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ABSTRACT

A technique for maintaining the positive definiteness of the matrices in the quasi-
Newton version of the SQP algorithm is proposed. In our algorithm, approximations
of the Hessian of the augmented Lagrangian are updated. The positive definiteness of
these matrices in the space tangent to the constraint manifold is ensured by a piecewise
line-search technique, while their positive definiteness in a decoupled complementary
subspace is obtained by setting the augmentation parameter. The combination of
these two ideas makes the new approach more robust in our experiment with respect
to existing approaches.
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Une méthode de recherche linéaire brisée
pour maintenir la définie positivité
des matrices dans la méthode PQS

par
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RESUME

Une technique pour maintenir la définie positivité des matrices dans la version quasi-
newtonienne de la PQS est proposée. Dans notre algorithme, ce sont des approxima-
tions du hessien du lagrangien augmenté qui sont mises & jour. Leur définie positivité
dans le plan tangent & la variété des contraintes est assurée par une technique de
recherche linéaire brisée, tandis que leur définie positivité dans un espace supplémen-
taire découplé du premier est obtenue par le réglage du parameétre d’augmentation.
La combinaison de ces deux idées rend la nouvelle approche plus robuste dans nos
expériences, quand on la compare a d’autres approches existantes.
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1 Introduction

We consider with a numerical point of view the nonlinear equality constrained opti-
mization problem
min f(z)
) (1.1)
subject to ¢(z) =0, z€Q,

where € is an open set of R” and the two functions f : @ — R and ¢ : Q — R™
(1 < m < n) are sufficiently smooth. Since Q is supposed open, this set does not
define general constraints. It is just the set on which good properties of f and ¢
hold. For example, we assume that the m x n Jacobian matrix of ¢ at z, denoted by
A(z) = Ve(z)T, has full rank on Q.

The Lagrangian function associated to problem (1.1) is defined on Q x R™ by

Lz, N) = f(2) + )\Tc(m). (1.2)

The vector A is called the Lagrange multiplier. The first order optimality conditions
of problem (1.1) at a local solution z, with associate multiplier A, can be written

Vi+ A =0 and c. =0. (1.3)

Throughout the paper, the notation f. = f(z«), Vfi = Vf(2.), Ax = A(zy), etc,
is used and should be unambiguous from the context. It is also assumed that the
second order sufficient conditions of optimality hold at a local solution of problem
(1.1). Using the notation L, = V2_#(z«, A.), this can be written

hTL.h >0, forall h # 0 such that A.h = 0. (1.4)

The sequential quadratic programming (SQP) algorithm is a Newton-like method
in (2, A) applied to the first order optimality conditions (1.3) (see for example Fletcher
[8] or the recent survey paper [1]). The kth iteration of the algorithm can be described
as follows. Given an iterate pair (zy, Ap) € QxR™, the following quadratic subproblem
in d is solved:

min  Vf;'d+ 3d"Mpd
st. ep+Ard=0.
We adopt the notation fr = f(xr), Vi = V(2r), ek = c(xr), Ay = A(xp), ete. In
(1.5), it is suitable to take for M}, the Hessian of the Lagrangian or an approximation
to it. Let us denote by (dj, A7") a primal-dual solution of (1.5), i.e., a solution of its
optimality conditions

(1.5)

ka—}—Mkdk—l—A;—/\?P = 0
cp + Apdy = 0.

The link between (1.3) and (1.5) is that, when M}, is the Hessian of the Lagrangian,
(di, AZ" — Ap) is the Newton step for the system (1.3) at (zx, Ag).

The convergence of this algorithm from remote starting points is often obtained
by using dj as search direction, along which a stepsize ap > 0 is chosen. The stepsize
is adjusted such that the next iterate

(1.6)

Tp41 = g + apdy,



reduces sufficiently the value of some merit function.

In the quasi-Newton version of the method, M} approximates some Hessian and
is commonly forced to be positive definite to ensure descent properties. This can be
achieved by using the BFGS formula for instance: for some vectors v; and é; in R?,

Mybpéi My vevy

My, = My — .
+ 6;—Mk(5k 7;—676

(1.7)

With this formula, it is well known that the positive definiteness is sustained from
My, to My 41 if and only if the following curvature condition holds:

Y6 > 0. (1.8)

When Mj, is taken as an approximation of the Hessian of the Lagrangian, it makes
sense to take for 4 in (1.7) the vector

Ve = Vl(zps1,N) — Vel(zg, V), (1.9)

where A is a some multipier, usually AZ". However, the lack of positive definiteness
of the Hessian of the Lagrangian function at (., A.) makes this approach difficult.
Indeed, with this choice of 7, the curvature condition may never be realized for any
displacement 6 = zp41 — xp along di, because the Lagrangian function may have
negative curvature along this direction, even close to the solution.

The idea of modifying the vector v£ to force satisfaction of the curvature condition
goes back at least to Powell [20], who suggested to set 74 to a convex combination of
'yf; and My6by:

vE = Ovk + (1 — 0) My 6y, (1.10)

where 6 is the number in (0, 1], the closest to 1, such that the inequality
i 6k > 16 Miby

is satisfied. The constant 7 is set to 0.2 in [20] and to 0.1 in [22]. Powell’s correction
of 'yﬁ is certainly the most widely used technique in practice. Its success is due to
its appealing simplicity and its usually good numerical performance. The fact that
it may encounter difficulties partly motivates this study (see [22] or [23, p. 125]).
Another motivation is that the best known result obtained so far on the speed of
convergence with Powell’s correction (namely, the r-superlinear convergence, see [21])
is not as good as one can reasonably expect, which is the g-superlinear convergence.

Another modification of 7% is to take for vector ) an approximation of the change
in the gradient of the augmented Lagrangian, which is the function (1.2) with the
augmentation term %HC(Z‘)HQ (|| - || denotes the €3-norm). This idea, proposed by
Tapia [28], has roots in the work of Han [14] and Tapia [27] and was refined later
by Byrd, Tapia, and Zhang [4]. In this approach, the matrix My is viewed as an
approximation of the Hessian of the augmented Lagrangian function and 73 is set to

i =Yk + e AL g1 Art16k, (1.11)



where the augmentation parameter r; is the smallest nonnegative number satisfying
’Y;T‘Sk 2 max{|’y£T6k|, VBTZ||Ak+15k||2}- (1.12)

The positive constant vgr; is set to 0.01 in [4]. It is clear that this strategy does not
work when Ap416; = 0 and 'yf;Ték < 0. In this case, the authors propose the following
“back-up strategy”. When (1.12) does not hold with r; = 0 and

1 Ars16¢l] < min{ Baca, 1861116 (1.13)

where fgry is a small positive number (the value 0.01 is proposed in [4]), then the
vector A;—+1Ak+15k in (1.11) is replaced by & and ry is set such that (1.12) is sat-
isfied. Numerical experiment in [4] shows that Byrd, Tapia, and Zhang’s strategy is
numerically competitive with Powell’s correction.

Let us mention that there are techniques to maintain the positive definiteness of
the updated matrices that do not modify the vector 'yﬁ: see Coleman and Fenyes [6].

The present paper is mainly motivated by the desire to realize the curvature
condition (1.8). To carry out this task, we propose a new update scheme that is
based on two principles. On the one hand, as in the work of Byrd, Tapia, and Zhang,
we take the point of view to force M} to be an approximation of the Hessian of the
augmented Lagrangian. This is achieved by taking for v the following value:

Ve = '?k =+ T’kA,;rAk(Sk, with ?k ~ L.,bp.

The precise form of ; will be given in Section 3.1. As we have seen, the strategy of
forcing the positivity of 7,;rék by tuning rj is not appropriate when Ayédy is too close
to zero and :y;—ék is negative. Instead of using a back-up strategy as Byrd, Tapia, and
Zhang, we observe that when Apér = 0 and 8 is parallel to the SQP direction, this
direction is tangent to the constraint manifold. In this case, the piecewise line-search
(PLS) technique introduced by Gilbert [11, 12] in the framework of reduced quasi-
Newton methods, is well adapted to making the term 7,8 positive. Our algorithm
is based on a combination of these two ideas.

The PLS technique aims at generalizing what is done in unconstrained optimiza-
tion, where the curvature condition is fulfilled by a line-search algorithm realizing the
Wolfe conditions (see for instance [16, Chap. II, § 3.3]). When constraints are present,
the problem is more difficult, since the curvature condition may never hold along a
straight line. However, there is a path defined by a particular differential equation
along which such condition can be realized. The technique consists then in following a
piecewise linear approximation of this “guiding path”, each discretization point being
successively chosen by means of an Armijo line-search procedure, until a Wolfe point
is found. In the present case, this technique allows us to choose a suitable value ry
such that the curvature condition is satisfied, even when A;é; = 0.

The paper is organized as follows. In Section 2, we make precise our notation,
the form of the SQP direction, and our choice of merit function. Section 3 presents
our approach to satisfy the curvature condition (1.8) and outlines the PLS technique.
Section 4 shows the finite termination of the search algorithm. The overall minimiza-
tion algorithm is given in Section 5 and its convergence is proved. Section 6 gives



more details on implementation issues and Section 7 relates numerical tests. The
paper terminates with a conclusion section.

2 Background material and notation

Let us first introduce two decompositions of R™ that will be useful throughout the
paper. Each of them decomposes the variable space in two complementary subspaces
and is characterized by a triplet (Z~(x), A=(x), Z(z)). The columns of the matrices
Z~(x) and A~ (x) span the two complementary subspaces and Z(z) is deduced from
Z~(z), A= (z), and A(z).

