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Abstract. Monitors in Intensive Care Units generate large volumes of continuous data which can overwhelm
a database and result in information overload for the medical staff. Instead of reasoning with individual data
samples of one or more variables, it is better to work with the trend of the data i.e., whether the data isincreasing,
decreasingor steady. We have developed a system which abstracts continuous data into trends; it consists of three
consecutive processes:filtering which smooths the data;temporal interpolationwhich creates simple intervals
between consecutive data points; andtemporal inferencewhich iteratively merges intervals which share similar
characteristics into larger intervals. Storing trends can result in a reduction in database volume. Our system has
been applied both to historical and real-time data.
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1. Introduction

In many domains we are confronted with large sets of continuously sampled data. Reasoning
about the relationships between the consecutive individual measurements of one variable is
computationally expensive—and gets worse when several variables are interpreted together.
We agree with (Kohane and Haimowitz, 1993) when they say that: ‘The abstraction of
primary data into intervals over which a specified predicate holds is a central task in process
monitoring. It relieves the monitoring program of the complexity of having to repeatedly
reason about the relationships between each datum in potentially vast data sets.’ In some
domains a number of variables are measured and the interval between data samples can
be as little as a few seconds. Such large amounts of data can overwhelm a database so by
abstracting intervals over a group of data points we can reduce the volume of stored data.

In this report we propose an algorithm for deriving temporal intervals over which the
attribute with possible valuessteadyor, with different rates of change (slow, moderate or
rapid), increasingor decreasingholds; such an attribute will be called thetrend of the
data over the interval. In figure 1 for example, we might want to say that betweent1 and
t2 a signal was steady, and betweent2 and t3 it was rapidlyincreasing, and so on. It is
important to note that the end points of the intervals are not given in advance; they have to
be discovered by the analysis of the raw data.
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Figure 1. Generating temporal intervals from data points.

In considering time series data, two perspectives are possible:

• Historical: By this we mean that in analysing the data at a timet , we have access to data
both in the past and in the future relative tot .
• Real time:In this case, data is being added to the series as time passes, and our interest

is in developing a description of what is happening at that ‘leading edge’. We are not
concerned here with the absolute speed of the algorithms—i.e., we do not worry whether
they could keep up with the incoming data. We have only the constraint that when
processing the most recent data point, we have access to data which is relatively in the
past.

There is much in common in the two situations; the differences will be made clear. Temporal
data abstraction is only part of the task of intelligent signal analysis. Abstractions can be used
as the input to pattern matchers leading to higher levels of interpretation, can be displayed to
the user as graphical summaries or can be summarised textually. The abstraction techniques
reported here have been used in conjunction with a form of trend template (Haimowitz and
Kohane, 1996) on ICU data for data validation (removal of artefacts, e.g., transcutaneous
probe change) and the identification of abnormal clinical conditions (e.g., pneumothorax)
(Salatian, 1997).

Our approach relies on an initial pre-filtering to smooth the data which is then passed to
two further processes which generate the intervals. The structure of this paper is as follows.



DERIVING TRENDS IN HISTORICAL AND REAL-TIME 49

Figure 2. The processes which are used to identify intervals.

Section 2 describes our algorithm for deriving intervals from historical data; Section 3
contains the modifications necessary to handle the data in real time. Section 4 presents the
results of applying these processes to various data sets. Section 5 describes related work in
trend detection. Finally, Section 6 summarises and concludes this report.

2. Interval identification in historical data

This process can be divided into the sub-processespre-filtering, temporal interpolation
and temporal inference—see figure 2. In what follows we will be constructing temporal
intervals; thei th temporal interval,Ii , is described as:

Ii (x, tbegin, tend, trendi , αi , βi , λi , µi )

where

• x is the variable under investigation (e.g., heart rate)
• tbegin is the start time of the interval
• tend is the end time of the interval
• trendi is the interval trend i.e.,increasing, decreasingor steady
• αi is the minimum value ofx over the interval
• βi is the maximum value ofx over the interval
• λi is the absolute value of the gradient ofx over the interval
• µi is the mean ofx over the interval

All of the numerical properties of the interval are calculated simply from the values of the
data points which it encompasses. The issues in question are (i) how to determine the extent
of the individual intervals and (ii) how to determine the trend.

2.1. Pre-filtering

We investigated the following filters:low-pass, high-pass, band-pass, medianandaverage.
All of these techniques involve a moving window. For historical data, the window can be
centered on the pointxn i.e., if the window is of size 2k+ 1 the window contains the points
xn−k to xn+k. For real-time data the approaches are similar, but the current data point is at
the leading edge of the window which contains pointsxn−2k to xn. In what follows we will
only consider centered windows.
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After various investigations, a median filter was chosen. Median filtering is a non-linear
signal processing method which replaces the input sequence with the running median over
a window of some specified length (Haddad and Parsons, 1991). Given a window length of
2k + 1, let the function median(xn−k, . . . , xn, . . . , xn+k) represent the median of the input
values fromxn−k to xn+k. Then the output,yn, for an input pointxn is:

yn = median(xn−k, . . . , xn, . . . , xn+k)

A brute-force implementation of a median filter simply copies the values fromxn−k to
xn+k, sorts the copied values, and outputs the central point in the sorted sequence. Median
filtering can remove both noise and transients from the signal without distortion of the base
line. It will remove transient features lasting shorter than half the width of the window;
features lasting more than half the width of the window will remain. Figure 3 shows the
effect of applying a median filter withk = 10 (window size 21)—this length of window is
suitable because we are interested in features in the data lasting more than 10 min. It can
be seen that a median filter has a very good performance at sudden, step like changes of a
signal—they are exactly reproduced.

