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Abstract. We analyze a model of navigational map formation based on correlation-based, temporally asymmetric
potentiation and depression of synapses between hippocampal place cells. We show that synaptic modification
during random exploration of an environment shifts the location encoded by place cell activity in such a way that
it indicates the direction from any location to a fixed target avoiding walls and other obstacles. Multiple maps to
different targets can be simultaneously stored if we introduce target-dependent modulation of place cell activity.
Once maps to a number of target locations in a given environment have been stored, novel maps to previously

unknown target locations are automatically constructed by interpolation between existing maps.
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1. Introduction

The presence of cells in the hippocampus of the rat
that are responsive to spatial location (O’Keefe and
Dostrovsky, 1971; O’Keefe and Nadel, 1978; Wilson
and McNaughton, 1993; O’Keefe and Burgess, 1996)
has led to a number of suggestions about the role of
the hippocampus in navigation (O’Keefe and Nadel,
1978; McNaughton et al., 1991; Muller et al., 1991;
Traub et al., 1992; Worden, 1992; Hetherington and
Shapiro, 1993; Burgess et al., 1994; Wan et al., 1994;
Blum and Abbott, 1996). A recurring idea is that hip-
pocampal place cells provide an environmental map
that aids in navigation (O’Keefe and Nadel, 1978;
Muller et al., 1991; Traub et al., 1992). It has been
shown that a navigational map can be formed by the
potentiation of synapses between hippocampal place
cells arising from the exploration of an environment
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(Blum and Abbott, 1996). This model of formation
of a navigational map relies on two key features of
the experimental data—population coding of spatial
location by large numbers of place cells (Wilson and
McNaughton, 1993) and a temporal asymmetry in the
conditions required to produce synaptic long-term po-
tentiation (Levy and Steward, 1983; Gustafsson et al.,
1987; Levy, 1989; Debanne et al., 1994; Markram and
Sakmann, 1995).

A navigation map for a given environment must pro-
vide all the information needed to get from any initial
point to a specified final target position. If obstacles
lie between some of the starting positions and the tar-
get, the map must include strategies for getting around
them. A navigation map, as we define it, is distinct from
a more general spatial map that provides a representa-
tion of the topographical structure of an environment
including obstacles and walls. A navigation map de-
scribes the relationship between an environment and a
specific target location in that environment. It provides
“arrows” that give the local direction of motion from
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any point in the environment to the target. These ar-
rows may direct motion along straight paths directly to
the target or along more complex curved paths around
obstacles.

In Section 3 of this paper, we extend the previous
analysis of navigational map formation to include an
environment with an obstacle. We show how a long-
range component of the map, including information
about obstacles, develops during random exploration.
We also discuss the relationship between the temporal
asymmetry of the induction of long-term potentiation
and depression (LTP and LTD) and short-range-static
and long-range-dynamic components of the map.

To be of practical value, a navigational map should
provide directions to a number of learned target lo-
cations and, in addition, interpolate between learned
locations to guide locomotion to novel targets. The
maps discussed in Section 3 provide directions to only
a single target location. To overcome this limitation,
we introduce the idea of target-dependent modulation
of place cell activity in Section 4.

Modulation of receptive fields is an effective way
of handling information about multiple spatial loca-
tions or directions (Zipser and Andersen, 1988; Salinas
and Abbott, 1995; Pouget and Sejnowski, 1994, 1996).
Experimentally, modulation has been seen, for exam-
ple, in parietal areas (Andersen and Mountcastle, 1983;
Andersen et al., 1985). In Section 4 we apply the idea
of modulation to hippocampal place cells. We show
that modulation of place cell activity by target location
allows a network of place cells to simultaneously en-
code maps to a number of different targets. Modulation
by a specific learned target then results in recall of the
appropriate map. Modulation corresponding to a target
location never previously encountered produces a new
map that interpolates between the learned target loca-
tions to provide directions to the novel target. In this
analysis, we distinguish between knowledge of the lo-
cation of a target, and knowledge of the path that must
be taken from an arbitrary initial position to reach that
target. The former is assumed to be known, while the
latter is provided by the navigational map we study. In
the presence of obstacles that prevent a direct approach,
getting to the target can be a nontrivial problem even
if the location of the target is known.