In the first decomposition, Z~(z) and A~ (z) are typically given by the user. These
operators and Z(z) have to satisfy the following properties.

e 7 () is an n x (n — m) matrix, whose columns form a basis of the null space
N(A(2)) of A(z):
e A™(2)is an n x m right inverse of A(z):

A(z)A™ () = In. (2.2)

In particular, the columns of A~ () form a basis of a subspace complementary

to N(A(z)).
e Z(z) is the unique (n — m) x n matrix such that

Z(x)Z2" (x) = In-m and  Z(2)A™(x) = 0(n—m)xm- (2.3)

From these properties, we can deduce the following identity:

AT(@)A(x)+ Z7 (2)Z(x) = I,. (2.4)
For a motivation of this choice of notation and for practical examples of operators
A7 (x) and Z~ (z), see Gabay [9].

From these operators can be introduced the notions of reduced gradient and La-
grange multiplier estimate. The reduced gradient of f at z is defined by

g(x) = 77 (2) "V f(x). (2.5)
Using (2.1), we have g(z) = Z7 () "V, 4(z, A), so that
Vgl =Z7TL.. (2.6)

The first equation in (1.3) and (2.2) imply that A, = —AZ TV f.. Therefore, we can
take as Lagrange multiplier estimate, the vector

Mz) = —A~(2) TV f(z). (2.7)



As previously, using (2.2) we have A(z) = —A~(2) "V 4(z, \s) + A, so that
VA = —-A7TL,. (2.8)

The second useful decomposition of R™ differs from the first one by the choice of
the subspace complementary to N (A(z)). It comes from the form of the solution of
the quadratic subproblem (1.5) and therefore it depends only on the problem data.
Let M be the current approximate Hessian with the property that Z~(z) "M, Z~ (x)
is positive definite, and define

Hy(x) = (27 (&) "My Z™ (2))~".
Let z be a point in Q and consider the quadratic subproblem in d:

min  Vf(z) d—l—%dTMkd

st. c(z)+ A(z)d =0. (2.9)

Let us denote by (dg”(x), AZ"(x)) the primal-dual solution of (2.9). Using the first
decomposition of R™ at z, it is not difficult to see that the primal solution can be
written (see also Gabay [10])

di () = —Z7 (2)Hp(z)g(z) — (I — Z~ (z)Hp(z)Z~ (m)TMk)A_ (x)e(x). (2.10)
Using (2.1) and (2.2), we find that the factor of ¢(z) above satisfies
A(2) [(I - Z™ (2)Hy(z)Z™ (z) 'My) A™ (z)] = L.

Hence, the product of matrices inside the square brackets forms a right inverse of

A(z), which is denoted by g; (2). Defining
Zi(2) = Hy(2) 2 (2) "My, (2.11)
we have
Ao (x) = (1 - Z—(z)Zk(z)) A (2), (2.12)

and thus (2.10) can be rewritten
di*(2) = =2~ () Hy(2)g(x) — Af (2)e(). (2.13)

We have built a triplet (7~ (.7:),2; (l‘),zk(l‘)) satisfying conditions (2.1), (2.2),
and (2.3), hence defining suitably a second decomposition of R™. In particular, we
have

A (2)A@) + 2~ (2)Zp(2) = L. (2.14)
Note that despite A~ (z) and Z~(z) are used in formula (2.12), the operator E; (2)

does not depend on the choice of right inverse and tangent basis. Indeed, —A (z)c(z)
is also defined as the solution of the quadratic subproblem (2.9) in which V f(z) is
set to zero (see also the proof of Lemma 4.3 below).



In order to simplify the notation, we denote by 2}« and 2,; the matrices zk(mk) and
2; (z1). With this convention, the direction dj, solution of the quadratic subproblem
(1.5) can be written

dy = —Z7 Hygr — A; ck. (2.15)

The vectorAgkdkA: —Hy gy is called the reduced tangent direction.
Using Zy(z)A; () = 0 and the nonsingularity of Hy(z), we have from (2.11) the
following useful identity

77 (2) "My A7 (2) = On—m)xm- (2.16)

In particular, if L, is used in place of M} in the previous equality and if = z,, we
obtain

Z7TL AT = 0. (2.17)

With (2.6), this shows that the columns of g; form a basis of the space tangent to
the reduced gradient manifold {g = 0} at .. Therefore, from (2.15), we see that the
SQP direction di has a longitudinal component —Z Hygy, tangent to the manifold
{¢ = ¢}, and a transversal component —g; ¢k, which tends to be tangent to the
manifold {g = gr} when the pair (x, Zk_TMk) is close to (z., Z7 TL,).

In this paper, the globalization of the SQP method follows the approach of Bon-
nans [2]. We take as merit function the nondifferentiable augmented Lagrangian

Opo(2) = f(x) + pTe(x) + olle(z)]|,, (2.18)

in which 4 € R™, ¢ is a positive number, and || - ||, is an arbitrary (primal) norm

on R™. This norm may differ from the {;-norm and it is not squared in ©, ,. We

denote by ||-]|, the dual norm associated to || || » with respect to the Euclidean scalar
product:

lul|, = sup u'v.
llollp=1

The penalty function ©, , is convenient for globalizing the SQP method for at

least two reasons. On the one hand, the penalization is exact, provided the ezaciness
condition

=Ml <o (2.19)

holds (see for example Han and Mangasarian [15], and Bonnans [2]). On the other
hand, the Armijo inequality using this function accepts the unit stepsize asymptoti-
cally, under some natural conditions (this is analyzed in Section 5, see also [2]).

We recall that (¢ o ¢) has directional derivatives at a point z, if ¢ is Lipschitz
continuous in a neighborhood of ¢(z) and has directional derivatives at ¢(z), and if
¢ has directional derivatives at . Furthermore, (¢ 0 ¢)'(z; h) = ¢'(¢(2); ¢'(x; h)). In
particular, due to its convexity, a norm has the properties of function ¥ above, and
since f and ¢ are supposed smooth, ©, , has directional derivatives.

We conclude this section by giving formulae for the directional derivatives of ©, ,
and by giving conditions for having descent directions. Let d be a vector of R”



satisfying the linear constraints c¢(z) + A(x)d = 0. The directional derivative of @ ,
at z in the direction d is given by

Ol o(xid) = Vf(z)'d— p"c(x) — oflc(x)]|, (2.20)

(for the differentiation of the term with the norm, use the very definition of directional
derivative, see for example [12]). For any multiplier A, we then have

Ol o (1) = Val(z, ) Td + (A = p)Te(z) = o|e(2)]] .- (2.21)

Therefore, if d is a descent direction of the Lagrangian function at (z,)), in the
sense that V €(z,A)'d < 0 (which in particular holds for the direction dj when
(2,A) = (2, AF")), then d is also a descent direction of ©,, at z provided the
descent condition

A= sll, <o (2.22)

holds (compare with the exactness condition (2.19)).

3 The approach

This section describes our quasi-Newton version of the SQP algorithm in a global
framework. The aim we pursue is to develop a consistent way of updating the positive
definite matrix M}, using convenient vectors 7y and 6.

3.1 Computation of ~;

As we said in the introduction, we take the point of view to force My to be an
approximation of the Hessian of the augmented Lagrangian. This is equivalent to
considering the problem

min  f(z) + 5le(z)]|?

st. c(z)=0, z€Q,

for some r > 0. This problem has the same solutions as problem (1.1) and has a
Lagrangian whose Hessian at (2., As) is

LT =L, +rAJA..

It is well known that when (1.4) holds, L] is positive definite when r is larger than
some threshold. Therefore, it makes sense to force M} to approach L] for some
sufficiently large r and to keep its positive definiteness.

For this purpose, we would like to have for some r; > 0:

yp o~ LT6p o~ L8 + rp A Apby.
Using successively (2.4), (2.6), and (2.8), we get

Loy = Z0Z;7 "L.ép+ AFALTL 8
~ ZIVgle, — AV,
~  Z(gker — gr) — AL Qe — M), (3.1)



provided
(Sk > T4l — Tk

This approximate computation motivates our choice of v, which is
_ T T T
Ve = Zp (k41— k) — A Akt1 — Ap) + ri Ay Apby. (3.2)

This choice is very close to the value given by formula (1.11), which is used by Byrd,
Tapia, and Zhang (BTZ for short). The main difference is that ’yﬁ is split in two
terms for reasons that are discussed now. For this, let us look at the form of the
scalar product 7,;rék, which we want to have positive:

Y86k = (9he1 = 98) Zrbk — (o1 — Ae) TARS + 1ol Apde]|*. (3.3)

When Apér # 0, it is clear that the curvature condition (1.8) can be satisfied by
choosing ry sufficiently large. Remember that when Aéy is close to zero, the BTZ
approach needs a back-up strategy. For our form of v, Axér = 0 implies that

Ve bk = (gr+1 — gr) ' Zk6.

A possible way of satisfying the curvature condition in this case would be to choose
the next iterate z41 such that g,L_leék > g;—Zkék. We believe, however, that this
may not be possible at iteration where A6 # 0, because Z;6r may not be a reduced
descent direction (meaning that g;—Zkék may not be negative) Now when Apé, =0
and & is parallel to the SQP direction dj, we have ¢, = 0 and, from (2.15), di
reduces to dp = =7, Hypgr = 7}, dek, which implies that Zpdy = dek Therefore,
by forcing the mequahty R R
Ii 1 Zdi > g Zedy,

the curvature condition can be fulfilled when Ayé; = 0. The important point is that,
as we shall see, it is always possible to realize this inequality, even when ¢ # 0,
because Zd = —Hpgr 1s a reduced descent direction (g,Idek < 0). The piecewise
line-search (PLS) technique introduced for reduced quasi-Newton methods in [11] and
extended in [12] is designed for realizing this inequality.