For real time data, exactly the same effect is obtained when the current point is at the
leading edge of the window, except that the entire curve is shifted back by an amountk.

For a full description of the properties of median filters, the reader is referred to (Gallagher
and Wise, 1981).

2.2. Temporal interpolation

This is the process of generating an interval between two adjacent data points. By ‘adjacent’
we mean that there are no missing data points between them. Note that in all our raw data,
0 (zero) may stand for a true zero data point or may stand for missing data; there is no way
of knowing which. We will refer to the value ofx at tbegin asxbegin and to the value ofx at
tend asxend.

The trendsteady(trendi = steady) is derived ifxend = xbegin± δx. The value ofδx
will depend on the resolution of the instrument supplying the data. In our case the level
of quantisation is such that we can take it to be zero (i.e., we apply strict equality). If the
interval is not classified assteady, then it will beincreasingif xend> xbegin anddecreasing
if xend< xbegin.

The values ofαi , βi andµi are calculated as follows:

• αi = min(xend, xbegin)

• βi = max(xend, xbegin)

• µi = (xend+xbegin)

2

Forsteadyintervalsλi , is set to zero. For increasing or decreasing intervals it is defined as
|xend−xbegin|
tend−tbegin

.
Temporal interpolation involves a single pass over the data set. Givenn data points, it

generates exactlyn− 1 simple temporal intervals.
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Figure 3. Application of a median filter: (a) original signal; (b) signal after applying a median filter.

2.3. Temporal inferencing—general considerations

Interviews were performed with clinicians to determine how trends in the data are derived.
Clinicians are interested in whether trends are steady, increasing or decreasing, and on the
data’s rate of change.
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An interval is steady if the difference between any two points in the interval is below a
threshold. This threshold will determine maximum and minimum values for the interval.
The threshold is dependent on the specific variable and is defined by clinicians. The value
of a threshold depends on the variability of the variable. The greater its variability, the larger
the threshold. Likewise if there is little variability in the data values then the variability
may be considered small. For example, we may consider a heart rate to be steady if there
is no deviation of more than 5 beats per min i.e., the difference between the maximum and
minimum values for the steady interval is less than or equal to 5 beats per min.

A deviation greater than the allowable range for asteadymay be considered to be either
an increasing or decreasing trend. Clinicians are interested in different rates of change,
namely whether an increasing or decreasing trend is slow, moderate or rapid—these trends
are defined by different gradient ranges and will depend on the particular variable and the
context in which the abstraction takes place. Such information allows clinicians to identify
specific clinical conditions. For example anaphylactic shock is determined by a rapidly
increasing heart rate, rapidly decreasing blood pressure and rapidly decreasing central
venous pressure.

Temporal Inferencing is the process of attempting to apply rules to merge two or three
meeting intervals intosuper-intervals, so that a common trend can be derived. The rules for
merging must take account of the fact that a super-interval which is described, for example,
as increasing, may actually be made up of some smaller sub-intervals in which the variable
is described as steady or even decreasing.

Such rules are based ondurationandrate of change. For example, given three intervals
which are increasing, steady and increasing respectively one can infer a possible increasing
super-interval if the duration of the steady interval is shorter than the duration of the increas-
ing intervals. Likewise asteadyinterval may be made up of many increasing, decreasing
and steady intervals. Here one needs upper and lower thresholds and an appropriate metric
is provided by the minimum and maximum values of the steady interval.

To derive super-intervals, we define the following four parameters for each variable:

• dur= a duration
• diff = a small range; used in the definition ofsteady
• g1 = a gradient (see below)
• g2 = a gradient, greater thang1 (see below)

If a gradient is less than or equal tog1 (λi ≤ g1) this is taken as representing aslowrate of
change. If it is betweeng1 andg2 (g1 < λi ≤ g2) this is taken as representing amoderate
rate of change. If it is greater thang2 (g2 < λi ) this is taken as representing arapid rate of
change. If the application requires, a different number of qualitative rates of change can be
defined.

As intervals are merged into super-intervals, a new data structure is created representing
the new interval, derived from the representations of its sub-intervals.

Temporal inferencing is done in two ways:

• overtwomeeting intervals
• overthreemeeting intervals.
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Based on similar characteristics we merge the simple intervals generated from the temporal
interpolation process into larger intervals then repeatedly merge these larger intervals into
even larger intervals until no more similarities can be found. This merging algorithm is
achieved using the temporal inference rules. Firstly we apply rules to merge two meeting
intervals to derive only increasing and decreasing trends—this will provide the basis for
finding potentially larger increasing and decreasing trends. The term ‘apply’ means we try
to combine the first two intervals; if this succeeds then try to combine this new interval
with the next and so on. If two meeting intervals cannot be merged then we take the second
of the intervals which were to be combined, and use it as a starting point. We then apply
rules to merge two meeting intervals which are either increasing and decreasing, decreasing
and increasing or both steady to derive only steady intervals. We then repeatedly apply
the inferences to merge three meeting intervals followed by the inferences to merge two
meeting intervals which derive only steady intervals until no more intervals can be merged.

2.4. Temporal inferencing over two meeting intervals

For temporally inferencing over two meeting intervals we want to represent asuper-interval
as an assertion in the following form:

1H2(Ii (x, t1, t2, trendi , αi , βi , λi , µi ), I j (x, t2, t3, trendj , α j , β j , λ j , µ j ))

⇒ Ii j (x, t1, t3, trendi j , αi j , βi j , λi j , µi j )

Thus given intervalsIi (from t1 to t2) and I j (from t2 to t3) which meet att2, we can
derive asuper-interval Ii j (from t1 to t3) by merging the intervalsIi and I j based on the
temporal inferencing function1H2.