Modeling a task like navigation is difficult because
many brain regions are likely to be involved. However,
it is a worthwhile exercise to explore how much can
be achieved by considering a highly reduced model
involving known features of hippocampal circuitry and
an extremely simple learning procedure. In the model

studied, environmental learning is based exclusively on
random exploration that results in chance encounters
with both targets and obstacles. By using this model,
we do not mean to imply that a rat is restricted to such
a simplistic scheme when it solves similar problems.
Rather we wish to examine how much can be achieved
using a limited number of assumptions and guesses
about both neuronal circuitry and learning strategies.

2. The Network Model

The model we study is based on the assumption that
hippocampal place cell activity provides a population
code for spatial location (Wilson and McNaughton,
1993). This means that the firing rates of large num-
bers of place cells can be combined (by a procedure
described in Section 2.4) to yield a spatial position that
we call the encoded location. Initially, we assume that
the encoded location is identical to the actual position
of the animal in the environment. Thus we start from
a purely spatial representation. However, long-term
potentiation of synapses between place cells (model-
ing, in particular, those of the CA3 region) that occurs
during exploration causes the encoded location to shift
slightly. After learning, the location encoded by the
collective place cell activity no longer corresponds to
the precise location of the animal. Rather, if the learn-
ing involved a specific target, place cell activity rep-
resents where the animal should go next to get from
its present location to the target. The difference be-
tween the location encoded by place cell activity and
the actual location that evokes that activity provides a
navigational map directing the animal toward the tar-
get from any position in the environment (Blum and
Abbott, 1996).

The basic elements of the model, described below,
are a network of place cells with activities driven by
Gaussian functions of the position of the animal, plas-
tic synapses between these place cells, a rule for LTP
and LTD induction, and population decoding of the lo-
cation encoded by place cell activity. A new feature is
the target-dependent modulation of place cell activity
discussed in Section 2.2. The model will be studied in
two forms: without modulation in Section 3 and with
modulation in Section 4.

2.1. Place Field Tuning

We consider a network of N neurons responding to
the spatial location of an animal in a two-dimensional



environment. The neurons i = 1,2,..., N of the
model network have localized place fields similar to
the place cells recorded in the hippocampus. The ac-
tivity r; (this may be a firing rate or any other measure
of activity relevant for neural coding) (Abbott, 1995)
of a given neuron i is high if the animal passes through
a specific spatial location. The region of the environ-
ment where the activity of a neuron is elevated is its
place field. Initially, before learning, we set

ri = A f(x—xi), 6]

where X is a two-dimensional vector representing the
location of the animal, x; is the center of the place
field of neuron i and A; is an amplitude factor dis-
cussed below. We represent the place fields by Gaussian
functions

(Ix—xil) = exp[ - X=X 2)
f(x —x;|) =exp 20% ,

where o is the width of the place field.

We assume that the central locations of the place
fields, denoted by x; for cell i, are uniformly spaced and
that they densely cover the environment. Inour analytic
calculations, this allows us to replace sums over place
cells by integrals over their place field centers. In our
simulations, we place these centers on a uniform grid.