One can view our update scheme of M}, as follows. Multiplying both sides of L7¥|
the matrix M} has to approach, by the left hand side of (2.14) evaluated at « = z.
and using the decoupling identity (2.17), we obtain

L = 21727 0,27 7, + ATJ(A7 TL AT + rpD)A,.

We see that, since the cross-term g*_ TL7* Z7 vanishes, the positive definiteness of L7*
can be obtained from that of Z; TL,Z_ (recall assumption (1.4)) and by forcing that
of (EITL*A*_ + 1) with a sufficiently large r;. This decomposition in longitudinal
and transversal components is met again in the tools used to form 7. The PLS takes
care of the case when 6 is tangent to the constraint manifold by finding a suitable

point zp41, while the setting of r; is helpful for a displacement 6 in the range space
of A, .



3.2 Guiding path

From the discussion above, a central point of our algorithm is to find the next iterate
Zp41 in order to get, in particular, the following reduced Wolfe condition

Iip1 Zrdy > wagg Zydy, (3.4)

for some constant wy € (0, 1).

Contrary to the unconstrained case, condition (3.4) may fail, whatever point &j41
is taken along the SQP direction di. On the other hand, Proposition 3.2 below shows
that along the path pp defined by the following differential equation

PL(€) = Z7 (pe(€)) Zndi — A7 (pi(€))e(pr (€))
{ pe(0) = xp, (3.5)

one can find a stepsize &, such that the merit function ©, , decreases and the reduced

Wolfe condition (3.4) holds:
Ou,0(Pr(r)) < Ouo(xr) and 9(pr(€0)) Zrdy > wagyl Zidy. (3.6)

Note that the reduced tangent component of p}(§) keeps the constant value chk
along the path. This is further motivated in [12].

In the proof of Proposition 3.2, we will need the following lemma. We say that a
function ¢ is locally Lipschitz continuous on a set X if any point of X has a neigh-
borhood on which ¢ is Lipschitz continuous.

Lemma 3.1. Let o > 0 and ¢ : [0,a] — Q be a continuous function having right
derivatives on (0, «). Suppose that f and ¢ are locally Lipschitz continuous on Q and
have directional derivatives on ¢((0,a)). Then there exists @ € (0, &) such that

Ou,0(8(a)) = Ou,0((0)) < @O}, ,(¢(@); ¢'(@; 1)).

Proof. Since ¢ is locally Lipschitz continuous on €, so is ||¢(+)||,. Furthermore, by
the hypotheses on ¢ and the convexity of the norm, ||¢(-)||» has directional derivatives
on ¢((0, «)). Therefore, with the hypotheses, we deduce that ©, , is locally Lipschitz
continuous on €2 and has directional derivatives on ¢((0, «v)). Now with the properties
of ¢, we see that @, , o ¢ has right derivatives on (0, &) and that for any @ € (0, a):

(Ouo00) (@;1) =0, ,(d(a); ¢'(@; 1)).

On the other hand, the function ©, , o ¢ is continuous on [0, @] and, since it has
right derivatives on (0, «), there exists @ € (0, «) such that

(Ou0 08)(a) = (B0 0 9)(0) < a0 0 6) (@3 1).

(see for instance Schwartz [26, Chap. III, § 2, Remarque 11]).
Combining this inequality with the preceding equality gives the result. a



Proposition 3.2. Suppose that the path £ — pp(€) defined by (3.5) exists for suffi-
ciently large stepsize € > 0. Suppose also that f and ¢ are continuously differentiable,
that ©, , is bounded from below along the path py, that [|AZ"(pr(§)) —ull, < o
whenever py(€) exists, that My, is positive definite, and that ws € (0,1). Then, the
inequalities in (3.6) are satisfied for some stepsize & > 0.

Proof. To lighten the notation in the proof, we denote by (d(&), A(§)) = (dZ” (pr()),
A7 (pr(€))) the primal-dual solution of the quadratic subproblem

min  Vf(pe(€))Td+ $dTMyd
st e(pe(€)) + Alpe(£))d = 0.

The first order optimality conditions give

Ve l(pr(£), A(E)) = —Myrd(§),
and d(£) can be written (see (2.13))

o~

d(§) = =27 (pr(&) Hr (px(€))9(pe(€)) — AL (pr(€))e(pr (€))-

Let us show that, when the second inequality in (3.6) or reduced Wolfe condition

does not hold for &, = &, then

0., (px(&); Pp(§)) < —wagy Hygp.- (3.7)

Using successively (2.21), the hypothesis [|A(§) — p||, < o, the optimality condition
above, the form of d(&) and p/,(¢), the identity (2.16), and the positive definiteness of
My, we get

O}, (P (€); P (€))

= Val(pr(€), M) DL (&) + (ME) — 1) Te(pe(€)) — olle(pr(6))]] -
< Val(pr(€), ME)) TP (€)

= —d(&)"Mypi ()

= —g(pr(€) THrgr — c(pe(€)TA; (pr(€)) "MK AL (pr(€))e(pr (€))
< —g(pr(€)) T Hige-

Therefore, when the reduced Wolfe condition does not hold, we have (3.7).
On the other hand, we see by using Lemma 3.1 with ¢ = p; that, as long as the
path py exists, for any £ > 0, one can find ¢ € (0,¢) such that

Ouo(Pr(€)) — Ou o (ar) < €07, ,(Pr(€); P4 (8)).

Therefore, if the reduced Wolfe condition is never realized along the path pg, we would
have by (3.7)
eu,a(pk(g)) - Gu,o(rk) < _ngg;—Hkgk, (38)
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which would imply the unboundedness of the merit function along this path and would
contradict the hypotheses.

At the first stepsize & > 0 at which the reduced Wolfe condition is satisfied,
inequality (3.8) shows that the merit function ©, , has decreased. This concludes the
proof. a

The inequality |[A7"(pe(€)) — ||, < o used as hypothesis in the previous propo-
sition can be compared with the descent condition (2.22).

3.3 Outline of the PLS algorithm

The success of the path pj defined by (3.5) suggests to search for the next iterate
zr4+1 along a discretized version of this path. Taking a precise discretization may
not succeed and would be computationally expensive. Also, we propose to take as
often as possible a unit stepsize along the directions obtained by an explicit Euler
discretization of the differential equation (3.5). With this technique, the search path
becomes piecewise linear. It is proved in Section 4 that the search along this path
succeeds in a finite number of trials.

The piecewise line-search (PLS) algorithm generates intermediate points zy, ;, for
i=0, ... 1, with 2 o = 2 and 2 ;, = zr4+1. We adopt the notation f; = f(zr ),
Viki = V(@ri), cri = c(@r), Zg; = 27 (wra), Ay, = A7 (@r,), A ; = A (Bh4),
and 2;“- = Zk(rkyz) The iterations of the PLS algorithm, computing zj ;41 from
zy i, are called inner iterations and their number is denoted by 1.

The point z ;41 is obtained from z; ; by

Thit1 = Tk + Ok idr 4, (3.9)

where the stepsize oy ; > 0 is determined along the direction

o~

dri = —Zg ;Hrge — Af jCryi- (3.10)

This direction is obtained by evaluating the right hand side of (3.5) at a discretization
point zy ; of the path pi. The stepsize is chosen such that the following two conditions
are satisfied for o = ay, ;:

Tp; + ady; €9, (3.11)
Our,on,i(Zhi + adr i) < Opy o (210) w100, o (k35 dr i) (3.12)

Condition (3.12) imposes a sufficient decrease of the merit function and will be called
the Armujo condition.

At each inner iteration ¢, the penalty parameter o1 ; may need to be adapted so
that dj ; is a descent direction of @, ,, ; at z; ;. An adaptation rule will be given in
Section 4.

Next the reduced Wolfe condition

g(l‘k,i+1)T2kdk > wagn Zdy, (3.13)
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is tested. If it holds, the PLS is completed and i is set to ¢4+ 1. Otherwise, the index
t is increased by one and the search is pursued along a new direction dj ;.
From the description of the algorithm, we have

ir—1
T+l = Tk = Tk + g ak,idk,%
i=0

It is interesting to compare the PLS algorithm with a skipping rule strategy (no
matrix update when 'y,jék is not sufficiently positive). Indeed, the intermediate search
directions dj, ; are close to the SQP direction at xj ;, with two differences however.
First, the matrix M} is kept unchanged as long as the reduced Wolfe condition is
not satisfied, which is similar to the skipping rule strategy. On the other hand, the
reduced gradient used in these directions is also kept unchanged. As we will see
(Theorem 4.4), this gives a chance to the matrix to be updated.

3.4 Computation of ¢,

The choice of 8 is governed by the necessity to have 6, ~ zpy1 — i, as required by
the discussion in Section 3.1, and the desire to control closely the positivity of v, &
when Apér = 0. We have already observed that when Ayé; = 0,

Ve bk = (gr4+1 — 98) ' Zk6r,

so that r cannot be used to get v, 8 > 0.