Table 1 shows the possible combinations of trends for two meeting intervals and the
possible super-interval which can be derived, provided that further criteria are satisfied.

By symmetry,decreasingfollowed by decreasingis similar to increasingfollowed by
increasing. The criterion for combining any two intervals into a steady interval is inde-
pendent of the trends of the two contributing intervals. We have therefore only two distinct
cases to consider.

Whenever a super-interval is generated, the values ofαi j , βi j andµi j are calculated as
follows:

• αi j = min(αi , α j )

• βi j = max(βi , β j )

Table 1. Inference table for two meeting intervals.

1H2 I j (x, t2, t3, incr, . . .) I j (x, t2, t3, std, . . .) I j (x, t2, t3,decr, . . .)

Ii (x, t1, t2, incr, . . .) Ii j (x, t1, t3, incr, . . .) Ii j (x, t1, t3, std, . . .) Ii j (x, t1, t3, std, . . .)

Ii (x, t1, t2, std, . . .) Ii j (x, t1, t3, std, . . .) Ii j (x, t1, t3, std, . . .) Ii j (x, t1, t3, std, . . .)

Ii (x, t1, t2,decr, . . .) Ii j (x, t1, t3, std, . . .) Ii j (x, t1, t3, std, . . .) Ii j (x, t1, t3,decr, . . .)
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Figure 4. Inferring over two meetingincreasingintervals.

• µi j = µi ∗(t2−t1)+µ j ∗(t3−t2)
t3−t1• λi j depends ontrendi j ; if trendi j is steadythen λi j = 0; if trendi j is increasingor

decreasingthenλi j = |βi j−αi j |
t3−t1

2.4.1. Increasing/increasing⇒ increasing. For successive increasing intervals, a super-
intervalincreasingis inferred if the gradients ofbothintervals are within thesamelimit range
i.e., only intervals with the same rate of change (slow, moderate or rapid) are combined.
Formally we can write this as:

λi ≤ g1 AND λ j ≤ g1

OR
g1 < λi ≤ g2 AND g1 < λ j ≤ g2

OR
g2 < λi AND g2 < λ j

If this condition is not satisfied, no inference can be performed.
A typical situation is illustrated in figure 4(a)—the dashed line represents the new gradient

for the super-intervalIi j .
From figure 4(b) it can be seen that we can combine intervals of different durations

provided that their gradients are in the same range.
Figure 4(c) shows that inferring over two increasing intervals whose gradients are in

different gradient limit ranges would result in a super-interval which had a gradient that
did not capture the different rate of change in the data; such a combination is therefore
prohibited.

Note that we do not merge successive increasing intervals into a super-intervalincreasing
regardless of its rate—though the overall data is increasing we need to capture different
rates so that higher level processes can interpret them.

2.4.2. Any/any⇒ steady. A super-interval is classified assteadyif the difference between
the maximum and minimum values over the interval is less than the pre-defined constant
diff.

βi j − αi j <= diff
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Table 2. Inference table for three meeting intervals which begin with anincreasinginterval.

1H3 Ik(x, t3, t4, incr, . . .) Ik(x, t3, t4, std, . . .) Ik(x, t3, t4,decr, . . .)

Ii (x, t1, t2, incr, . . .), Ii jk (x, t1, t4, incr, . . .) No merging No merging

I j (x, t2, t3, incr, . . .)

Ii (x, t1, t2, incr, . . .) Ii jk (x, t1, t4, incr, . . .) No merging No merging

I j (x, t2, t3, std, . . .)

Ii (x, t1, t2, incr, . . .) Ii jk (x, t1, t4, incr, . . .) No merging No merging

I j (x, t2, t3,decr, . . .)

2.5. Temporal inferencing over three meeting intervals

Inferring over two meeting intervals alone can result in too many intervals. Inferring over
three meeting intervals in particular cases allows us to create even larger intervals.

For three meeting intervals we want to represent a super-interval as an assertion in the
following form:

1H3(Ii (x, t1, t2, trendi , αi , βi , λi , µi ), I j (x, t2, t3, trendj , α j , β j , λ j , µ j ),

Ik(x, t3, t4, trendk, αk, βk, λk, µk))

⇒ Ii jk (x, t1, t4, trendi jk , αi jk , βi jk , λi jk , µi jk )

Thus given intervalsIi (from t1 to t2), I j (from t2 to t3) and Ik (from t3 to t4) a super-
interval Ii jk beginning at timet1 and ending at timet4 can be created by mergingIi , I j

andIk using the temporal inferencing function1H3. Table 2 shows the additional possible
combinations of abstractions for three meeting intervals where the first is characterised
asincreasing. The possibilities when the first interval isdecreasingfollow by symmetry.
There are no additional possibilities when the first interval issteadysince it is assumed that
they will have been covered in the two interval case.

Though the inferencing is very similar to Table 1, it will be seen that the size of the
middle interval is critical in deciding whether to generate a super-interval. Again we want
to create super-intervals which truly reflect rates of change and capture trends.