2.2. Place Field Modulation

The amplitude of the response (1) is scaled by the fac-
tor A;. In most studies, A; is a constant representing
the maximum response of the cell. In Section 3, we
will also set A; equal to a constant value, identical for
all cells. However, in Section 4 we will explore the
idea that the amplitude of the place field response is
modulated by the presence of a desired target, such as
food or the expectation of a food reward. We denote
the location of the target by the two-dimensional vec-
tor u and assume that the amplitude of the activity of
neuron i is modulated by the factor

Ai(w) = (1 —a) +ag(lu—wl), 3

where « is a constant that scales the effect of the mod-
ulation. For o = 0 the presence or absence of a target
does not affect the response of the neuron, whereas for
a > 0 the target location influences neuron i’s activ-
ity. Similar to the place field f(|x — x;|) with center
X;, the neuron has a modulation field g(ju — u;|) with
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center u;. We will consider two types of modulated
cells: cells with aligned place and modulation field
centers, u; = X;, and cells with modulation field cen-
ters u; located at a fixed location, such as near a corner
of the environment.

The shape of the modulation field is taken to be either
Gaussian

(=) = —— powl)
u—ul) = exp| —
8 V2o, P 207

or triangular

g(lu—wf) = a[l —alu—wul, &)

where a and o, are constants and the notation [ ],
means that for any quantity s, [s]y = s if s > 0 and
[s]y =0ifs <O.

An example of a neuronal response with both place
field and modulation effects indicated is shown in
Fig. 1. Equation (3) and the choices (4) and (5) for the
modulation field are theoretical conjectures. Although
place cell firing is affected by many environmental in-
fluences (Eichenbaum et al., 1988), at present there is
no direct experimental evidence for the idea of place
field modulation by targets.

Figure 1. Place field tuning. The activity r; of a cell i with the
center of its place field at x; is shown as a function of the location x
of the animal. The activity is high if the animal is close to x;. The
amplitude of the place cell activity is modulated in the presence of
a target. If the target is at at the optimal location u;, the activity is
given by the solid line. If the target is at different location that is not
optimal for cell 7, then the activity is always lower (dashed line).
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2.3.  Synaptic Coupling and Learning

All neurons in the network are coupled by synapses that
are adjusted during a learning period. Before learning
the efficacy J;; of the connection from presynaptic neu-
ron j to postsynaptic neuron i is zero. During learning,
the synaptic efficacy increases or decreases according
to a Hebbian learning rule. This means that the change
in the strength of a given synapse is proportional to the
correlation of its pre- and postsynaptic firing rates. In
addition, the change in synaptic efficacy depends on the
relative timing of presynaptic and postsynaptic activity.
Specifically if presynaptic activity occurs at a time ¢’
and postsynaptic activity at time 7, the change in synap-
tic strength is proportional to a factor H (s — t'). After
a long learning period of duration 7', the weight factor
for the synapse from neuron j to neuron i is given by
(Abbott and Blum, 1996; Gerstner et al., 1993; Minai
and Levy, 1993; Herz et al., 1989)

T T
Jij = / / ri®)H@ —t)r;(t")dedt’.  (6)
0 0

In accordance with experimental results on long-term
potentiation (Levy and Steward, 1983; Gustafsson
et al., 1987; Levy, 1989; Debanne et al., 1994;
Markram and Sakmann, 1995), we assume that
synapses are strengthened, if presynaptic activity pre-
cedes postsynaptic firing. On the other hand, the synap-
tic efficacy is depressed if the postsynaptic neuron
fires before the presynaptic neuron. We describe the
time-dependence of synaptic plasticity by a function
of the form

1~ exp(—t/t) fort >0

—Brlexp(t/t) fort <O ™

H({t) = {

that we will refer to as the LTP window function. The
parameter § scales the relative importance of LTD. For
B = Othereisno LTD atall; for 8 = 1 the contributions
of LTD and LTP are of equal magnitude. The relative
timing of pre- and postsynaptic activity then determines
whether a synaptic weight is increased or decreased.

Because of the coupling that arises from learning, the
activity r; of neuron i is influenced by the activity of
other neurons. We assume that the coupling remains
weak. After learning, the activity of neuron i is no
longer given by Eq. (1) but instead by

ri=Aif(Ix=xi|) + Z JijAjf(x=x;D.  (8)
J

The second term produces the experience-dependent
shifts that produce a navigational map.