Suppose that we choose 6y = zr4+1 — . Then, from the identity above, we have
a6k = (gk+1—9%) "Zr(2k 41— k), and it is not clear how the reduced Wolfe condition
(3.4) can assure the positivity of 7,:—6k, since 41 — & 1s not parallel to dy. For this
reason, we prefer to take for é; the following approximation of zp41 — g:

§ = —aiZ; Hygr —atA; e (3.14)
ix—1 R
~ E g (—Z;;Z-Hkgk - A,;Z-Ck,i)
j=0
= Tr41 — Tg-

In (3.14), the longitudinal stepsize o and the transversal stepsize o are defined by

ir—1 ix—1
ai = g ap; and ap = E akyie_f"’i, (3.15)
=0 i=0

with & ; = Z;;E ar,j. The form of aj aims at taking into account the fact that
the value of ¢ at x; is used in the search directions dj ;, while only ¢ is used in
8. It is based on the observation that along the path pj defined by (3.5), we have
c(pr(€)) = e €ci (multiply both sides of (3.5) by Ax(pr(£)) and integrate). After

discretization: cg ; ~ e~ Eric,

12



To check that our choice (3.14) for é; is appropriate, suppose that A, = 0.
Then, we have ¢ = 0, hence 6 = a7, Z;dy, and this allows us to write

(9k+1 — 9) " Z16s
af(ges1 — 9r) Zrdy
> 0,

i B

by the reduced Wolfe condition (3.4). By a continuity argument, one can claim that
(941 —gk)TZkék is also positive when x}, is close to the constraint manifold, provided
the stepsizes are determined by processes depending continuously on zj and (3.4) is
realized with strict inequality (in this case, the number of inner iterations in the
PLS algorithm does not change in the neighborhood of a point on the constraint
manifold). In the algorithm below, we shall not impose strict inequality in (3.4),
because we believe that this continuity argument is not important in practice.

The conclusion of this discussion is that for any £ > 1, one can find a (finite) 7, > 0
such that 'y,jék > 0, either because Apér # 0 or because Arér = 0 and ’y,jék > 0 by
the reduced Wolfe condition (3.4).

3.5 Computation of r;

Formula (2.10) shows that only the part Z~(2)"M}, of M} plays a role in the de-
termination of the SQP direction and that this direction is well defined provided
Z~(2) "My Z~(z) is nonsingular. In this case, because of (2.1), adding a positive mul-
tiple of A;Ak to My does not modify the SQP direction. In our case, r; is aimed at
forcing Mgy to approach the Hessian of the augmented Lagrangian L. + 7 A]A,.
But since rp intervenes nonlinearly in the matrix My4q via the vector v, and the
BFGS formula (1.7), its value affects dg41. This discussion suggests, however, that
the value of r; could be set from considerations based only on the matrix update.

In the algorithm below, we choose 7 in order to minimize a measure of the con-
ditioning of the matrix Mj41. This measure is the function

tr M

w(M) = det M1/

introduced by Dennis and Wolkowicz [7]. Interestingly enough, minimizing w(M)
on a subset § of the set of positive definite matrices is equivalent to minimizing in
(¢, M) € (0,+00) x S the function ¥(¢M), where (M) = tr(M) — Indet(M) is the
conditioning measure introduced by Byrd and Nocedal [3]. In both cases, one tries
to find the matrix M € 8, in a certain sense the closest to the set {¢I : { > 0} of
positive definite matrices with unit condition number.

The next proposition analyzes the problem of minimizing w(Mjy41) with respect
to rg.

Proposition 3.3. Let 1, 6, and 7 be vectors in R™ such that n'6 > 0 and let y(r) =
¥+ rn, where r is a scalar parameter belonging to the interval R = {r: 'y(r)T(S >0} =
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(=7T76/nT6,4+00). Let M be a positive definite matriz and let M(r) be the matriz
obtained by the BFGS formula, using vy(r) and é:

MasTM  (r)y(r)T

M(r) =M - S5+ =0

Then, the function r — w(M(r)) is uniquely minimized on R by

7—57s
T= 1
" nTe (3.16)
h
where . _|_(2+b)l c1 b n+1e
=a a 2 Q= — — —
' 2(n —1)es’ n—1cy’
ST 2 ~T ~T 2
SN | Mé]] 7n 2 70 lInll
co ||7( 77T5)|| y G r STMé6 + (77T6 ””H (nTé)z)a C2 (77T(5)2

Proof. Let us show that r — w(M(r)) is pseudoconvex on R, which in particular
implies that any stationary point is a global minimizer (see [18]). By using

M) ()l
tr M(r)=tr M —
M(r) = tr §TME T ()76
and (see [19])
_ ()7
det M(r) = RITT det M,

we have tr M (r) = ¢(y(r)76), where @(t) = < + ¢1 + ¢t with the ¢; given in the
statement of the proposition. Since ¢g is nonnegative, ¢ is convex on (0,+00) and,
because r — y(r)"é is affine, tr M () is convex on R. On the other hand, M(r) is
positive definite for » € R and r — det M(r) is affine. Hence the function w(M(-)) is
the quotient of a positive convex function and a positive concave function and thus is
pseudoconvex on R (see [18, p. 148]).

Now by using w(M(r)) = (g;—M]‘j)%d(’y(r)Té), with &(t) =t~ wp(t), a straightfor-
ward calculation shows that # is the unique stationary point of &(-) on (0, +00), hence

7 is the unique global minimum of w(M(-)) on R. O

As we said above, setting n = A;—Akék, § =6, and ¥ = 4, = Z,;r(gk.l_l —gr) —
A;—(Ak+1 — Ar) in Proposition 3.3, we take in our algorithm r; = 7 given by formula
(3.16). This value is not defined when 76y = [|Ax6]|? = 0. In this case, the
discussion in Section 3.4 has shown that setting r, = 0 is appropriate because the
PLS alone ensures the positivity of the scalar product 7,:—6k. From a numerical point
of view, the difficulty is now to decide when ||Aj6;]| is sufficiently small so that ry
can be set to zero in formula (3.2) while preserving the positivity of ’y,g—ék.

To appreciate the smallness of ||Ax6;||, we compare 7 6Z to 3162, where 62 and
6 are the longitudinal and transversal components of 6, respectively:

by = —apZ, Hpgy and ©6p = —aﬁg;ck.
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Suppose that the reduced Wolfe condition (3.4) holds. Then 76% = a%(gx4+1 — gx)"
Zrdy 1s positive and when

68 > — B¢ 6F, (3.17)
for some constant 3 € (0, 1), we have 516, = 7162+ 762 > (1 — B)77 6% > 0, so that
r can be set to zero. Therefore, we adopt the following rule for the update of r.

COMPUTATION OF 7y:

if (3.4) and (3.17) hold then r; =0,
else 7, = max(0,7y), where 7 is given by (3.16), in which n = AJ A8y,
6= (Sk, and ’7/ = Z}I(QIH—I — !]k) — A];r()\k-}—l — /\k)

In our numerical experiment, we set § = 0.1 in (3.17).

Since 9 aims at approximating L.ép (see (3.1)), (3.17) may be seen as a way
of comparing the curvature of the Lagrangian along 6; and 67. The rule above
for computing r; can be read as follows: if the curvature of the Lagrangian in the
transversal direction is positive or not too negative (with respect to the longitudinal
curvature), set ri to zero, otherwise use formula (3.16). One can also say that (3.17)
is a way of measuring the smallness of ||Ax6x||, since when this quantity vanishes,

6 = 0 and (3.17) readily holds.

4 The piecewise line-search

In this section, we make more precise the PLS algorithm outlined in Section 3.3, show
its well-posedness (Proposition 4.1), and prove its finite termination (Theorem 4.4).

4.1 Descent directions

A question we have not addressed so far is to know whether the i¢th inner search
direction dj ;, given by (3.10) and used in the PLS algorithm, is a descent direction
of the merit function. The following proposition shows that this property holds when
the penalty parameter o ; in the merit function is larger than a threshold easy to
compute. For this, as in Proposition 3.2, the multiplier 4 = py in the merit function is
compared to the multiplier AZ"(x}, ;) given by the quadratic program (2.9) at # = zj, ;.
The multiplier py is indexed by k because it will have to be modified at some iterations
of the overall algorithm below.

Proposition 4.1. Let 0 < i < i be the index of an inner iteration of the PLS
algorithm. Suppose that xyp, is not a stationary point, that My, s positive definite, and
that

oy + A7 (ki) — pell o < ok, (4.1)
where o is a positive number. Then dy; i1s a descent direction of Oy, o, . at Tp;,

meaning that ©' (2g,i;de,i) < 0. Fori=0:

HEk, 0k,

o, (k05 di0) < —dp Midy — o l|ck |, (4.2)

HEk,0k,0
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while for 1 <@ < iy:

Oy o (h i die i) < —wagld Hege — cf ;AL TMyAL jex s — oy llek |- (4.3)

Mk, Ok,
Proof. For i = 0, the search direction is d; o = di and the optimality conditions of
(2.9) give
Vxﬁ(mk, )\?P(l‘k))—rdk’o = —d;chkdk
Fori=1,...,i;—1, we have by the optimality conditions of (2.9), formulae (2.13)
and (3.10), identity (2.16), and the fact that the reduced Wolfe condition (3.13) is

not satisfied at zy ;:
Vel(eri AYT (25,:)) Tdi i
= —dp"(wri) T Mydy
= —(=Zp i Hiagr — Af e i) Mi(= 2 Higr — A o)
= _ng,ingk - Cl-cr,ig];;erE;;ick,i
< —(.dzg;—Hkgk — C;—’iggy;l—ngginkyi.
Then, from the estimates above, (2.21), and (4.1), we see that (4.2) and (4.3)
hold. Since zj is not stationary, dy o = d # 0 and (4.2) shows that dj o is a descent

direction of ©, -, , at . The strict inequality in (4.3) shows that for ¢ > 1, dy,; is
also a descent direction of ©,, », , at zp ;. o

The preceding result suggests the following rule for updating the penalty param-
eter 0 ;. Let us denote by o0} g, the value of the penalty parameter at the beginning
of the PLS. This value depends on the update of pj in the overall algorithm, which
will be given in Section 5.

