New service keys are passed through gate skey, new subscriptions
are notified to the descrambler via nsvc and dcw is used by the descrambler to ask for decoding
of newly received control words.
Finally, the trusted third party is split into two processes dealing resp. with users and providers
(fig. 4). Information about registered users is passed through gate tup for consultation by
providers.

Subscription
Handler

CtrlWord
Decoder DeScramblerRegistration

Handler
skey dcw

nsvc
AccessControlUnit

SetTopUnit

To/from TTP

tv

To SPv From broadcast channel

cmd

Fig. 3: The structure of the Set Top Unit of the User

Model-based verification of a security protocol for conditional access to services

8

Provider
HandlerUserHandler

TTP

To/from Users

tup

To/from SPv
Fig. 4: The structure of the TTP

3.2. Data types
This specification has been written using data type language extensions, as offered by the
APERO tools [Pec96] included in the Eucalyptus toolbox [Gar96] (fig. 5). The original text has
to be processed by the APERO translator to get a valid LOTOS specification. This provides for a
smaller and more readable specification and for some level of immunity w.r.t. underlying
processing tools. Some types have been written from scratch, though, hence it was necessary to
take tool restrictions explicitly into account. The other parts of the toolset will be explained later.
The abstract data types are composed of:
• Base values: identifiers, keys, transmitted data, etc., described as explicit enumerations.
• Interaction primitives: one APERO recordtype for each primitive. Gate multiplexing is used

to model several similar communication channels as a single gate.
• Tables: needed for storing registered information in several processes, and defined using the

APERO tabletype extension.
• Encryption and decryption: functions for each sort of encrypted value. These are modelled as

abstract operations that are the reverse of each other. This allowed us to avoid modelling the
actual algorithms such as RSA [RSA78]. Decryption with a bad key is handled explicitly and
produces a distinguished value xyzJunk for each sort xyz, as described in ACT ONE below:

sorts Msg, EMsg, EK, DK (* Message, encrypted message, encryption and
 decryption keys *)

opns Match : EK, DK -> Bool (* Define a binary predicate Match pairing those keys *)
E : EK, Msg -> EMsg (* Define operations E and D for encryption/decryption *)
D : DK, EMsg -> Msg (* of some sort Msg with those keys *)
eqns forall m : Msg, ek : EK, dk : DK
ofsort Msg
Match(ek, dk) => D(dk, E(ek, m)) = m ; (* Decryption is the inverse of encryption

 when the keys match *)
Not Match(ek, dk) => D(dk, E(ek, m)) = msgJunk;

(* otherwise, we get a junk message *)

3.3. Preliminary assessment of the specification
To gain confidence into the specification, it has been simulated with the XEludo tool [STS94]
from the Eucalyptus toolbox in step-by-step non-symbolic execution mode. All the entities were
present, in particular two service providers and two set top units. The broadcast channel was

Model-based verification of a security protocol for conditional access to services

9

modelled as an unbounded queue. Several early bugs were detected in our specification. The
simulation was judged satisfactory, when it was possible to subscribe the two users
simultaneously to both services and the images were descrambled correctly. This first phase of
the work took one-man month and the LOTOS specification was about 1300 lines, including
comments.

EditorMain Window
LOTOS

specification
with ADT
extensions

LOTOS
specification
suitable for
the verifier

LOTOS
specification
suitable for

the simulator

Simulator
Model

generator

LTS
model

Diagnostic
Sequence

Trace
Analyser

XELUDO

APERO

CÆSAR

ALDEBARAN,
etc.

a
b c

Converter

Verifier
EXHIBITOR

Figure 5: the Eucalyptus toolbox

4. Safety properties to be verified
The Equicrypt document itself did not mention specific properties to be satisfied. So, we had to
think about a set of properties that was felt to capture the security of the system. We decided to
focus mainly on authentication properties and came up with the following list of safety
properties:

Model-based verification of a security protocol for conditional access to services

10

• P1: Authentication of the user by the TTP during registration: when the TTP registers a user A,
this user A must have started a registration procedure with the TTP.

• P2: Authentication of the TTP by the user during registration: when the user A believes it is
registered by the TTP, the TTP must have started a registration procedure with this user A.

• P3: Authentication of the service provider by the user during subscription: when the user A
believes it has successfully subscribed to a service provider B, the service provider B must have
started a subscription procedure with A' (A' being the alias of A).