For our simulations, the learning scenario is as fol-
lows. The animal moves along straight lines through a
two-dimensional environment. To make the model as
simple as possible, the environment consists of a large
box of extension L x L where the length L is much
larger than the width of the place field (L > o). The
animal’s movement starts at a random position and pro-
ceeds in a random direction. If one of the walls is hit,
the direction of movement changes. The new direction
is random except that it must lead back into the interior
of the box. The movement stops if the target is reached,
but learning continues for another 100 time steps while
the animal is sitting at the target. Finally the next trial
begins at a new random position. A typical set of paths
generated in this manner is shown in Fig. 2.

The idea behind this procedure is that the animal
learns only while it is searching for the target location.
Once it has found the target, it sits there. For example, if
the target is a food source, the animal eats after arriving
at the target. Afterwards it is satisfied and moves away
without further learning. Learning starts again later on
when the animal becomes hungry again and once again
searches for the target location.

2.4.  Population Vector Coding

We assume that the model network contains a large
number of neurons with overlapping place fields. Thus,
if the animal is at a location X many neurons with
place field centers close to x are active at the same
time. In order to interpret the resulting pattern of
activity, we use a simple vector population decoding
scheme (Georgopoulos et al., 1986; see also Salinas
and Abbott, 1994). We take the coded location to be
the center of mass of the population activity pattern. In
other words, we compute the weighted sum

> Xifi

p= S

il
as the relevant quantity. In the absence of modulation
(o = 0) and before learning, the population vector rep-

resents the location of the animal and, if the locations
of the spatial fields are dense and uniformly placed,

p— Y%A f(Ix—xi]) ~x
Y Af(x—x)

The approximation p ~ x is good, if there are many
cells with overlapping place fields located in such a

©))

(10)
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Figure 2. Four samples of exploratory paths. The environment consists of a square box with a barrier (dotted) in the center. Each exploration
starts at a random location, crosses the interior along straight lines, is scattered at the borders, and ends at the target indicated by the small square
at (.25, .25). Note that in one trial the movement is trapped for a long time on the right side of the barrier, before the model rat moves to the left

and finds the target.

way that all of the environment (inside and outside
the box) is uniformly and densely covered. If the
centers of all place fields are restricted to lie in-
side the box, then the center of mass is systemati-
cally shifted toward the center of the box. In our
simulations, place field centers were placed on a
grid of (11 x 11) locations including the boundaries
0,0), (0,0.1),...,(1,1). Place fields had a width
of o =0.1. Since the approximation p & x is not
strictly valid for such a coarse representation of space,
we made no use of the approximation in (10) in our
simulations, but plotted the exact value p for the ini-
tal representation of space (diamonds in Figs. 3-6).
For the mathematical analysis presented below, how-
ever, we assume densely packed place fields and set p
equal to x.

Under these idealized mathematical conditions,
p = x holds before learning and in the absence of mod-
ulation. The population vector changes, however, in
the presence of target-induced modulation or through
learning-induced changes of synaptic strength. We
separate these two effects by calling the shift of the pop-
ulation vector produced directly by modulation Ap,,
and that due to learning Ap;. In general, after learning
and in the presence of modulation produced by a target
at location u, the population vector is

P(x;u, {X}) =x+ Ap,(x;u) + Api(x; {X}), (1D
where {X} represents the family of exploratory paths

taken during the training process. The two components
of the shift, representing the effects of modulation and
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the effect of learning, will be discussed in the follow-
ing sections. Note that, because of these shifts, the
population vector no longer encodes the actual posi-
tion of the animal but a different location nearby. In
previous work (Blum and Abbott, (1996)) and below,
we show that this encoded location is where the ani-
mal must go if it is to proceed to the target. In other
words, Ap,, + Ap; gives the direction that the animal
must follow to reach the target location. When the ani-
mal changes its position, the encoded location changes
simultaneously always moving slightly ahead of the
animal and leading it to the target. The collection of
the vectors Ap,, + Ap; corresponding to all positions
X is thus a navigational map.