UPDATE RULE OF 0y ;:

if oy 4+ (| A (2r,i) — prllp < oki—1 then op; =01,
Clse  aps = max(2op o1, 20 4 [N (ons) — el

It follows that either
Oki = Oki—1, (4.4)
or
g A (ki) — pellp > oxi-1 and  op; > 20 1. (4.5)

With this update rule, the search direction dj ; is a descent direction of O, 5,
at z1 ;. Then, by a standard argument, one can show that there is a stepsize o such

that (3.11) and (3.12) hold. This shows that the PLS algorithm of Section 3.3 is well
defined.
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4.2 Finite termination

Before proving its finite termination, we give a precise description of the PLS algo-
rithm. The algorithm starts at a point z; € Q with a positive definite matrix My. It is
assumed that the solution (dy, A7") of the quadratic program (1.5) is computed in the
overall algorithm and that the penalty parameter o satisfies the descent condition

o+ AT = pell, < o,

for some g, > 0 and a multiplier estimate p given by the overall algorithm. It is also
supposed that two constants w; and wy are given in (0,1) and a constant p is given

in (0, 1].

PLS ALGORITHM:

0. Set i =0, 0=z, dg,o = di, and o} o = 0.

1. Find a stepsize ay ; such that (3.11) and (3.12) hold for & = a ;. For this
do the following:
1.0. Set j =0 and ag ;0 = 1.
1.1. If (3.11) and (3.12) hold for o = ay,;;, set ag; = apij, Trit1 =

Zp,; + agdy;, and go to Step 2.

1.2. Choose ki j+1 € [p()zk%]', (1 — p)()tk%]’],
1.3. Increase j by 1 and go to Step 1.1.

2. If the reduced Wolfe condition (3.13) holds, set iy = i+ 1, Tp41 = Zp iy,
and terminate.

3. Increase i by 1, compute the multiplier estimate A\Z"(x}, ;) as the multiplier
of problem (2.9) with # = z} ;, compute dj ; by (3.10), update oy, ; according
to the rule given in Section 4.1, and go to 1.

The behavior of the PLS algorithm is analyzed in Theorem 4.4, the proof of which
uses the two lemmas below. We recall that a real-valued function ¢ is regular at z
(in the sense of Clarke [5, Definition 2.3.4]) if it has directional derivatives at z, and

if for all A,
é(x' 4+ th) — é(2")
. .

¢'(z; h) = limsup
r' =
t— 0+
Lemma 4.2. Suppose that f and ¢ are continuously differentiable on Q and let x € 2.
Suppose also that xy — x in Q, d, — d in R”, and o, — 0 in Ry. Then, with the
merit function O, , defined by (2.18), we have

0, , (1 d) = lim sup e (6 T @6ds) = Ouo(wi).
7 k— o0 o

Proof. Since ©, , is Lipschitz continuous in a neighborhood of  and dp — d, one
can readily substitute di by d in the equality above, so that we have to prove that
O, o is regular. This is the case for f(-) 4+ p'e(-), since this function is continuously
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differentiable (use the corollary of Theorem 2.2.1 and Proposition 2.3.6 from [5]).
For the regularity of the map ||c(-)||, use [5, Theorem 2.3.10] and the fact that the
convexity of the norm implies its regularity [5, Theorem 2.3.6]. a

Lemma 4.3. Suppose that My, is positive definite, that © € Q — A(z) is bounded,
and that the singular values of A(z) are bounded away from zero on Q. Then, x €
Q— A, () is continuous and bounded.

Proof. We have already seen that u = —g; (z)e(x) is the solution of the quadratic
subproblem (2.9), in which V f(z) is set to zero. Therefore there exists a multiplier A
such that (u, A) is solution of the corresponding first order optimality conditions:

Miu+A(z)™ = 0
c(z) + A(z)u = 0.

Canceling A from these equations and observing that ¢(z) is an arbitrary vector, the
operator A; (z) can be expressed as follows:

A () = M7 A@) (A M AG) )
Then, the continuity and boundedness of 2,; follow from the hypotheses. a

Theorem 4.4. Suppose that f and ¢ are continuously differentiable on Q and that
A() and Z~(-) are bounded on Q. Suppose also that A(:) has its singular values
bounded away from zero on 2. If the PLS algorithm is applied from a point z;, € Q
with a positive definite matriz My, then one of the following situations occurs.

(#) The number of iterations of the PLS algorithm is finite, in which case:

(a) 241 € Q,
(b) at each inner iteration, the Armijo condition (3.12) holds,
(¢) the reduced Wolfe condition (3.4) holds at xp41.

(79) The algorithm builds a sequence {zy ;}; in Q and

(a) edther limsup,_ ., op; = 400, in which case limsup;_, . ||A7"(2x,i)
+00,

(b) or o = Gy for large i, in which case either lim;_.o, Oy, 7, (%) = —0c0
or {xy ;}; converges to a point on the boundary of 2.

Il

Proof. Since @kagk),(l’k,i;dk,i) < 0 (Proposition 4.1), conditions (3.11) and (3.12)
are satisfied for sufficiently small «, and thus the PLS algorithm does not cycle in
Step 1. It is also clear that when the number of inner iterations is finite, the conclu-
sions of situation (%) occur.

Note that if g5 = 0, then fkdk = —Hpgr = 0. In this case, the reduced Wolfe
condition (3.13) is trivially satisfied and the algorithm terminates at the first stepsize

a0 satisfying conditions (3.11) and (3.12).
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Suppose now that (i) does not occur, then g # 0 and a sequence {zy ;}; is built,
such that for ¢ > 1:

T € Q, (4.6)
Ourons (Thi+1) < Opy o (210) F w1k O, o (Tri5dr i), (4.7)

and N R
9(21 i) " Zrdy < wagy Zidy. (4.8)

Due to (4.4) and (4.5) it follows that either the sequence {o} ;}; is unbounded,
which corresponds to conclusion (i4-a), or there exists iy such that oy ; = op 3, = T
for all i > #g. It remains to show that in the latter case, the alternative in situation
(#i-b) occurs. Up to the end of the proof, we simply denote by © the merit function
O, 7. Let us prove situation (ii-b) by contradiction, assuming that the decreasing
sequence {O(zy ;)}i is bounded below and that {z;;} does not converge to a point
on the boundary of Q.

Inequality (4.7) implies

O(zk,i41) < O(xp4,) + w1 Z ap 10" (25,1, dk 1)

I=ig
But, by the positive definiteness of M}, and (4.3)
O (zpi;dr ) < —wagp Higr — ayllcr il »-

The two latter inequalities, w; > 0, and our assumption on the boundedness from
below of {©(zy ;)}; imply the convergence of the series

Zakﬂ' and Zakyiﬂck’iﬂp. (49)

i>0 i>0

In particular, a3 ; — 0.
By definition of z; ; we have

i
ST T
Tpiy1 = Tk + E (_Olk,IZk’I Hygr — ak,lAkJCk,l) .
=0

Since Z7(-) and E;() are bounded on Q (by hypothesis and Lemma 4.3), the con-
vergence of the series (4.9) implies that the series above is absolutely convergent. It
follows that the sequence {z} ;}, converges to a point Z, which by our assumptions

must be in €. Therefore, using the continuity of Z~, ¢, and 2; (Lemma 4.3)
dk,i — Ek Ea (Ek)Hkgk — A\;(fk)c(fk)
In Step 1.0, the algorithm takes aj ;o = 1 and we have ap ; — 0. Therefore, for

all large 4, there must exists some index j; such that ay; € [pagij;, (1 — p)ar, .-
This means that either (3.11) or (3.12) is not verified for & = a5 j,. But for 7 large,
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condition (3.11) holds for & = a4 j,, because xy ; — T € Q, {dj ;}; is bounded, and
ap,;j; — 0. Therefore, for all large ¢, it is the Armijo condition (3.12) that is not
satisfied for & = o ; j,. This can be written

< Oz, + ap,ijdri) —O(z,i)

Ck,iji

w10 (zp,i; d i)

When i — oo, the form of ©'(xy ;;dg ;) (see for example (2.20)) shows that the left
hand side of the inequality above converges to w;©'(Zy; dy,). For the right hand side,
we use Lemma 4.2, so that by taking the limsup;_ ., in the inequality, we obtain
w1®’(5k;3k) < @’(Ek;ﬁk). Since wy < 1, this implies @’(Ek;gk) > 0.

On the other hand,

O (2,5 i) < —wagg Higr — agllerills-
Taking the limit in this inequality when ¢ — co and recalling that gz # 0, we obtain
Gl(fk;gk) < _WZglIHkgk — aplle(@p)ll» <0,

a contradiction that concludes the proof. a

5 Convergence results

In this section we give a global convergence result, assuming the boundedness of the
generated matrices M} and their inverse. Despite this strong assumption, we believe
that such a result is useful in that it shows that the different facets of the algorithm
introduced in the previous sections can fit together.

The results given in this section deal with the behavior of the sequence of iterates
zy, so that it is implicitly assumed that a sequence {aj} is generated and therefore
that the PLS algorithm has finite termination each time it is invoked.

Recall that the value of the penalty parameter o} must be updated such that the
descent condition

o + A — pell, < o (5.1)

is satisfied. This corresponds to (4.1) with ¢ = 0. In (5.1), g, is a positive number
that is adapted at some iterations.

5.1 Admissibility of the unit stepsize

Admissibility of the unit stepsize by Armijo’s condition on the penalty function ©,, 5,
is studied by Bonnans [2], but in a form that is not adapted to our algorithm. Propo-
sition 5.1 gives a version suitable to us. Conditions for admissibility of the unit
stepsize by the reduced Wolfe inequality are given in Proposition 5.2. These results
are obtained by expanding f and ¢ about the current iterate zj. They are useful for
determining how and when the multiplier p; and the penalty parameter o3 have to
be adapted.
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Proposition 5.1 requires that the multiplier estimate AF" be used in the descent
condition (5.1). It also requires that up be sufficiently close to the optimal multiplier
and that the penalty parameter be sufficiently small. In other words, near the solution,
the merit function has to be sufficiently close to the Lagrangian function. This implies
that, in the overall algorithm below, py will have to be reset to AZ" and oy will have
to be decreased at some iterations.