• P4: Authentication of the user by the service provider during subscription: when the service
provider B accepts the subscription of A', the user A (that has alias A') must have started a
subscription procedure with B.

• P5: Authentication of the TTP by the service provider: when the service provider B accepts the
subscription of A', the TTP must have given guarantees regarding the registration of user A
(that has alias A').

• P6: When the service provider B receives a correctly signed subscription acknowledgement
from A', the user A (that has alias A') must have started a subscription procedure with B.

• P7: When a user successfully subscribes, it must have successfully registered.

For properties P1 to P5, the dual properties P1' to P 5' should also hold. We give P1' as an
example:

• P1' : When the TTP decides not to register a user A, this user A must have started a registration
procedure with the TTP.

Finally, we have no authentication property of the service provider B by the TTP, because there
is no need for such an authentication, since the key requested by B is public.

5. Verification of the protocol

5.1. Model of an intruder

We want to model an intruder as a process that can mimic any attack a real-world intruder can
perform. Thus our intruder process shall be able to:

• Eavesdrop on and/or intercept any message exchanged among the entities;
• Decrypt (parts of) messages that are encrypted with her own public key, and store them;
• Introduce fake messages in the system (a fake message can be an old message which is

replayed or a new message built up from components of old messages, including
components that she was unable to decrypt).

The intruder behaves in such a way that neither the receiver of a fake message, nor the sender of
an intercepted message can notice the intrusion. In fact the intruder merely replaces the channel
linking users and providers in the model.
In this paper, the intruder will only act on the insecure channel between the users and the
providers, because the proposed Equicrypt protocol relies heavily on the hypothesis that the

Model-based verification of a security protocol for conditional access to services

11

communication channels with the TTP are secure. The registration phase of the protocol has been
verified separately [GeL97a, GeL97b] with an insecure channel between the user and the TTP.
The intruder is parameterized with some initial knowledge, which should be realistic and give her
enough power to act as a user when she communicates with a service provider, and act as a
provider when she communicates with a user. In particular, we do not exclude the following two
cases: (1) the intruder is a certified user, or (2) is (known to users as) a service provider.
However, if the intruder is a certified user, we still consider that her ACU behaves as a certified
ACU. For example, the ACU cannot disseminate a stored service key to other users. Therefore
the initial knowledge of the intruder is as follows:
I, I': The identification and alias of the intruder.
K i

p , Ki
s : The public and private (secret) keys of I.

Nia, Nib: Nonces that I can use in fake messages sent to A and B.
Ci: The certificate of I.
KiS: A service key I can use in fake messages sent to A.
Ka

p , Kb
p : The public keys of user A and service provider B.

In addition, the intruder also knows the user aliases and the service identifiers used in the
specification, either because they are well-known, or because they have been observed in earlier
runs of the protocol. The user identifiers are not needed for the verification of the subscription
phase of the protocol and are therefore omitted from the intruder’s knowledge.
During a protocol run, the intruder can increase her knowledge base. This is modelled by
additional parameters such as sets of (parts of) encrypted messages that she has been unable to
decrypt, and sets of (parts of) plaintext messages that she has been able to decrypt (or were sent
in plaintext).
By having a single nonce to talk to A and a single nonce to talk to B, our intruder can only take
part in a single run of the protocol. Therefore, any form of attack that relies on several attempts
cannot be exhibited by this intruder.
Furthermore, we assume that our intruder cannot break the public key cryptosystem by getting
the message in clear from the encrypted message and the public encryption key, or forging a
signed message from the message in clear and the public decryption key. In our model, this
would mean for example guessing m from {m}K and K. Note that LOTOS1 easily provides
processes that transgress this rule, and thus break any cryptosystem:

process GuessMsg (emsg:EMsg, ek:EK) : exit(Msg) :=

(* ‘emsg’ is an encrypted message, and ‘ek’ is the encryption key *)

choice msg:Msg ! [E(ek, msg) = emsg] ! exit(msg)
(* pick an arbitrary message ‘msg’ such that its encryption with ‘ek’

gives ‘emsg’ and return it *)
endproc

1 A brief introduction of the LOTOS syntax is given in the appendix.

Model-based verification of a security protocol for conditional access to services