3. Navigation to a Single Target

We begin our analysis by studying how a navigationally
useful map can arise from the potentiation and depres-
sion of synapses between place cells that occur during
random exploration of an environment. In this section,
we turn off modulation by setting « = 0 and study the
effect of learning while a single target is present at lo-
cation u. We concentrate on the population vector p(x)
that arises if the animal is at location x. Before learn-
ing, defined as a period of exploration during which
synapses are plastic, we have p(x) = x and afterward
p(x; u) = x+ Ap;(x; u). We will show that the shifts,
Apy, of the locations encoded by place cell activity that
are caused by synaptic changes constitute a useful nav-
igational map. This map includes directions toward a
target goal, away from surrounding walls and around
obstacles.

The experience-dependent shifts in the encoded pop-
ulation vector can be divided into two terms with dif-
ferent characteristics. We call these static and dynamic
components. If the animal sits motionless at some po-
sition x;, neurons with place field centers close to x;
will be activated and synapses between them will be
strengthened due to their correlated firing. If, at a later
time, the animal returns to the vicinity of the point
X1, neurons with place fields nearer to x; will be more
strongly activated than those further from x; because
they receive additional synaptic input through the pre-
viously strengthened synapses. As a result, the popu-
lation vector for nearby locations is shifted toward x;.
This static learning does not depend on the temporal
asymmetry of the LTP window function and it is a lo-
cal effect that vanishes for distances larger than a few
times 0.

In addition, there is a dynamic learning term. If the
animal moves along a line from x; to another location
X, nearby, synapses from neurons with place fields near
X to neurons with fields near x, will be strengthened if
they are sequentially activated within a time period cov-
ered by the LTP window function. However, synapses
from neurons with place fields near x, to those with
fields near x; will be weakened because their firing
is in the reverse, post-then-pre order. In general, since
LTP requires the presynaptic neuron to be active before
or during the activity of the postsynaptic neuron, only
synapses in the forward direction along the path will
increase in strength. As we will see below, the dynamic
learning effect gives rise to a long-range component of
the navigational map.

3.1. Long-Range Effect of Learning

For the case of a single target in a simple environment,
it is possible to perform a fairly general analysis of
the effects of LTP and LTD during random exploration
on the encoded population vector. As a first step, we
study the shift of the population vector produced when
the animal is at a reference location x, Ap;(x; {X}),
after a learning session that involved movement along
a single path X (¢) with the target fixed at u. For sim-
plicity, we take X () to be a straight line along which
the animal moves at constant velocity v. We use the
parameterization

X()=x+DX) v+ —1o)v,  (12)

where v is the unit vector perpendicular to the animals
direction of motion (assuming a right-hand rule) and
| D(x)| is the perpendicular distance from the reference
location x to the path. Note that D(x) can be positive
or negative depending on the direction of motion along
the path.

As shown previously (Abbott and Blum, 1996),
learning a path X (¢/) with the parameters D(x) and
v causes a change of the population vector

Api(x; D,v) =
v v D?(x
yaf[Ho—me) + Hl—} exp(— (2)), (13)
v v 402

where y is a constant and Hy = [dt H(t) and H, =
[ dt H(t)t are the mean and first moment of the LTP
window function. The first term in the bracket on the



right side of (13) leads to a change of the population
vector that points toward the path, independent of the
direction of motion along the path. This is the static
learning term discussed above; it depends on o7/|v|,
which is roughly the time the animal spends within any
place field that it passes through along the path. The
second term in (13) is the dynamic learning term; it de-
pends on the direction of the animals motion and gen-
erates a component of the population vector pointing
along the path. Note that moving along the same path
with the same speed in the opposite direction changes
the sign of the of dynamic learning term but does not
change the contribution of static learning. The mag-
nitude of the dynamic learning term depends on the
size of the temporal asymmetry in the LTP window
function through the first moment H;, while the static
learning term does not depend on this asymmetry but
only on the total magnitude of the LTP window func-
tion, Hp.