Proposition 5.1. Suppose the f and ¢ are twice continuously differentiable in a con-
ver neighborhood of a local solution x, satisfying the second order sufficient condition
of optimality (1.3)—(1.4). Suppose also that vy, — x., dy — 0, w1 < 1/2, the descent
condition (5.1) holds, and

di (Mg — L7)di = o([|dx1*), (5.2)

in which v is a nonnegative scalar such that L7, is positive definite. Then, there exists
a constant £ > 0 such that when

[[ur — A < e and 0<op <,
and when k is sufficiently large, the unit stepsize is accepted by the Armijo inequality:
Our,on (T + di) < Oy oy (28) + w10}, o, (2r;dk).

Proof. Since d — 0, a second order expansion of f(zp + di) about j gives with

(1.6)

flo+ds) = fut Vet SdIV () + oldul?)

1
fe — di Mydy + (A7) Tex + §d;V2f(l‘*)dk + o([|dk ).

Similarly, for any component c(;) of ¢, we have with (1.6)

1
iy (xk + di) = SAEV e )dk + of[[de]*).

Combining these two estimates and using (1.6), (2.21), and the hypotheses on
and oy, we get

Oupon (2 + di) = Opy o4 (21) — w107, 5, (xk; di)
1
= —diMydy + (AF — )" e — onllenllp + i L

— 10}, g, (@i de) + (e = Adll + o2) O(del®) + of[|ds]?)

IN

Hk, 0k

+e0(|de[|*) + o[l 1*).

1 r
(1= w1)0), o, (exsdi) + ST Lldy — 5 leel}
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Now, splitting (1 —wy ) in (% —wi)+ %, using the fact that @;“ﬁok (xp;dp) < —d;—Mkdk
(see (4.2)), the nonnegativity of r, w; < 1/2, the positive definiteness of L] (which
with (5.2) implies that df Mydy, > C'||dg||?, for some constant C’ > 0), and (5.2), we

obtain

Oup,on (2 + di) = Opy op (1) —w10), 5, (zk;dp)
1 1
< (§-wr) (~dIMud) = 3T (M = 1) e+ <O(ds ) + o sl

< =Clidll” + cO(||de|*) + o(lldxI*),

for some constant C' > 0. Since the last right hand side is negative when £k is large
and ¢ is sufficiently small, the proposition is proved. a

Proposition 5.1 suggests a way of updating the parameters pg, op, and g: pg
should be close to AZ” and o}, should be kept small. The latter condition may require
to decrease g,.

In order to ensure convergence, we allow pj to change only when the iterates
progress sufficiently to a local solution. This is measured by the following quantity:

ex = min(llgel] + leell, ce-1), k>0 (5.3)

(e21 = ||gol] + llcollz)- It follows that the sequence {e;} is nonincreasing and that
lim .o ex = 0 if and only if lim infy_.  ||gx|| + ||ck]|» = 0.

Now, suppose that a new iterate zj41 has been computed by the PLS algorithm.
Recall that ay o is the first stepsize along the direction d; at which the Armijo condi-
tion (3.12) is satisfied. Our update rule for o, uses two constants a; > 1 and a > 1.
Let k' be the index of the last iteration at which g, has been updated. Initially &’ is
set to 0 in the overall algorithm.

UPDATE OF g:

if epp1 <epfar and apo # 1
then k'=k+1and g, =0a;/as
else o, =0

In other words, g, is decreased when the iterates progress to a local solution, although
the unit stepsize is not accepted along the direction dy.

Recall that the value oy ;,—1 used in the update rule below is the value of the
penalty parameter at the end of the PLS. Let ag > 1 be another constant. The rule
below updates an index k", initially set to 0 in the overall algorithm. It is the index
of the last iteration at which py has been set to A7".

UPDATE OF pp AND o

if epy1 <epnfaz then k' =k+1, ppy1 = )‘?-]I:-l’ and op41 = 0p 49,
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else pry1 = pp and set 41 according to:

if gy AL — Hktillp S k-1 then opyr = ok 4,1,
else op41 = maX(QUk,ik—lalkH + ||>‘?-T-1 — pie+1lp)-

Note that, when pj is unchanged, the parameter oy is updated by the same rule as
oy, in Section 4.1. By using the notation 041, _1 = 0% 4,1, it follows that as long
as py is kept constant, the sequence oy _1, k0 (= Ok), Ok1, -+ ) Okt1,—1, Tk+1,0
Ok+11,- -, s nondecreasing and satisfies (4.4) or (4.5).

Let us consider now, the admissibility of the unit stepsize for the reduced Wolfe
condition.

Proposition 5.2. Suppose that g is continuously differentiable in a conver neigh-
borhood of x. satisfying the optimality condition (1.3). Suppose also that zp — .,
d, — 0, wy >0, {My} and {Mk_l} are bounded, cx, = O(||gx||), and

(2 ™My = 27T L)ds = of||d]). (5.4)

Then, when k is sufficiently large, the unit stepsize is accepted by the reduced Wolfe
condition: R R
g(xr + di) " Zrdy, > wag(ar) Zidy.

Proof. From (1.6) we have Zk_TMkdk = —g; and by the hypotheses on M} and cg,
dr = O(||gk||). Then, using (2.6) and next (5.4), we obtain

g + Vg(z.) Tdy, + o(||dx]))
—(Z; "My — Z7 "L )di + o(||di )

o(llgl)-

Since chk = —Hypgr, = O(||gx||), we finally have

g(zr + di)

g(xr + dk)Tdek — wagl Zpdy = wagl Hegr + o|lgx|*),

which is positive for k large, by the uniform positive definiteness of { H} and wy > 0.
O

Proposition 5.2 suggests to use a criterion for deciding when launching the PLS
algorithm. Suppose indeed that, contrary to what is required by the hypotheses of
this proposition ¢ # O(]|gx||) or equivalently that a subsequence of {||gxl|/l|cx|l}
tends to zero. This means that the iterates x; approach z, tangently to the reduced
gradient manifold {g = 0}. In this case, the longitudinal part of M is less important
and updating My by adjusting the parameter r; only looks perfectly adequate. It is
also feasible, since ¢ # 0 for this subsequence. On the other hand, Proposition 5.2
tells us that using the PLS algorithm in this case may prevent the unit stepsize from
being accepted at each iteration, which may prevent superlinear convergence from
occurring. These two remarks suggest not launching a PLS in this case. Therefore,
choosing some constant K > 0, we adopt the following criterion.
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PLS CRITERION:

if ||ex|| < K|lgr|| then call the PLS algorithm,
else perform only the first inner iteration of the PLS algorithm.

It follows that whenever ||cg|| > K||gk||, the next iterate zy41 is set to zy 1, which
only satisfies condition (3.11) and the Armijo inequality (3.12), but not necessarily
the reduced Wolfe condition (3.4).

Note finally that the conditions (5.2) and (5.4) on the updated matrix My, used
in Propositions 5.1 and 5.2 are both satisfied when (M} — L% )d; = o(]|dg]||), which is
a reasonable condition to expect from the quasi-Newton theory.

5.2 Global convergence

We are now in position to give a complete description of our algorithm.

OVERALL ALGORITHM

0. Choose some constants a; > 1 (i = 1,...,3) for the update of up, o,
and ¢;; a constant K > 1 for the PLS criterion; constants w; € (0, %),
wa € (0,1), and p € (0, %] for the PLS algorithm; and a constant 3 € (0, 1)
for the update of ry.

Choose a starting point zg € Q and an initial symmetric positive definite
matrix My € R?*",

Set k = k' = k" = 0 (the indices k' and k" are reset by the update rules of
Kk, Ok, and o}).

Solve the SQP subproblem (1.5) (with k£ = 0) giving (dg, AF").

Choose g, > 0, set pg = AF" and o = oy.

1. if |||l € K|lgk|| then call the PLS algorithm,
else perform only the first inner iteration of the PLS algorithm.
This gives a new iterate zp41.

2. Compute 7 and 8§ by formula (3.2) and (3.14), where ry is obtained as
described in Section 3.5, and update My4q by the BFGS formula (1.7).

3. Solve the SQP subproblem giving (dg+1, Agy)-

4. Update pgy1, 041, and op g by the rules given in Section 5.1.

5. Increase k£ by 1 and go to 1.

Below, we denote by dist(z, 2°¢) the Euclidean distance between a point z and the
complementary set of €2.

Theorem 5.3. Suppose that Q is convezx, that f and ¢ are differentiable on Q with
Lipschitz continuous derivatives, and that Z~(-) is bounded on Q. If the overall algo-
rithm above generates a sequence {xy}, using a bounded sequence of matrices { My}
with bounded inverses, then one of the following situations occurs.

(7) The algorithm converges in the sense that

lim inf || ge | + [|ex|,.) = 0.
— 00
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(#0) There exists ko such that puy = p, for all k > ko and

(a) etther the set {og;: k> 0,0 <i< iy} is unbounded, implying that the set
{AF (xr:) k> 0,0 <i< i} is also unbounded,

(b) or there exists k1 > ko such that o ; = o, for allk > k1 and 0 < i < i,
in which case ©, ,(xy) — —oo or liminfy_, o dist(zg, Q%) = 0.