Considerations of symmetry allow us to consider the following three groups of possibil-
ities for trends of three adjacent intervals:

• increasing/increasing/increasing
decreasing/decreasing/decreasing
• increasing/steady/increasing

decreasing/steady/decreasing
• increasing/decreasing/increasing

decreasing/increasing/decreasing

Where there are multiple possibilities, we will consider only the first, the remainder fol-
lowing from symmetry.
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Whenever a super-interval is generated, the values ofαi jk , βi jk andµi jk are calculated as
follows:

• αi jk = min(αi , α j , αk)

• βi jk = max(βi , β j , βk)

• µi jk = µi ∗(t2−t1)+µ j ∗(t3−t2)+µk∗(t4−t3)
t4−t1• λi jk depends ontrendi jk ; if trendi jk is steadythenλi jk = 0; if trendi jk is increasingor

decreasingthenλi jk = |βi jk−αi jk |
t4−t1

2.5.1. Increasing/increasing/increasing⇒ increasing. Given three meeting intervals
which are all increasing then we will infer anincreasingsuper-interval if the duration of
the middle interval is less than the duration of the other two intervals by at least a factor of
dur (a real number, including fractions) and the gradients of the two outside intervals are
both within the same range:

t3− t2 ≤ min((t2− t1), (t4− t3))/dur
AND

λi ≤ g1 AND λk ≤ g1

OR
g1 < λi ≤ g2 AND g1 < λk ≤ g2

OR
g2 < λi AND g2 < λk

This is illustrated in figures 5(a) and (b)—note that the dashed line represents the new
gradient for the super-interval.

Figure 5(c) shows that if the gradients of the intervals are in different ranges then inferring
an increasingsuper-interval would result in an overall gradient which did not capture the
different rates of change.

2.5.2. Increasing/steady/increasing⇒ increasing. Given three meeting intervals which
areincreasing, steadyandincreasingrespectively, one can infer anincreasingsuper-interval
if the duration of the steady interval is less than the size of it’s neighbouring increasing
intervals by at least a factor ofdur and the gradients of the increasing intervals are both

Figure 5. Inferring over three meetingincreasingintervals.
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Figure 6. Inferring over meetingincreasing, steady, increasingintervals.

within the same range. The rule is the same as that given in Section 2.5.1. This is illustrated
in figures 6(a) and (b).

If the gradients of the increasing intervals are within different ranges then creating a super-
interval which is increasing would result in a gradient which did not reflect the increasing
trend. This can be seen in figure 6(c).

2.5.3. Increasing/decreasing/increasing⇒ increasing. Given three meeting intervals
which are increasing, decreasing and increasing respectively, one can infer anincreasing
super-interval if the duration of the decreasing interval is less than the duration of it’s
neighbouring increasing intervals by at least a factor ofdur, the gradients of the increasing
intervals are both within the same range, the minimum value of the decreasing interval (I j )
is greater than the minimum value of the first increasing interval (Ii ) and the maximum
value of the second increasing interval (Ik) is greater than the maximum value of the first
increasing interval. The rule is the same as that give in Section 2.5.1 with the addition of
the following conjunctive condition:

αi < α j AND βk > βi

This is illustrated in figures 7(a) and (b).

Figure 7. Inferring over meetingincreasing, decreasing, increasingintervals.
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If the minimum value of the decreasing interval(α j ) is less than the minimum value of
the first increasing interval(αi ) then inferring a new increasing interval would result in a
gradient which is smaller than the gradients of the increasing intervals. This is illustrated
in figure 7(c).

If the minimum value of the decreasing interval(α j ) is less than the minimum value of
the first increasing interval(αi ) and the maximum value of the second increasing interval
(β j ) is less than the minimum value of the first increasing interval(αi ) then inferring a new
increasing interval would be equivalent to inferring an interval which is decreasing. This
is illustrated in figure 7(d).

If the maximum value of the second increasing interval(β j ) is less than the maximum
value of the first increasing interval(βi ) then inferring a new increasing interval would
result in a gradient which did not reflect the overall increasing trend. This is illustrated in
figure 7(e).

If the duration of the second increasing is not relatively longer than the decreasing interval
then inferring an overall increasing interval would result in a smaller gradient which did
not reflect the overall increasing trend. This is illustrated in figure 7(f).

2.6. Algorithm

1. Apply the inferences in1H2 which derive only increasing or decreasing trends. ‘Apply’
means try to combine the first two intervals; if this succeeds then try to combine new
interval with the next and so on. If the combination fails, then take the second of the
intervals which were to be combined, and use it as a starting point.

2. Apply the inferences in1H2 which derive steady trends whereIi and I j are either
increasing and decreasing, decreasing and increasing or both steady.

3. Set flagstill-to-do to true.
4. while still-to-dodo
5. Setnumber-on-last-iterationto the number of intervals generated so far.
6. Apply the inferences in1H3. Like 1H2, applying function1H3 is recursive in

that the list of intervals is analysed until1H3 cannot be applied to any three
meeting intervals.

7. Apply the inferences in1H2 which derive only steady trends.
8. Setstill-to-do to number-on-last-iteration6= current number of intervals.
9. endwhile

We can compute the best-case and worst-case time complexity our algorithm takes to create
superintervals.

The best-case time complexity of our algorithm is when we capture a single trend over the
entire data set by either step 1 or step 2 above. Givenn simple intervals and assuming step 1
captures the single trend, step 1 would processn intervals to create the single interval—this
in turn would result in steps 2, 6 and 7 each processing one interval. Thus the best-case
time complexity of our algorithm isO(n+ 3), or simplyO(n).

The worst-case time complexity of our algorithm is when steps 1 and 2 cannot merge
any intervals and steps 6 and 7 of the while loop each creates one new super-interval on
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each iteration resulting in either one or two trends over the entire data set. Givenn simple
intervals, steps 1 and 2 would each processn intervals and steps 6 and 7 of the while loop
would processn andn−2 intervals on the first iteration,n−3 andn−5 on the second etc.
Thus the worst-case time complexity of our algorithm isO(2n+ n

3(n+ 1)) if n or (n+ 1)
is a multiple of 3 orO(2n+ n

3(n+ 1)+ 1
3) if (n+ 2) is a multiple of 3, or simplyO(n2).