12

When building, for verification purposes, an intruder process that tries to break the access control
mechanisms, care must be taken to avoid these kinds of unrealistic behaviours. In practice one
can interpret them as trying all possible encodings until the correct one is found, which is
precisely the computationally unfeasible operation on which security relies. For the same reason,
we assume that the intruder cannot guess nonces.
The structure of the LOTOS intruder process is shown below. Note that we have just provided
the parts dealing with the interceptions of subscribe requests (message 4) sent by users and the
generations of fake subscribe requests sent to service providers. The “…” notation is not part of
the LOTOS syntax; it replaces some parameters that we have omitted here for clarity. We have
also removed the typing information for the same reason.

process Intruder [U,P] (lnr,lsv,lti,letk,lsek,svcdk,...) :noexit :=
(* U and P are interfaces with users and providers respectively;

lnr is the list of known user aliases (including the intruder’s alias);
lsv is the list of known service identifiers;
lti is the list of known tickets (i.e. nonces that she has decrypted,

initialized with her own nonces);
letk is the list of known encrypted tickets (i.e. the nonces that she

cannot decrypt);
lsek is the list of known public keys of service providers (including

hers to allow her to act as a service provider);
svcdk is her private key
... *)

U ?subr:SubscribeRequest; (* intercept a subscription request *)
([D(svcdk,ETicket(subr)) eq TicketJunk] !

(* if the ticket cannot be decrypted then *)

 Intruder [U,P] (lnr,lsv,lti,Add(ETicket(subr),letk),lsek,svcdk,...)
(* add this encrypted ticket to the list of encrypted tickets *)

 !
 [not(D(svcdk,ETicket(subr)) eq TicketJunk)] !

(* if the ticket can be decrypted then *)

 Intruder [U,P] (lnr,lsv,Add(D(svcdk,ETicket(subr)),lti),letk,lsek,svcdk,
 ...)

(* add the decrypted ticket to the list of known tickets *)
)
! (* or *)
(choice un,pv,sv,sek,ti !

[(un IsIn lnr) and (sv IsIn lsv) and
 ((E(sek,ti) IsIn letk) or ((sek IsIn lsek) and (ti IsIn lti)))] !

(* pick any user alias (say ‘un’) in lnr, any service provider id (say
‘pv’), any service id (say ‘sv’) in lsv, any encrypted ticket (say
‘E(sek,ti)’) either in letk or by encrypting any ticket (say ‘ti’)
from lti with any key (say ‘sek’) from lsek *)

P !SubReq(un,pv,sv,E(sek,ti));
 (* send the fake message just built *)
Intruder [U,P] (lnr, lsv, lti, letk, lsek, svcdk,...)
 (* don’t change the data base *)

)

Model-based verification of a security protocol for conditional access to services

13

! (* or *)
... (* ditto with all other messages *)
endproc (* Intruder *)

5.2. Formalizing the properties

To model the properties presented in section 4, it is necessary to observe some states of all the
entities (user, provider and TTP). To achieve this, we will add special events to be executed in
those states. Here are some of them used in the subscription procedure. Others are used in the
registration procedure:

U_start_sub!A!B!S The user A starts a subscription procedure with the service provider B
requesting service S. This event is executed by the user A just before it
sends message 4 to B.

U_sub!A!B!S The user A believes it has successfully subscribed to service S provided
by B. This event is executed by the user A just after it has received a
positive message 7 from B with the expected nonce.

U_Rsub!A!B!S The user A believes it has not successfully subscribed to service S
provided by B. This event is executed by the user A just after it has
received a negative message 7 from B, or a positive message 7 with a
wrong nonce.

P_start_sub!A'!B!S The service provider B has started a subscription procedure with A'
requesting service S. This event is executed by the service provider B just
after it has received message 4 from A'.

P_sub!A'!B!S The service provider B accepts the subscription of A' regarding service S.
This event is executed by the service provider B just before it sends a
positive message 7 to A'.

P_Rsub!A'!B!S The service provider B refuses the subscription of A' regarding service S.
This event is executed by the service provider B just before it sends a
negative message 7 to A'.

P_sub_ack!A'!B!S The service provider B receives a correctly signed subscription
acknowledgement from A' regarding service S. This event is executed by
the service provider B just after it receives a correct message 8 from A'.

T_sub!A!T The TTP T gives registration guarantees for user A . This event is
executed by the TTP T just before it sends a positive message 6'.

T_Rsub!A!T The TTP T does not give registration guarantees for user A. This event is
executed by the TTP T just before it sends a negative message 6'.