Proof. To prove the first part, suppose that conclusion (i) does not occur. By the
definition (5.3) of ¢, this is equivalent to limp_ €x > 0. The update rules of puy,
o and ¢, given in Section 5.1, and (4.4) and (4.5) imply that there exists an index
ko, such that for all k > ko, ur = u, o, = ¢ and the sequence oy o(= o), 0%,

ey Okin—1, Ok41,0(= Okt+1), Ok41,1, --., is nondecreasing. This sequence is either
unbounded, in which case conclusion (#i-a) follows, or there exists k1 > kg such that
or; =0 forall k >k and 0 <7 < ip.

It remains to prove that in the latter case the alternative given in (7i-b) holds.
This is done by contradiction, assuming that ©, ,(zy) is bounded from below and
that lim infy_ o dist(zg, 2°) > 0.

Since the Armijo inequality (3.12) holds at each inner iteration of the PLS algo-
rithm (conclusion (i-b) of Theorem 4.4), we have

ix—1
Ouo(zps1) < Opolzp) +wi Z ar,iO) (k5 de i)
i=0

Note that this inequality holds even if the PLS criterion is not satisfied (Step 1 of the
overall algorithm). Recall that in our notation, zy o = 3 and d o = di. By using
the fact that dj ; is a descent direction of ©, , at z} ;, the previous inequality implies

@u,o(rk+1) S eu,o(xk) + Wlak,oe'/uyg('rk; dk)

From inequality (4.2) we have O/, ,(z¢;d;) < —d Mydy — a|lex]|,, so that the in-
equality above implies

0 < wiag,o(df Mpdy, + llckll,) < Ouo(xr) — Opo(Tpt1).

Summing over k£ and using the boundedness assumption on ©, ,(zx), we deduce the
convergence of the series

Zak,od;Mkdk < +oo  and Eak,OHCkHP < +oo. (5.5)
k>0 £>0

If liminfay o > 0, then the convergence of these series and the boundedness of
{J\Jk_l} would imply that dy — 0 and ¢; — 0, and since g, = —Zk_TMkdk (see (2.16))
we would have (||gx||+]|ex||») — 0, in contradiction with our initial assumption. Thus,
a subsequence {ayo}rex converges to 0. This means that either condition (3.11) or
the Armijo condition (3.12) is not accepted for & = a0, < p~ a0 (Step 1 of the
PLS algorithm). This can be written

2k + k0,5, dx € Q (5.6)
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or
®H70($k + ak,o,jkdk) > @%U(‘xk) + wlakyoyjk@;yg(ﬁk; dk) (57)

Let us show that (5.6) does not hold for large k. Using the convergence of the
first series in (5.5), the boundedness of {Mk_l}, and ay o < 1, we have ay o||dg|| — 0.
But for k € K, a0, < p~lako, so that ag o, ||de|]] — 0, which with (5.6) implies
that liminfdist(zy, Q°) — 0, in contradiction with our assumptions.

Now, we show that (5.7) leads to a contradiction, which will prove the first part of
the theorem. Expanding f and ¢ at the first order and using the Lipschitz continuity
of Vf and Ve, we obtain the following estimates, when a € (0, 1] and z + ady € Q:

fa, + ady) < fr + oV T dp + Ca?||dy|?,

ple(zy + ady) < (1 —a)u'ep + Ca?||def?,

and
lle(er + adp)ll, < (1= a)llexll, + Ca®[ldi],

where C' denotes a constant independent of k. Then, we deduce
Ouoler+ady) = flzp+ady)+ p'c(zr + ady) + oflc(zr + ady)||,

fre+aVflde+ (1= a)uTep + (1= a)olleg||, + Ca®||dy]|?
Ouo(Tr) + a@;ho(mk; dp) + C’oz2||dk||2.

INIA

The last inequality and (5.7) imply
0< (1 — (.dl)@'/u’o(;l‘k; dk) + CakyoyijdkHQ.

Finally, using the inequality ©', ,(zx; dx) < —d] Mydy — o|ck||,, the boundedness of
{M; '}, and next a0, — 0, when k — co in K, we obtain a contradiction

0 < —(1 —wi)gllexll, — Cllde||* < 0.
This contradiction concludes the proof. a

We conclude this section by a result specifying the conditions under which the
unit step-size is accepted asymptotically in the overall algorithm.

Proposition 5.4. Suppose that f and ¢ are twice continuously differentiable and g is
continuvously differentiable on a conver neighborhood of a point . satisfying (1.3) and
(1.4). If the overall algorithm generates a sequence {xy} converging to ., such that
drp — 0 and (My, — L})dy, = o(||dg||) for some r > 0 such that L] is positive definite,
then, for sufficiently large k, there is only one inner iteration in the PLS algorithm
(i.e., iy = 1) and the unit stepsize is accepted by the Armijo inequality (i.e., ap o = 1).

Proof. Since z converges to a local solution of the problem, then g — 0 and ¢; — 0,
and thus ¢, — 0.
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Suppose now that ay o # 1 for a subsequence of iterates. Then, the update rule
of g}, implies the convergence of the sequence {g}} to 0 (it is here that the index k' is
useful). In the same way, the update rule of y; and o implies p, — A and o — 0
(usefulness of the index k). It follows from Proposition 5.1 that ay o = 1 for large
k, contradicting our initial assumption.

Also i, = 1 for large k, either because the PLS criterion does not hold or because
of Proposition 5.2. a

6 Implementation issues

In this section, we discuss some issues related to the implementation of the algorithm
described in the previous sections.

6.1 Using a QR factorization of AT

In our experiment, the matrices A~ (z) and Z~ (z) described in Section 2 are obtained
from a QR factorization of A(z):

A=) 27 (")) = v @),

where Y~ (2) and Z~ (z) are respectively n x m and n x (n — m) matrices, such that
(Y~(2) Z (x)) is orthogonal, and R(z) is an order m upper triangular matrix.
Clearly, the columns of Z~(z) span the null space of A(z), as desired. We choose as
right inverse of A(z) the Moore-Penrose pseudo-inverse A(z)T(A(z)A(z)T)~!, which
can be computed by

A=(z) =Y (z)R(z)"".

With this choice for Z~ and A~ it follows that Z(z) = Z~(z)".

6.2 Weighted augmentation

Byrd, Tapia and Zhang [4, p. 216] emphasize that, due to the augmentation term
A;—Ak in the vector 7, badly scaled constraints may have some negative effects on
the next updated matrix. These authors prefer using a weighted augmentation term
AJWyi Ay, where Wy, is an order m weighting matrix. They suggest to use Wy =
(A AT, because with the notation of Section 6.1

AW Ay = AJ(AgAD) T A, = VYT,

which is a well conditioned matrix.
It is clear that the same technique can be adopted in our algorithm. Therefore,
in our experiment we replace the augmentation term A;Ak o by Y Y, T
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6.3 Scaling the tangential direction

It is shown in [12] that the number of inner iterations in the PLS algorithm can be
reduced by using a scaling factor 7 ; > 0 on the longitudinal component of the inner
search direction dj ;. This leads to redefine the direction di ; as

~

dri = —Tr,iZy ;Hrge — Ap iCryi-

For i = 0, we set 7,0 = 1, so that when a unit stepsize is accepted (i = 1 and
apo = 1), a plain SQP step is taken and superlinear convergence of the overall
algorithm may occur.

With this change, the vector é;, is still given by (3.14), but the longitudinal stepsize
af has to be computed by

ir—1

Z 2 :
Qp = Ap Tk -
=0

It is not difficult to extend the finite termination result of Section 4.2 (Theo-
rem 4.4), when dj ; is given as above, provided 7 ; is maintained in a fixed interval:
0 <1 <71, <7y for all i > 0. The global convergence result (Theorem 5.3) is not
affected by the scaling factors 7 ;, since 73 ¢ = 1 and only the progress obtained by
first inner iteration of the PLS is used in the convergence proof.

6.4 Speeded-up PLS technique

There is another way of speeding up the PLS algorithm that is useful in practice to
reduce the number of inner iterations (this is discussed in [12]). It consists in resetting
the right hand side of the Wolfe inequality (3.13) to (.dgg;—Z»dek, when the current

iterate xp ; makes g;—igkdk more negative than at all the previous inner iterations.
Synthetically, it consists in replacing the reduced Wolfe condition (3.4) by the less
demanding inequality R R
Irip1Zrdy > wy min g Zdy. (6.1)
0<i<iy )

Since this inequality is more rapidly satisfied than (3.4), the finite termination result
(Theorem 4.4) is still valid. Also, the global convergence theorem still holds, since
the wolfe condition (3.4) plays no role in its proof.

Let us denote by I the greatest index ¢ realizing the minimum in the right hand
side of (6.1). When this condition is used in place of (3.4) and {}, # 0, the vectors 7
and 63 have to be modified. Aiming at having 6 ~ 41 — %1 1,, the same reasoning
as in Sections 3.1 and 3.4 shows that it is appropriate to set (we take into account
the suggestions given in Sections 6.2 and 6.3):

o = Zp (ke — gn) — AL Ckrr — M) + 1Yy, Vi bk

~

_ z — A —
bp = —ak,lka,zkagk_ak,lkAk,lkck,lka
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where a? , and af , are defined by
ke kil

ir—1 ir—1

z A —€x:
g, = E ag Ty and ap o, = E ay i€ 5’“,

i=lx i=l

with & ; = E;;h ay, ;. Note that when [ = 0 and 73 ; = 1, we recover the preceding
formulae (3.2), (3.14), and (3.15).
Observe finally that when Ay ;, 6 = 0, then ¢z ;, = 0 and we have

bk = (Gre1— 9k1e) Zha, Ok
= ag g (gr+1 — k1) Zidy
> 0,

by (6.1). Hence, one can always have ’y,jék > 0 by adjusting the value of ry.