3. Interval identification in real time data

Pre-filtering of real time data is identical to that of historical data, except that the value
generated by the filtering operation is assigned to the time corresponding to the right-hand
edge of the window; this introduces an effective delay ofk points in a window of length
2k+ 1.

In the previous section we presented a technique for merging intervals in historical data.
In that case the data set is static; we iterate over the data, merging intervals where possible,
until no further merging can be achieved. In real time we have the problem that the data
set is continuously being added to; decisions have to be made depending on our current
interpretation, in particular on the trend (increasing, steadyor decreasing) which we apply
to the latest data. This leads to an inevitable tension. If the latest data indicates a change
in the trend, then we need to take account of this. However it might just be a momentary
aberration, and when more data comes in this will be apparent. The question arises as to
how long we can wait before deciding that the new data really does represent a new trend.
If this time is too long, we can have more confidence in our interpretation but the time for
acting on our new knowledge may have passed. On the other hand, if this time is too short,
we may make decisions based on an incorrect interpretation. There is no easy solution to
this problem. Our approach is as follows.

Consider as an example figure 8; imagine that the current time is betweent2 andt3. The
data in the past (betweent1 andt2) belongs to an interval which has an unambiguous trend

Figure 8. Detecting an overall increasing trend.
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(in this caseincreasing; this interval will be referred to as thepreviousinterval—I p. A new
data point arrives att3. An interval is created by temporal interpolation (see Section 2.2)
between the new point and the end ofI p. This new interval will be called thecurrent
interval—Ic. If Ic is similar enough toI p (i.e., it satisfies certain criteria which we will
define later), it can be merged withI p to create anew previous interval—Inp, and we then
wait for the next data point. If however, it shows a different trend (as in the example) we
don’t know whether this means a significant change in the data or whether it is a short term
effect which will need to be ignored. As discussed above, time is needed to resolve this so
we create a ‘delay period’ by setting a point in the future by which a decision has to be made
(the decision point); in the example this ist5. We carry on adding in new data points as
they arrive. For each simple interval thus generated, we try to merge it with earlier intervals
using the approach of Section 2 i.e., trying to merge two or three meeting intervals. The
main difference is that theI p is not ‘decomposed’ in any way—it can only be extended.
As a result of merging these new intervals, it may happen thatI p is extended; effectively
the interval which caused the deviation was indeed a temporary aberration which can now
be accommodated as an extension toI p. In this case a new decision point is established
relative to the end ofInp. If, on the other hand, we reach the decision point without any
extension, then the last interval to be established is taken to beI p.

At all times, even when we are in a delay period, the trend is that attached to the previous
interval.

In deciding whether to incorporate the current interval into the previous one, we use a
set of criteria which are similar to those used to decide whether to merge two intervals with
historical data. Again we want to represent a super-interval as an assertion in the following
form:

1R2(I p(x, t1, t2, trendp, αp, βp, λp, µp), Ic(x, t2, t3, trendc, αc, βc, λc, µc))

⇒ Inp(x, t1, t3, trendnp, αnp, βnp, λnp, µnp)

Thus given a previous intervalI p (from t1 to t2) and the current intervalIc (from t2 to t3)
which meet att2, we can derive anew previoussuper-intervalInp (from t1 to t3) by merging
the intervalsI p and Ic based on the temporal inferencing function1R2.

Table 3 shows the possible combinations of trends for the previous and current intervals
and the possible super-interval which can be derived,provided that further criteria are
satisfied. These criteria are set out below.

Considerations of symmetry again lead us to consider the following three groups of
possibilities for trends of two adjacent intervals:

Table 3. Inference table for two meeting intervals.

1R2 Ic(x, t2, t3, incr, . . .) Ic(x, t2, t3, std. . . .) Ic(x, t2, t3,decr. . . .)

I p(x, t1, t2, incr, . . .) Inp(x, t1, t3, incr, . . .)

I p(x, t1, t2, std. . . .) Inp(x, t1, t3, std. . . .) Inp(x, t1, t3, std. . . .) Inp(x, t1, t3, std. . . .)

I p(x, t1, t2,decr. . . .) Inp(x, t1, t3,decr. . . .)
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• increasing/increasing
decreasing/decreasing
• steady/increasing

steady/decreasing
• steady/steady

Where there are multiple possibilities, we will consider only the first, the remainder fol-
lowing from symmetry. If there is no entry, or if there is an entry and the criteria are not
satisfied, then we enter the delay period to give any discernible trend time to emerge as
discussed above.

We need to specify a value for the length of the delay period—this is defined by the delay
factor parameter,df.

Whenever merging takes place, values forαnp, βnp, λnp andµnp are calculated as de-
scribed in Section 2.4.

3.1. Increasing/increasing⇒ increasing

The criteria are exactly the same as for merging two intervals historically; see Section 2.4.1.
The case of the criteria being satisfied, and the current interval being incorporated into

the previous one is illustrated in figure 9(a). The case where this does not happen, and a
delay period created, is illustrated in figure 9(b).

3.2. Steady/increasing⇒ steady

Given a steady interval followed by an increasing interval one can infer a super-interval
steadyif the minimum and maximum values of the increasing interval (αi andβi ) both lie
between the minimum and maximum values of the steady interval (α j andβ j ).

3.3. Steady/steady⇒ steady

Given two meeting steady intervals, if one of them is a simple interval then criterion 2 in
Section 2 will always be satisfied, and the two intervals will always be merged.

Figure 9. Inferring over two meetingincreasingintervals.
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4. Results

We will present the results of identifying temporal intervals in historical and real-time
data.