We now return to the full learning scenario involving
multiple paths. For the sake of convenience we restrict
our considerations to straight paths with unit velocity
|[v| = 1. We can then use the direction 6 instead of the
velocity vector v as a parameter. 6 is the angle between
the direction v and the line connecting the reference
position x and the target u. As before, a second param-
eter is D, the perpendicular distance of the path from
the reference point x introduced above in Eq. (12). A
given path k with 1 < k < K therefore has parameters
Dy and 6;. After K paths, the effect of learning is

K
Api(x;u) o Y ApI(X; Dy, 6. (14)
k=1

We assume that the learning time 7 is long enough so
that the learning process averages over a large number
of paths K > 1. In this case, the mean shift can be
approximated by

1 K
Api(x;u) = lim 3 Api(x; Dy 6)
k=1

[ v P [ a0 Po@)apicxi 0.6,
15)
where P (D) is the probability of finding a path at

distance D from the reference point x and Pp(0) is
the conditional probability that a path at distance D
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has direction 6. Note that by definition, the direction
0 depends on the target location u. More generally,
for arbitrary (not necessarily straight) paths we would
have

Api(x;w) = /d{X}Apl(x; (XD, (16)

where p; is the shift due to a single path and the inte-
gration covers the ensemble of all possible paths. On
the right side of (16), the dependence on the target lo-
cation enters only due to its effect on the ensemble of
allowed paths {X} during learning.

We make the following essential observation. De-
spite the fact that the paths are generated by a random
search strategy, some paths are impossible; those that
come from the target. According to our learning pro-
cedure, a path that hits the target is terminated and
restarted at a new random location. Thus, there are no
paths starting at the target and, as a result, the distri-
bution Pp(0) is nonuniform. In the case of straight
paths and a circular target of small diameter, the set of
allowed paths can be constructed geometrically. It fol-
lows from basic symmetry arguments that in an homo-
geneous and isotropic environment with a sufficiently
large number of paths, the shift Ap; must always point
toward the target. Thus we have

Apw = F(u=x),(7)

with some function F' that depends on the distance
between the location x and the target u.

If we assume an unbounded environment where all
paths originate at infinity and go to infinity unless they
hit the target, then the function F (d) falls off as d ' for
distances larger than the typical place field size. Thus,
learning has a long-range effect that extends local in-
formation about the location of the target into a global
navigational map. To see how this happens we note
that the static learning term does not contribute due to
the symmetry of the set of paths (their only asymmetry
is with respect to direction, inward or outward from the
target, and the static term is not sensitive to direction).
Thus, we concentrate on the dynamic learning term. In
the sum over all possible paths, all those that miss the
target add up to zero. This is because there are two
opposite directions of motion for each of these paths
and the dynamic effects of learning for the two direc-
tions cancel each other. To derive the 1/d dependence,
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it is sufficient to note that, in a two-dimensional en-
vironment, the density of paths that hit the target de-
cays with the inverse distance from the target. This
is due to the fact that the number of paths entering
(minus the number of paths leaving) through a closed
loop around the target is the same whatever the size
of the loop since all paths start at infinity and can end
only at the target. This is a rather general argument
that holds for ensembles of arbitrary, not necessarily
straight, paths in an unconstrained, homogeneous, and
isotropic environment. In the case of straight paths,
the 1/d dependence can also be found from a straight-
forward but somewhat lengthy derivation using the ex-
plicit formula (13) in (15) and integrating over all paths
that hit the target.