The properties can now be expressed solely in terms of these events. We give properties P3 and
P6 as examples below:
P3: For all A % I, A ', B % I and S such that A ' is the alias of user A , U_sub!A!B!S must be

preceded by P_start_sub!A'!B!S.
P6: For all A % I, A', B % I and S such that A' is the alias of user A, P_sub_ack!A'!B!S must be

preceded by U_start_sub!A!B!S.
These properties are similar to the correspondence properties of [WoL93].

Model-based verification of a security protocol for conditional access to services

14

A property such as “U_sub!A!B!S must be preceded by P_start_sub!A'!B!S” can be easily
modelled by the graph, called a Labelled Transition System (LTS), depicted on figure 6, which
could also be modelled by the following two-state LOTOS process:

process Precedence[U_sub,P_start_sub] (A,A',B,S): noexit :=
P_start_sub!A'!B!S; run[U_sub,P_start_sub] (A,A',B,S)

where process run[U_sub,P_start_sub]: noexit :=
P_start_sub!A'!B!S; run[U_sub,P_start_sub] (A,A',B,S)
[]
U_sub!A!B!S; run[U_sub,P_start_sub] (A,A',B,S)

endproc (* run *)

endproc (* Precedence *)

P_start_sub!A'!B!S

P_start_sub!A'!B!S

U_sub!A!B!S

>

Figure 6: LTS modelling “U_sub!A!B!S must be preceded by P_start_sub!A'!B!S”
To model a property like P3 in LOTOS, it suffices to interleave as many instances of this
Precedence process as there are valid combinations of A, A ', B and S in the specification (in
particular such that A' is the alias of A). If there are n possible combinations, this leads to an LTS
composed of 2n states and 3n × 2n-1 transitions.

5.3 The verification

We have used the CADP package [FGK+96] included in the Eucalyptus toolbox to carry out the
verification (figure 5). The first step consists of using the Cæsar tool to generate an LTS from the
LOTOS specification. To be able to generate a finite-state LTS of reasonable size, some
simplifications were required. For example, to verify the properties listed in section 4, the parts
of the protocols dealing with the scrambling and descrambling of the images have been left out.
Also, an environment has been added to restrict the behaviour to a single run of the protocols
(one registration and one subscription). Finally, the broadcast channel has been bounded. Several
variants of this simplified specification with an intruder have been written. For example: a
specification with two service providers offering distinct as well as identical services. Let us
consider one such configuration and call it spec.

Model-based verification of a security protocol for conditional access to services

15

The second step consists of using the Aldebaran tool to minimize the resulting graph. The first
minimization is always done modulo the strong bisimulation equivalence, which preserves all the
properties of the graph. We call the reduced LTS spec.bsim. Our security properties being all
safety properties, the minimization can be further improved modulo the safety equivalence
[BFG+91], which preserves all the properties expressible in Branching time Safety Logic (BSL).
The resulting graph is called spec.safety.
Not all the observable actions are relevant to verify the properties. In particular, our properties
only rely on some special actions that have been described in section 5.2. Every property was
separately modelled as a reference LTS generated from a simple LOTOS process and containing
these special actions only (e.g. the LTS modelling property Pi is called Pi.safety), and the
spec.safety LTS was checked against such a property by verifying the safety preorder relation
[BFG+91] between spec.safety and Pi.safety, while hiding irrelevant actions. Formally, the
safety preorder (&s) is the preorder that generates the safety equivalence (~s), and is nothing else
than the weak simulation preorder:

Consider a LTS = "S, A , T, s0# where S is the set of states, A the alphabet of actions (with i
denoting the internal action), T the set of transitions and s0 the initial state.
A relation R ' S × S is a weak simulation iff ("B1,)2# * R ,(a * A:

if B1 +i*a B1' , then , B2' such that B2 +i*a B2' and "B1' , B2' # * R
Sys1 = "S1, A, T1, s01# can be simulated by Sys2 = "S2, A, T2, s02#, denoted Sys1 &s Sys2, iff there
exists a weak simulation relation R ' S1 × S2, such that "s01

, s02
* R

Informally, “behaviour &s property” means that the behaviour (exhibited by the system) is
allowed (i.e. can be simulated) by the (safety) property.
Two systems P1 and P2 are safety equivalent iff P1 &s P2 and P2 &s P1.