7 Numerical experiment

Our experiments were performed on a Power Macintosh 6100/66 in Matlab (release
4.2¢.1) with a machine epsilon of about 2 x 1071%. We have taken the same list of test
problems as in the paper of Byrd, Tapia, and Zhang [4]. In each case, the standard
starting points (those given in [17, 25]) were used, except for problems 12, 316-322,
336 and 338, for which we have used zo = 107%(1,..., 1), since the Jacobian matrix
is rank deficient at the standard initial point zg = 0.

Three updating methods have been tested:

e Powell: Powell’s corrections, in which, at each iteration, 7y is set to v} given
by formula (1.10), with @ calculated as described after this formula (n = 0.1);

e BTZ: the Byrd, Tapia, and Zhang approach, in which 5 is given by formula
(1.11), the rules (1.12) and (1.13), with vgry = Berz = 0.01, and the weighted

augmentation described in Section 6.2;
e PLS: the algorithm presented in this paper.

All the methods use the same merit function (2.18), with || - ||, = || - ||1, and the
same technique to update the parameters p, o, and o. The constants, used by the
update rules (see Section 5.1), are set as follows: a; = 1.0001, a3 = 10, ag = 1.0001,
and gy = ||Aol|ec/10. The constant used in the Armijo inequality is set to wy = 0.01.
For Powell and BTZ algorithms, each stepsize aj is found by a backtracking line-
search along dg, as in Step 1 of the PLS algorithm. In Step 1.2 of the PLS algorithm,
quadratic or cubic interpolation formulae are used and we set p = 0.1. The constant
for the reduced Wolfe condition is ws = 0.9 and the one used in the PLS criterion
is K = 100]|co||/||gol|- Initially, My = I and the pre-update scaling v, 6; /||6¢||?I is
done before the first update by the BFGS formula. The stopping criterion for all the
methods is

llgellz + llekllz < etar(|lgoll2 + |lcollz), with eior = 1077,

29



Powell BTZ PLS

P n:m | ng/nf cr K2 ng/nf cr kg | ng/nf cr Ko ii
26 3:1 | 25/26 - 4. 25/26 4. | 25/26 1 5. -
43 4:2 | 11/12 1 1. 11/12 - 1. 9/10 0. -
46 5:2 | 36/40 - 6. 36/40 - 6. | 36/40 - 6. -
47 5:3 | 209/33 7 6. 26/29 2 7.]28/30 - 4. -
56 7:4 ** 5 13. 10/11 2 2. | 13/15 2 2. -
60  3:11 | 9/10 -1 9/10 - 1.|10/11 - 1. -
63 3:2 | 12/13 7 10. 9/9 2 2. 8/8 5 0. -
66 3:2 8/8 -1 8/8 -1 8/8 - 2. -
78 53 | 9/10 1 2 9/10 1. 8/9 1 1. -

79 5:3 | 12/13 1 2. 12/13 - 2. | 12/13 - 2.
100 7:2 | 14/17 -2 14/17 - 2| 12/15 - 2. -
373 9:6 * 7 20. 27/29 1 14. | 16/18 - 9. -
7 2:1 | 14/15 2 1. 18/19 2 1. | 10/10 1 1. 1
12 2:1 | 22/22 1 0. 28/34 1 0. | 20/20 2 0. 2
40 43 7/8 2 5. 9/9 1 8. /T 1 0. 1
61 3:2 ** 17 16. 42/53 5 1. | 18/18 7 1. 2
104 8:4 | 27/28 - 3. 27/28 - 3. | 25/26 - 3. 1
318 2:1 | 32/45 15 0. * 183 0. | 25/25 9 0. 1
319 2:1 Kk 20 Inf 40/66 10 1. | 25/26 12 1. 1
320 2:1 Kk 38 Inf 32/40 3 1. | 22/22 12 1. 2
321 2:1 *¥*x 157 Inf 31/37 3 2. | 29/35 16 1. 4
322 2:1 | 38/47 22 4. 28/33 3 4. | 23/25 10 3. 3
335 3:2 | 24/32 5 8. 25/31 1 6. | 23/29 7 2. 6
355 4:1 | 35/60 3 6. 24/34 2 2. | 18/21 - 2. 2
6 2:1 | 11/15 2 3. 9/10 1 2. | 12/12 1 1. 2
10 2:1 | 11/11 1. 11/11 - 1. | 11/12 1. 2
29 3:1 | 13/17 1 4. 9/9 1 1. | 12/12 - 1. 1
1 4:3 6/6 1. 6/6 -1 6/6 - 2. 1
77 5:2 | 19/20 - 1. 19/20 - 1. | 19/21 2 1. 2
80 53 7/7 -1 7/7 -1 7/7 1 1. 1
81 5:3 | 10/11 3 9. 9/9 2 9. | 11/11 3 2. 2
93 6:2 | 24/26 1 3. 26/28 - 3. | 27/29 - 3. 1
106 8:6 xx 7 12. * 2 11. * 2 0. 197
316 2:1 | 33/34 2 0. 34/42 4 0. | 32/36 2 0. 3
317 2:1 | 29/33 10 3. * 183 0. | 30/37 7 0. 5
336 3:2 | 31/32 1 3. 34/60 4 5. | 29/36 2 4. 6
338 3:2 | 35/37 24  11. | 128/334 7 9. | 31/40 10 5. 7
375 109 | 10/11 2 4. 99/268 7 3. | 15/19 6 2. 4
11 21 879 1. 3/9 T 1. | 10/13 - 1. 1
27 3:1 | 19/21 4 3. 18/20 - 3. | 29/36 1 3. 4
39 4:2 | 13/13 - 2. 13/13 - 2. | 20/26 - 2. 4
65 3:1 | 13/17 1 2. 11/11 1 1. | 15/23 - 1. 4
72 4:2 | 21/21 4 1. 21/21 - 1. | 26/26 - 1. 7
216 2:1 | 11/14 - 2. 11/14 - 2. | 17/26 2 0. 3
219 4:2 | 15/16 - 2. 15/16 - 2. | 28/38 8 2. 5

Table 1: Results.
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The results are presented in Table 1. The columns in this table are labeled as
follows: P is the problem number given in [17, 25], n is the number of variables, m is
the number of constraints, ng is the number of gradient calculations and constraint
linearizations (the main computation cost), nf is number of function evaluations, cr
is the number of corrections of y; (Powell’s corrections in algorithm Powell or r; > 0
in BTZ and PLS), k2 gives the logarithm in base 10 of the €5 condition number of the
matrix My at the last iteration, and ii is the number of extra inner iterations in the
PLS (the associated simulation cost is taken into account in the counters ng and nf).
A symbol ¥’ in the table indicates that the algorithm failed to find the solution in
less than 201 linearizations. Other failures are of two kinds: either the number of
backtrackings in the line-search exceeds 10 (symbol “**’) or the matrix My, is so badly
conditioned that dj, is not a descent direction (symbol “***’).

This experiment deserves some comments and allows us to draw some conclusions.
Note that we do not pretend that this numerical experiment reflects the average
behavior of the tested algorithms. It was mainly done to see whether our algorithm
could be implemented and to compare it with other techniques on a small range
of problems. Furthermore, the dimensions of the problems are very small, which
prevents us from drawing firm conclusions. With this in mind, one can however quote
the following points.

1. When there is no extra inner iteration in the PLS algorithm (first part of the
table), PLS performs as well as Powell and BTZ. In this case, the difference
between PLS and the two other techniques only lies in the computation of the
vector 7;. This indicates that our choice (3.2) of vector v is relevant.

2. In the other cases, and except the cycling observed in problem 106, on which all
the algorithms fails, the number of extra inner iterations used by PLS is always
small.

3. The last three parts of the table are classified according to the efficiency of PLS
compared with the two other techniques. The second part of the table gathers
the cases where the PLS technique reduces the overall computational cost, by
having the best counters ng and nf. For a large amount of the problems (third
part of the table), the performance of PLS is more or less the same as Powell or
BTZ. Finally, it is worth noting that the PLS technique does not always improve
the efficiency of the algorithm (last part of the table).

4. The technique for determining the augmentation parameter r in PLS by mini-
mizing a measure of the conditioning of the updated matrix (Section 3.5) makes
their condition number smaller in PLS than in the other algorithms.

5. Finally, regarding the usual counters (ng and nf), there is no clear winner or
loser, although PLS looks more robust in that it fails less often than Powell or
BTZ.
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8 Conclusion

This paper proposes a technique for maintaining the positive definiteness of the up-
dated matrices in the quasi-Newton version of the SQP algorithm for equality con-
strained optimization problems. The overall algorithm generates approximations of
the Hessian of the augmented Lagrangian, whose positive definiteness is obtained
via the realization of a reduced Wolfe condition and an adequate setting of the aug-
mentation parameter. The globalization is obtained by means of a nondifferentiable
augmented Lagrangian function as merit function. Finite termination of the search
algorithm, global convergence and admissibility of the unit step size are proved.

What is new in the proposed approach is the use of a piecewise line-search algo-
rithm, mimicing what is done for unconstrained problems. This algorithm takes care
of the positive definiteness of the matrices in the space tangent to the constraints.
We believe that this brings a conceptual improvement on the algorithm proposed by
Byrd, Tapia, and Zhang [4], with which our method has similarities.

The numerical experiment indicates that the proposed algorithm can be more
robust than existing approaches, although there is no clear improvement on the usual
counters.

Now, not all the facets of the algorithm have been studied and it is allowed to
think that a precise analysis of the possibility to have superlinear convergence of the
algorithm (such as in the papers [4] and [13]) may improve the algorithm. We plan
to undertake this study.
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