In a finite-sized environment with fixed boundaries
and perhaps some obstacles, the vector field of the
navigational map generated by learning will no longer
be radial, but it will still be long-ranged. Furthermore,
all trajectories generated by the vector field will end at
the target. A complication in verifying this statement is
that, in a finite environment, closed paths (loops) can
occur during learning, even if paths are constructed
out of straight segments. However, since clockwise
and counterclockwise loops are equally likely to occur,
learning will average over loops in both directions, and,
in the limit of large numbers of paths, a rotation free
vector field will result. Thus, the sum over learning
paths produces a conservative vector field with a sink
at the target. It follows that we can find a potential with
a minimum at the target location. If, after learning, the
animal moves along the trajectory generated by the vec-
tor field, this will correspond to movement downward
on the potential surface and it must ultimately result in
reaching the target.

Can we say something about the learning time
needed to evolve such a vector field? We present a
rough estimate. Let us consider a circular environment
of radius R and paths that start at the border and are
directed toward the target at the center. Each path leads
to a minor improvement of the vector field. Relevant
changes of the synapses only occur at cells that have
place field centers less than ¢ away from the path (o is
the width of the place fields). If we could chose opti-
mal paths, we would need (2t R)/(20) paths to ensure
that all cells with place fields close to the border are hit
at least once. What we learn from considerations such
as the above is that we have to compare the diameter
of a single place field with the length scale of the en-
vironment. This is true even in a situation where paths

are generated statistically. If we draw paths randomly
from the ensemble of all radial paths, we should take
10 times as many paths as above to make sure that the
probability that we miss one cell is negligible. Finally,
let us consider paths with arbitrary directions, not nec-
essarily pointing toward the target. In this case, the size
of the target is an additional parameter that influences
the learning time, since a larger target is more likely to
be hit than a smaller one. Paths that miss the target do,
after some time, average out. As before, we estimate
that we need about 10 (27 R)/(20) succesful trials to
build up a reasonable vector field.

3.2.  Simulations with a Single Target

While the analytic treatment of the previous section
shows that the learning rules and procedures we are
studying will lead to a useful navigational map, it is in-
formative to study more complex environments with
computer simulations. For this purpose, we use a
square box environment with side length L = 1. Place
fieldshave awidthof oy = 0.1 and their centers are uni-
formly spaced on a grid with lattice spacing 0.1. In the
simulations with a single target, we use 121(11 x 11)
neurons.

The animal moves through the box along straight
lines at a constant speed of |[v| = 0.05 distance units
per time step. The movement is randomly scattered
back into the box at its borders and stops if a target is
reached. The target is square with side length of 0.1.
We use an LTP window as in Eq. (7) with time constant
7 = 10. The exact form of the LTP window does not
matter but a combination of exponentials turns out to be
computationally convenient. As discussed previously,
learning has both static and dynamic components with
magnitudes proportional to the mean Hy and first mo-
ment H, of the LTP window function respectively. The
ratio of Hy to H; and thus the relative contribution of
these two components can be adjusted by varying the
asymmetry of the LTP window function through the
parameter § in (7).

The static component of learning causes the popula-
tion vector to be shifted toward places that are visited
more frequently than surrounding areas. We can see
this clearly in simulations in which no target is present.
In Fig. 3(a) we have set § = 0 to enhance the static
component. After random exploration in a box with no
target, the dominant features seen in the navigational
map are the walls of the box. The arrows in Fig. 3(a),
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Figure 3. Static and dynamic components of learning. The shift Ap; of the population vector after a long exploration period (10,000
time steps) without any target is indicated by pointers on a grid of 81 (9 x 9) positions. Each pointer consists of a line connecting the
position of the population vector before learning (diamonds) with the position after learning; (a) the static component of learning shifts the
population vector away from the walls. The asymmetry parameter 8 in Eq. (7) has been set to zero. (b) if the static component of learning
vanishes (8 = 1), random exploration leads to small statistical shifts of the population vector, but the systematic shift seen in panel a is not

present.

representing the shift in the population encoded loca-
tion due to exploration and synaptic plasticity, point
away from the walls. The encoded location evoked by
passing through locations near the borders of the box is
shifted toward the interior of the box because the border
acts as a repeller during exploration. The shift at the
border vanishes, if we remove the static component by
setting B = 1, which makes Hy = 0. In Fig. 3(b),
the only remaining shifts seen in the map are those due
to random inhomogeneities in the distribution of paths
during the exploratory and learning period.