When a property is not verified, Aldebaran produces a diagnostic sequence. However, this
sequence is usually of little help as such, because it only refers to the few non hidden actions that
were kept for their relevance to express the properties. We call it the abstract diagnostic
sequence. To circumvent this difficulty and get a detailed sequence (i.e. with all actions visible)
that can clearly identify the scenario of the intruder’s attack, we have encoded this abstract
diagnostic sequence in a format suitable for input to the Exhibitor tool, which was then instructed
to find the detailed sequence (allowed by the specification) matching the abstract one.
For a typical configuration with one user, two service providers (B offering service S, and C
offering services S and S'), one TTP and an intruder offering both services S and S', the generated
LTS was composed of 786,681 states and 4,161,795 transitions. It took 20 hours of CPU time on
a Sun Ultra-2 workstation running Solaris 2.5 with 800 Mbytes of RAM. After minimization
with the strong bisimulation, the LTS still had 69,754 states and 520,633 transitions. The
minimization was carried out in 20 minutes of CPU time on the same workstation. The
minimization by the safety equivalence failed due to the size of the LTS, but fortunately, it was
possible to check all the properties on this graph.

Model-based verification of a security protocol for conditional access to services

16

This second phase of the work that consisted of finding a verification approach, adding an
intruder process, specifying the properties and verifying them, took about 2 man-months.

5.4 Results of the verification

Given that our intruder can only act on the channels linking users and providers, it turns out that
properties P1, P2 and P5 are satisfied. A deep analysis of the registration phase of the protocol is
beyond the scope of this paper and can be found in [GL97b]. On the other hand, properties P3,
P4 and P6 are not verified in the presence of our intruder. The following two scenarios translated
from those provided by Exhibitor will illustrate why these properties are falsified. Finally, P7 is
verified.

First scenario

When checking property P6, Aldebaran discovered it was not satisfied and reported a (abstract)
diagnostic sequence of 37 steps mainly composed of hidden actions and leading to a state where
P_sub_ack!A'!C!S was enabled in the system but not allowed by the safety property. This
abstract sequence was then translated into a precise search pattern given to the Exhibitor tool that
found several matching sequences in spec.bsim where all the actions are visible. The smallest
sequence found was composed of 31 transitions. The part of it modelling exchanges between
users and service providers (thus omitting the exchanges with the TTP for clarity) is explained
below and depicted on figure 7.

For this attack to succeed, the intruder does not need to be registered; she just needs to know the
public keys of two service providers B and C. We consider a user A subscribing successfully to
service S provided by server B. This subscription runs implicitly in parallel with the attack
described below. Now suppose that another service provider C also offers this service S, and
suppose an intruder is aware of that (for example, the intruder might be C itself, or C’s
accomplice). The story goes as follows: the intruder can copy the subscription request sent by A
to B, namely the message:

4: ? ! B: Subscribe request "A', S, {Nab}Kb
 p #

Then, the intruder sends a fake message to service provider C, which is basically the above
message where the nonce has been changed and encrypted with C’s public key:

4: ? ! C: Subscribe request "A', S, {Nic}Kc
 p #

C then gets N ic and starts its subscription procedure with A ', namely it executes
P_start_sub!A'!C!S, and exchanges messages 5 and 6+ with the TTP. This successful
exchange leads C to commit on a subscription with A': C executes P_sub!A'!C!S. Then C sends
message:

7: C ! All: Subscribe answer "S, true, {Nic, KS'}Ka
 p #

I intercepts this message and sends a fake subscribe acknowledgement containing A’s signature
to C, which is a copy of the corresponding subscribe acknowledgement that A sent earlier to B,
namely:

Model-based verification of a security protocol for conditional access to services

17

8: ? ! C: Subscribe ack "{A', S}Ka
 s #

Finally C executes P_sub_ack!A'!C!S.

User
A

SPv
B

SPv
C

copy

copy

copy

intercept

generate

generate

?!B: "A',S, {Nab} #
Kb

p

B!all: "S,+, {(Nab,Ks)} #
Ka

p

?!B: "{A',S} #
Ka

s

?!C: "A',S, {Nic} #
Kc

p

C!all: "S,+, {(Nic,K's)} #
Ka

p

?!C: "{A',S} #
Ka

s

Figure 7: First attack
Clearly property P 4 and P 6 are not fulfilled, because events P_sub!A'!C!S and
P_sub_ack!A'!C!S are not preceded by the event U_start_sub!A!C!S.The consequence is that
the service provider C can claim money from A for the subscription, because it possesses a
signed subscribe acknowledgement from A for this service S.
A first idea was to encrypt S in messages 4 (the subscribe request) and 7 (the subscribe answer),
but this does not make sense for well-known service identifiers, which can always be tried by the
intruder. A more effective way to make this attack impossible consists of adding the name of the
service provider in the signed part of message 8 (the subscribe acknowledgement). However, this
would not be enough to satisfy P4. The only way to fulfil P4 is actually to sign message 4 (the
subscribe request).