4.1. Historical results

The above algorithm can be applied to data sets from any domain. We will study the types
of temporal intervals generated by different values we use for the parametersdiff, g1, g2

anddur.
Our results have been evaluated by a clinician.
In order to analyse the effect of our algorithm on the settings of the parameters an

interesting case was chosen which contains many trends and events. The data set is a
Central Venous Pressure (CVP) trace. The frequency of the data was one value every
minute—this represents the average of the last sixty seconds of data every minute. The data
was collected over a 24 h period and it contains 1440 data points. A median filter of size
k = 10 was chosen. The original data set is shown in figure 10(a). Figures 10(b)–(e) are
the graphical results of the intervals generated by different settings of the parameters.

Setting a high value for the parameterdiff results in a small number of intervals being
generated—these intervals are predominately long steady intervals. Settingdiff to 5 results
in only 23 intervals being generated—see figure 10(b). Only increasing and decreasing
trends which have moderate and rapid rates are identified whereas slow changes are in-
corporated as part of a steady interval. The clinician was satisfied with these trends even
though some increasing and decreasing trends were not identified. For example, although
an increasing trend which began at approximately 04:00 was not explicitly identified, it
can be derived by the new, clinically significant, raised steady interval which was identified
instead.

Setting a high value for the parametersg1 andg2 results in a small number of intervals
being generated. Settingg1 to 25 andg2 to 50 results in 36 intervals being generated (see
figure 10(c)). Here no regard is given to different rates of change in the data. For example,
in the original data set there are moderate increasing and decreasing intervals before and
after the clinically insignificant event between 19:00 and 20:00—these are merged with the
rapid increasing and decreasing intervals of the event. The clinician was again satisfied
with these trends—he believes the derived trends are a true reflection of the data.

Setting a low value for the parameterdur results in many steady intervals being merged
into increasing and decreasing trends. Settingdur to 0.05 results in 29 intervals being
generated (see figure 10(d)). Here longer than expected increasing and decreasing trends
are produced. Such trends can be considered as long term trends. The clinician was satisfied
with these trends except the decreasing trend which began at approximately 06:00—he
believes there was a more rapid and shorter decreasing trend at this time.

The best combination for this data set is to set the parametersdiff to 1, g1 to 3, g2 to 6
anddur to 0.25 (see figure 10(e)). In this case, the clinician believes that all trends in the
data were captured.

A summary of the effects of these setting are given in Table 4.
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Figure 10. Results of using different parameter values to derive trends in historical data: (a) 1440 points; (b) 23
super temporal intervals; (c) 36 super temporal intervals; (d) 29 super temporal intervals; (e) 57 super temporal
intervals.
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Table 4. Results for various temporal inferencing parameters.

diff g1 g2 dur Intervals Figure

High, e.g., 5 3 6 0.25 23 10(b)

2 High, e.g., 25 50 0.25 36 10(c)

2 3 6 Low, e.g., 0.05 29 10(d)

1 3 6 0.25 57 10(e)

The settings of the size of the filter window(k) for the filter data process and the
parametersdiff, dur, g0 and g1 for the interval identificationprocess for historical data
will depend on what data is being abstracted and in what context, the frequency of the data
and how few or many intervals are desired.

4.2. Real-time results

We will analyse the results of our algorithm by using an interesting case which contains
many trends and will present snapshots at times when there is a change in the current trend
or when there is a delay. Note in our snapshots the left graph shows the original signal and
the right graph shows the signal after a median filter has been applied to it at its leading
edge. The abstraction displayed in the graphs is the current trend.

The data set is heart rate and its frequency is one value every minute. Appropriate values
for the parameters were selected. A median filter of sizek = 5 was chosen and we set the
parameters for identifying trends in the heart rate todiff to 3, g1 to 3, g2 to 6, dur to 0.25
anddf to 4.

In graph 11(a) it can be seen that the current trend for the heart rate at time 03:59:00 on
10/01/95 is steady.

In graph 11(b) it can be seen that at time 04:01:00 on 10/01/95 the current interval for the
heart rate isdecreasing. We now enter a delay period because we do not know if this new
current interval represents the start of a new trend or a continuation of the current steady
trend. Though we are in a delay, it is still assumed that the current trend issteady.

In graph 11(c) it can be seen that at time 04:05:00 on 10/01/95 the current trend for the
heart rate has remained assteadyi.e., we have inferred that within the delay period there
was not adecreasingtrend evolving. Thedecreasinginterval encountered four minutes
earlier was a momentary aberration. We are no longer in a delay.

In graph 11(d) it can be seen that at time 04:07:00 on 10/01/95 the current interval for the
heart rate isdecreasing. We now enter a delay period because we do not know if this new
current interval represents the start of a new trend or a continuation of the currentdecreasing
trend. Though we are in a delay, it is still assumed that the current trend issteady.

In graph 11(e) it can be seen that at time 04:09:00 on 10/01/95 the current trend for the
heart rate has changed from beingsteadyto decreasing. We inferred that within the delay
period there was adecreasingtrend evolving i.e., thedecreasinginterval encountered two
minutes earlier was not a momentary aberration after all. We are no longer in a delay.
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Figure 11. Results of deriving trends in real-time: (a) in a steady trend; (b) in a steady trend and in a delay; (c) in
a steady trend; (d) in a steady trend and in a delay; (e) in a decreasing trend.
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Using 03:59:00 on 10/01/95 as a starting point, we can say that the heart rate wassteady
from 03:59:00 on 10/01/95 to 04:09:00 on 10/01/95, anddecreasingthereafter.

5. Related work

There are several systems which have dealt with time-series abstraction ((DeCoste, 1991),
(Kahn et al., 1991) and (Russ, 1990)). In this section we will analyse and compare those
systems which are most related to our work.