Second scenario

Among the attacks we have found, we present another one which falsifies P3 (fig. 8): A starts a
subscription procedure with B, namely it executes U_start_sub!A!B!S. Then A sends the
message:

4: ? ! B: Subscribe request "A', S, {Nab}Kb
 p #

I intercepts it, replaces the service identifier by S' and sends the fake message:

Model-based verification of a security protocol for conditional access to services

18

4: ? ! B: Subscribe request "A', S', {Nab}Kb
 p #

B then gets N ab and starts its subscription procedure with A ': namely it executes
P_start_sub!A'!B!S', and exchanges messages 5 and 6+ with the TTP. This successful
exchange leads B to commit on a subscription with A': B executes P_sub!A'!B!S'. Then B sends
this message:

7: B ! All: Subscribe answer "S', true, {Nab, KS'}Ka
 p #

I intercepts it, replaces the service identifier by S and sends the fake message:
7: B ! All: Subscribe answer "S, true, {Nab, KS'}Ka

 p #
Finally A decrypts this message, finds its nonce Nab and therefore commits to subscription by
executing U_sub!A!B!S.

User
A

SPv
B

Intruder

intercept
generate

?!B: "A',S, {Nab} #
Kb

p ?!B: "A',S', {Nab} #
Kb

p

B!all: "S',+, {(Nab,Ks')} #
Ka

pB!all: "S,+, {(Nab,Ks')} #
Ka

p

intercept
generate

Figure 8: Second attack
Clearly the property P3 is not fulfilled because event U_sub!A'!B!S is not preceded by the event
P_start_sub!A!B!S, but by P_start_sub!A!B!S'. The consequence is that the user has
received a service key which cannot be used to decrypt service S , but will send an
acknowledgement.
Here again, the signature of message 4 (the subscribe request) suffices to make this attack
impossible.
A third attack similar to the one found recently in the Needham-Schroeder authentication
algorithm [Low95, Bol96, Low96] has been reported in [LBK+96].
The overall resources to complete the specification, the verification and the correction of the
subscription part of the Equicrypt protocol are estimated to be around 4 man-months, not
including reports and published papers.

6. Conclusion and future work
We have had the opportunity to apply LOTOS to a protocol that was still under design, and on
which our work has had a real impact. The revision of the subscription procedure by signing the
subscription request turns out to fulfil all our properties. We hope that this non trivial case study

Model-based verification of a security protocol for conditional access to services

19

illustrates the power of our approach, which is further detailed in [GL97a]. The registration phase
of the protocol has also been studied and fixed in [GL97b].
We have shown how attacks can be discovered by adding an intruder process, which is simple
and can mimic all behavioural real-world attacks that are neither cryptographic nor repetitive
attacks. We have shown how security properties can be modelled and checked as safety
properties by the safety preorder relation.
Our method is very effective in finding subtle bugs, but it should be clear that the correctness
guarantees we can provide when no bug is found are within the scope of our hypotheses. We
cannot prove the correctness of the protocol in general, but only of some reasonably complex
configurations, where the numbers of users and of service providers are bounded, and where the
ranges of possible values for variables are kept finite.
There exist ways to extend the method. In a simpler case [Low96], an additional induction proof
has been provided to extend the correctness guarantee to an arbitrary number of involved entities.
Another possible approach, proposed recently in [Bol97], is based on an abstraction function and
automates the computation of a correct (finite) abstract model of the system. Finally, we do not
ensure any sort of completeness of our security properties. We have focused on authentication
properties and some others but, for example, we have not considered non-repudiation properties.
Methods to automate the definition of security properties would therefore be desirable. Some
work in this direction is proposed in [AbG97].

Acknowledgements
This work has been partially supported by the Commission of the European Union (DG XIII)
under the ACTS AC051 project OKAPI: “Open Kernel for Access to Protected Interoperable
Interactive Services”. The development of the Apero tool and the user interface of the Eucalyptus
toolset have been partially supported by the Commission of the European Union (DG III) under
project ISC-CAN-65 Eucalyptus-2: “A European/Canadian LOTOS Protocol Tool Set”. Finally
we are grateful to the anonymous referees for their valuable comments.

References

[AbG97] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols - The Spi
Calculus. In: Proc. of the 4th ACM Conference on Computer and Communications
Security, 1997.

[BFG+91] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez and J. Sifakis. Safety for
Branching Time Semantics. In: 18th ICALP, Berlin, July 1991. Springer-Verlag.

[BoB87] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems 14 (1) 25-59 (1987).

[Bol96] D. Bolignano. Formal verification of cryptographic protocols. In: Proc. of the 3rd
ACM Conference on Computer and Communication Security, 1996.

Model-based verification of a security protocol for conditional access to services

20

[Bol97] D. Bolignano. Towards a Mechanization of Cryptographic Protocol Verification. In:
Proc. of CAV 97, LNCS 1254, Springer-Verlag, 1997.

[BAN90] M. Burrows, M. Abadi and R. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8, 1990.

[ChG90] P. Chen and V. Gligor. On the Formal Specification and Verification of a Multiparty
Session Protocol. In: Proc. of the IEEE Symposium on Research in Security and
Privacy, 1990.

[DEK82] D. Dolev, S. Even, and R. Karp. On the Security of Ping-Pong Protocols.
Information and Control, pp. 57-68, 1982.

[DoY83] D. Dolev, and A. Yao. On the Security of Public Key Protocols. IEEE Transactions
on Information Theory, 29(2):198-208, March 1983.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, Equations and
Initial Semantics. In: W. Brauer, B. Rozenberg, A. Salomaa, eds., EATCS ,
Monographs on Theoretical Computer Science, Springer Verlag, 1985.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M.
Sighireanu. CADP (CÆSAR/ALDEBARAN Development Package): A Protocol
Validation and Verification Toolbox. In: R. Alur and T. Henzinger, eds, Proc. of the
8th Conference on Computer-Aided Verification (New Brunswick, New Jersey,
USA), Aug. 1996.

[Gar96] H. Garavel. An overview of the Eucalyptus Toolbox. In: Proc. of the COST247
workshop (Maribor, Slovenia), June 1996.

[GBM96] J. Guimaraes, J.-M. Boucqueau and B. Macq. OKAPI: a Kernel for Access Control
to Multimedia Services based on Trusted Third Parties. In: Proc. of ECMAST 96 –
European Conference on Multimedia Applications, Services and Techniques
(Louvain-la-Neuve, Belgium), pp. 783-798, May 1996.

[GL 97a] F. Germeau, G. Leduc. Model-based Design and Verification of Security Protocols
using LOTOS. Proc. of the DIMACS Workshop on Design and Formal Verification
of Security Protocols, Rutgers University, NJ, USA, Sept. 97, 22 p.

[GL97b] F. Germeau, G. Leduc. A computer-aided design of a secure registration protocol.
Formal Description Techniques and Protocol Specification, Testing and Verification,
FORTE/PSTV’ 97, Chapman & Hall, London (1997), 145-160.

[GQ88] L. Guillou, J.-J. Quisquater. A Practical Zero-knowledge Protocol Fitted to Security
Microprocessor Minimizing both Transmission and Memory. In. Proc. of
Eurocrypt’88, Springer-Verlag, LNCS 330, 123-128.

[Hoa 85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

[ISO8807] ISO/IEC. Information Processing Systems – Open Systems Interconnection –
LOTOS, a Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. IS 8807, February 1989.

[Kem89] R. Kemmerer. Using Formal Methods to Analyse Encryption Protocols. IEEE
Journal on Selected Areas in Communications, 7(4):448-457, 1989.

[KMM94] R. Kemmerer, C. Meadows, and J. Millen. Three Systems for Cryptographic
Protocol Analysis. Journal of Cryptology, 7(2):14-18, 1989.

[LBQ+96] S. Lacroix, J.-M. Boucqueau, J.-J. Quisquater and B. Macq. Providing Equitable
Conditional Access by Use of Trusted Third Parties. In: Proc. of ECMAST 96 –
European Conference on Multimedia Applications, Services and Techniques
(Louvain-la-Neuve, Belgium), pp. 763-782, May 1996.