Our approach to the generation of interval abstractions is based on the work of Shahar
(Shahar, 1997) who sets out a framework for generating abstractions of temporal data sets.
In particular he discusses how two meeting (Allen, 1984) intervals can be combined as the
result of executing a subtask which he calls temporal horizontal inference. Our rules for
merging two intervals can be seen as an implementation of his horizontal inference table
for gradient abstractions (Shahar, 1997, p. 104). Our rules for merging three intervals can
be viewed either as an extension of the horizontal inference table to three intervals, or as a
form of secondary gradient interpolation, where the middle interval constitutes (in Shahar’s
terms) a time gap.

Shahar’s secondary gradient interpolation methods are similar to our system’s methods
for deriving trends and their gradients. Shahar usesCπ , a function of parameterπ , that is
defined either by the domain expert or through analysis of the distribution ofπ or different
contexts. Using theCπ property minor absolute changes in the value ofπ that are less than
a certain threshold can be ignored in order to identify general qualitative trends—this is
similar to ourdiff, g1 andg2 parameters.

Shahar merges three meeting intervals into a single interval e.g., if parameterπ can be
interpolated by primary interpolation as, for example,decreasingover a gap intervalIg

between two abstractionsI1 and I2, then adecreasingabstraction can be inferred ofπ
over Ig. In general, an overallincreasingor decreasingabstraction might be created even
when the gap interval could be abstracted assame(steady)—this is similar to using ourdur
parameter for merging three meeting intervals.

As far as we are aware, Shahar’s knowledge-based temporal abstraction theory has mostly
been applied to domains where the data is somewhat sparse (e.g., diabetes, cancer therapy,
etc.); our work shows that it can be applied to much denser datasets where temporal hori-
zontal inference is applied to reduce the number of intervals by factors of 50 or more. In
addition we have demonstrated how the technique can be extended to the generation of
interval abstractions in real time.

Our work is also similar to that of Larizza et al. (1995) who merge intervals to construct
simple temporal abstractions. They too define context dependent parameters to control
the merging, such as a minimal speed of change and a minimal duration for a super-
interval. However their approach is designed to be applied to sparser datasets than ours—
originally for monitoring protocols for recognising infection in heart transplant recipients
and subsequently for diabetes. In such domains data may not be acquired on a periodic basis
and they (like Shahar) are obliged to define a maximal distance between samples beyond
which merging is not allowed. It is not clear to what extent merging is considered for more
than two intervals at once—in the way that our approach considers three interval merges.
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They state that their ‘algorithms for detecting increase, decrease and stationary abstractions
are based on linear regression methods’ but there is no indication as to how the data subset
for regression is selected beyond a statement that linear regression is applied to ‘different
length sub-intervals’.

In the TrenDx System (Haimowitz and Kohane, 1996; Haimowitz et al., 1995) temporal
abstraction into intervals is carried out as a necessary precursor to pattern matching to trend
templates (an archetypal pattern of data variation for specific medical situation which is to
be identified). TrenDx uses linear regression to fit gradients to the data; again the question
arises as to how to select the data sub-set over which to perform the regression. TrenDx
approaches this from two perspectives. Firstly, they assume that it will be possible to identify
specific anchor points which will fix the start (or possibly the end) of the sub-set. In the
only example which considers dense data sets (Haimowitz and Kohane, 1996) this is the
onset of ‘handbagging’ (the delivery of 100% oxygen to an ICU patient on an intermittent
basis by a nurse squeezing a bag). This event can be recognised from the setting of a switch
on the ventilator. Secondly, TrenDx generates a tree of alternative chronologies; in terms of
temporal gradient abstraction this means applying linear regression to a number of different
sub-sets in parallel. Chronologies are then scored and pruned. Our approach differs in that
(i) it makes no prior assumptions about the start/end points of our abstracted intervals—they
emerge from the iterative temporal inferencing and (ii) it is deterministic—no scoring is
used. TrenDx was initially developed in a domain (pediatric growth monitoring) in which
the data frequency is somewhat low. It has been applied to the analysis of ICU data, but
only to one patient; this makes it difficult to know how robust it will be when applied to
large data sets.

High volume data from the neonatal ICU is handled by the VIE-VENT system (Miksch
et al., 1996; Horn et al., 1997). Trends are measured in real time using linear regression,
but in this case a fixed length window is used to define the data sub-set. More exactly, four
windows are used to measure trends over the very short term (1 min), short term (10 min),
medium term (30 min) and long term (3 h). These (and other) abstractions are performed
on every incoming sample; there is no attempt to merge these abstractions into intervals
and to reason about temporal relationships between intervals.

The ICU is also the source of high volume data for Dojat and co-workers (Dojat and
Sayettat, 1996; Chittaro and Dojat, 1997). However their mechanism for generating higher
level abstractions by aggregating (or merging) intervals only applies to parameter states and
not to gradients (or trends). The desirability of extending their approach to trend abstractions
is recognised (Chittaro and Dojat, 1997, p. 448).

DIA-MON-1 (Steimann and Adlassnig, 1994) is a system which classifies data streams
into intervals through a set of constraints. Here the concept of trend is designed to model
imprecise notions of courses and its trend detection is based on fuzzy classification. A
series of time stamped data values belong to a fuzzy trend if there is a degree of match to
the trend. However DIA-MON-1 can only abstract data to predefined trends and is based
on moving windows each with its own fixed length; interval merging does not take place.