Model-based verification of a security protocol for conditional access to services

21

[LBK+96] G. Leduc, O. Bonaventure, E. Koerner, L. Léonard, C. Pecheur, D. Zanetti.
Specification and verification of a TTP protocol for the conditional access to
services. In: Proc. of 12th J. Cartier Workshop on “Formal Methods and their
Applications: Telecommunications, VLSI and Real-Time Computerized Control
System”, Montreal, Canada, 2-4 Oct. 96.

[Low95] G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication
Protocol, Information Processing Letters, 56:131-133, 1995.

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol using
FDR. In: T. Margaria and B. Steffen (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems, LNCS 1055, Springer-Verlag, 1996.

[MCF87] J. Millen, S. Clark, and S. Freedman. The Interrogator: Protocol Security Analysis.
IEEE Transactions on Software Engineering, SE-13(2), 1987.

[Mea92] C. Meadows. Applying Formal Methods to the Analysis of a Key Management
Protocol. Journal of Computer Security, 1992.

[Mea 94] C. Meadows. The NRL Protocol Analyser: An Overview. Journal of Logic
Programming 1994:19, 20:1-679.

[Mea95] C. Meadows. Formal Verification of Cryptographic Protocols: A Survey. In: Proc. of
Asiacrypt 94, LNCS 917, 1995, pp. 133-150.

[Mil 89] R. Milner. Communication and Concurrency. Prentice-Hall Intern., London, 1989.
[Pec96] C. Pecheur. Improving the Specification of Data Types in LOTOS. Doctoral

dissertation, University of Liège, July 1996.
[RSA78] R. Rivest, A. Shamir and L. Adleman. On a Method for Obtaining Digital Signatures

and Public Key Cryptosystems. Communication of the ACM, vol. 21, pp. 120-126,
Feb. 1978.

[STS94] B. Stepien, J. Tourrilhes and J. Sincennes. ELUDO: The University of Ottawa
Toolkit. Technical Report, University of Ottawa, 1994. Obtainable by FTP at
lotos.csi.uottawa.ca.

[Var89] V. Varadharajan. Use of Formal Technique in the Specification of Authentication
Protocols. Computer Standards and Interfaces, 9:203-215, 1989.

[WoL93] Woo and S. Lam. A Semantic Model for Authentication Protocols. In : Proc. of
IEEE Symposium on Research in Security and Privacy, 1993.

Appendix: Overview of the LOTOS operators
• stop is an inactive (deadlocked) process.
• go1…on[SP]; P (action-prefixing) is a process that first performs an (observable) action on gate
g and then behaves like P. The tuple o1…on determines the data exchanged during the
synchronisation: either data sent, by !tx, or data (of sort s) received, by ?x:s. The variables
declared in o1…on to receive data can appear in the selection predicate (i.e. the boolean
expression) SP. Data can be received only if they verify SP.

• i; P is a process that first performs an internal action and then behaves like P.
• exit(e1,…en) is a process that successfully terminates. It performs an action on gate - and then

turns into stop. The tuple e1,…en determines the data transmitted to the subsequent process
(see the enabling operator).

Model-based verification of a security protocol for conditional access to services

22

• P1 ! P2 (choice) is a process that can behave either like P1 or like P2. The choice is resolved
by the first process which performs an action. Notice that internal actions also resolve the
choice.

• P1 |[.]| P2 is the parallel composition of P1 and P2 with synchronisation on the gates in /.
• hide / in P hides actions of P occurring at gates present in the set /, i.e. renames them i.
• P1 » accept x1:s1,…xn:sn in P2 (enabling) is the sequential composition of P1 and P2, i.e. P2

can start when P1 has terminated successfully. A process terminating successfully can
transmit data to its successor: the tuple e1,…en associated with exit determines the data values
transmitted and accept x1:s1,…xn:sn in specifies the data P2 expects to receive.

• P1 [> P2 (disabling) allows P2 to disable P1 provided P1 has not terminated successfully.
• [SP]! P (guard) behaves like P if the guard SP is true and like stop otherwise.
• let x1=tx1,…xn=txn in P (instantiation) instantiates the free variables x1…xn in P.
• choice x1:s1,…xn:sn ! P (choice over values). Assuming P depends on the variables x1…xn, (of

sorts s1…sn), choice x1:s1,…xn:sn ! P offers a choice between the processes P(tx1…txn) for all
the combinations of values (tx1…txn) of sorts (s1…sn). For example, choice x:Nat ! P(x) means
P(0) ! P(1) ! P(2) ! ...