However, some of the above approaches are not applicable for the purposes of generating
temporal intervals from dense data sets. Most of them assume that the data contains no
noise. Though some of the above authors do handle noise, others do not. In many domains,
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noise is represented as the occurrence of events e.g., a faults in the measuring sensor. Data
needs to be filtered to get rid of events otherwise unnecessary intervals representing these
events will be generated. Incorporating noise does not reflect the true state of the system.
Events need to be removed either by a standard filter or by the identification of intervals
which represent an event. Removal of noise is domain dependent. Identified events need
to be stored in an audit database for reference purposes.

Analysis of the validity of monitor data and applying repair and adjustment methods
for correcting erroneous or ambiguous data is one way to deal with noise. (Horn et al.,
1997) propose thirteen different methods for data validation and repair. These methods are
categorised by their underlying temporal ontology (time-point, time-interval, or trend). Our
system removes noise using a median filter. Any further non-physiological events can be
removed by matching meeting intervals in one or, simultaneously, more variables (Salatian,
1997).

Post processing of noise-free data (e.g., applying a gaussian filter to smooth the data
(Hau, 1994) is not applicable for deriving temporal intervals based on rate—rates are lost
by the smoothing process (step like changes are deformed into a slope). Smoothing is
acceptable if one is interested in only the sign of the derivative but is not applicable when
one is interested in different rates of change of data. For dense data sets, different rates of
change need to be captured—these can based on the gradient of the slope. Three kinds of
rates can be defined—slow, moderate and fast.

From a real-time point of view, (Nelson and Hadden, 1994) uses an approach called
State-Based Feature Recognition (SBFR) to recognise trends automatically in real-time.
SBFR isfeature-basedin that each of its state machines operates by recognising patterns
in its input data that it is designed to look at as a single item, afeature. Features to be
recognised using SBFR are represented as finite state machines. The state machines are
made up of a set of statesS1, . . . , Sn and transitions between those states,T1, . . . , Tm. Each
state in the machine represents a stage in the identification of the feature. Each state has
associated with it a set of transitions which may have one or actions associated with it to
be performed whenever that transition is taken.

Each transition has a condition which defines when the transition may be traversed. When
the machine’s current state is the transition’sfrom state and the condition for a particular
transition is true then the machine traverses the transition.

The general meaning of a feature is captured by the machine’s state and transitions, while
the specifics of the feature (i.e., the exact data which causes the state machine to move from
one state to another) are captured by the conditions.

Machines to recognise trends are calledtrend machines. To recognise, for example, a
simple increasing trend, an increase can be defined as being two jumps in the data occurring
greater than 5 time units apart, or three jumps in the data if the first two jumps happen in
less than or equal to 5 time units. The reason for the time limit is to differentiate between
an increase and a spike. Any time a decrease in the data is seen, the machine will transition
back to the initial state. When the machine enters theincreasestate an increasing trend has
been identified.

Our system derives trends in real-time by extending the merging algorithm used to identify
temporal intervals in historical data.
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We need a way to evaluate our results i.e., we need a formalism which can tell us if
we have obtained the correct level of temporal abstraction. Aliferis et al. (1997) address
the problem of providing and evaluating appropriate levels of temporal abstraction through
a common formalism for medical decision-support systems. They compared querying a
detailed model with an abstracted model of a medical system. The detailed model can answer
an astronomical number of queries (most of which are of no clinical interest), whereas the
abstracted model can only answer only a few queries (possibly excluding many queries of
clinical importance). They conclude that as temporal abstraction increases, correctness in
general will decrease. Similarly, our analysis of our results show that clinically significant
short term changes in the data may not be identified when we are looking for long term
trends—this, in turn, can affect the interpretation of the derived trends.

6. Summary and conclusions

We have presented a report which describes a way to derive trends in historical and real-time
data. Our algorithm involves 2 consecutive processes:filtering andinterval identification.

A filter is required which can remove events and retain the baseline signal of a parameter.
From studies of various filters, we concluded that a median filter serves this purpose.
Median filtering is a non-linear signal processing method able to remove both noise and
transients from the signal without distortion of its base line. The median filter has two
distinct advantages: good preservation of edges in the signal and excellent attenuation of
impulsive noise.

A mergingalgorithm has been developed for generating temporal intervals from dense
data sets. These temporal intervals have the attributesincreasing, decreasingor steady.
Increasinganddecreasingtrends can be classified intoslow, moderateor rapid depending
on their rate of change.

The algorithm for deriving temporal intervals in historical data involves initially interpo-
lating between each data point to create simple temporal intervals then, repeatedly merging
intervals which share similar characteristics into larger intervals until no more similarities
can be found. The merging algorithm is achieved using temporal inference rules—this is
based on knowledge of the specific signals e.g., clinicians may classify an interval in the
mean blood pressure assteadyif the mean blood pressure does not change by more than
5 mm Hg.

In real-time we have to consider if the latest data indicates a change in the trend or a
momentary aberration. Our system derives trends in real-time by extending the merging
algorithm used to identify temporal intervals in historical data.

We have used the temporal abstraction mechanisms described in this paper in three ways
(Salatian, 1997):

1. removal of clinically insignificant events—this is achieved by matching meeting intervals
in one or, simultaneously, more variables.

2. identifying clinical conditions—this is achieved by matching the values and/or trends of
intervals in one or, simultaneously, more variables.
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3. determining the outcome of therapies—this is achieved by comparing the interval when
the therapy was administered to an interval in the future when the outcome of the therapy
is expected to be achieved.

Our system has been tested on 9 different data sets each containing 3 or 4 different signals. In
general our system identifies intervals where the expert agrees that a clinically insignificant
event or clinical condition is present.

Deriving trends in clinical data is a difficult problem and we believe our system is a step
forward in the development of systems for the interpretation of ICU data.
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