We now consider the map that arises when both a
target and an obstacle are added to the environment.
The environment, which contains a single target and a
barrier separating the left and right halves of the box,
and a number of exploratory paths are shown in Fig. 2.
If a strong static component is present during learning
in such an environment, it produces a large border ef-
fect as in Fig. 3(a) that can interfere with the arrows
in the map pointing toward the target, especially for
targets near the boundaries. On the other hand, the
static component helps to drive the population vectors
away from obstacles. Also, the static learning effect
is helpful when the animal sits at the target after it has
found it. For these reasons, we used in all subsequent
simulations a parameter setting of 8 = 0.8, thus keep-
ing a small contribution from the static component of

learning. The value of 0.8 is somewhat arbitrary, but
the precise value of B does not matter. Any value in
the range of 0.7 to 0.8 is just as good.

As mentioned before, dynamic learning gives rise to
a long-range component of the navigational map. The
long-range component is seen clearly in Fig. 4. After
a period of random exploration and synaptic modifica-
tion, the resulting navigational map provides a useful
guide to the target from any location in the box. The
arrows on the right side of the box do not point di-
rectly to the target, but upward and around the barrier
directing appropriate motion toward the target. Thus,
the representation now contains a record of the expe-
riences during exploration that can easily be recalled
through readout of the encoded location to guide fu-
ture movements. In Fig. 4(a), some of the arrows on
the right side of the barrier are rather short. This is a
systematic effect that remains if we average over 400
instead of 100 paths. To improve the overall structure
of the map, we increased the resolution of the under-
lying network of place cells. For Fig. 4(b), we have
used a lattice of (21 x 21 cells) and place fields with
half the width (o = 0.05) of those used for Fig. 4(a).
We find that the map after 400 trials is more regular
and that arrows on the right side and around the tip of
the barrier are longer and always point in the correct
direction.
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Figure 4. Learning a single target position. The pointers show the shift of the population vector after a learning session of 100 exploration
trials. The field of pointers forms a navigational map that guides the animal from arbitrary initial positions to the target denoted by the small
square. Panels a and b differ only in having different place field densities (see text).

4. Multiple Targets and Modulation

Figure 4 shows that the navigational map we are ana-
lyzing can be of use in nontrivial environments with a
single target. However, equally important is the ability
to navigate to multiple targets or to new locations on the
basis of experience with previously learned targets. To
accomplish this, we introduce target-dependent modu-
lation of place cell activity.

Target-dependent modulation allows different pools
of neurons to deal with different target locations. When
a modulation field is added to the place fields we have
been discussing (through the multiplicative amplitude
term) neuronal activity depends both on the location
of the animal relative to the place field of the cell
and on the location of the target relative to the cen-
ter of the modulation field. Neurons are most active
when the target is located inside their modulation field.
As a result, targets that are in different regions of the
environment are handled by different subsets of neu-
rons. Thus, we might expect a network of modulated
neurons to be useful for encoding maps to multiple
targets. During learning, the presence of the target
in a particular location activates a set of cells that
then encode a map to that target within their modi-
fied synapses as discussed in the previous section. The
presence of a target in a different location then acti-
vates a second set of neurons that encode a second
map, and so on. Later, the presence of a target at
one of the previously learned positions will activate

the appropriate group of cells and the map can be re-
covered.

From the above discussion it might appear that a net-
work capable of encoding multiple targets will require
all possible combinations of place and modulation field
centers. In fact, we will show in the following that
only two types of modulated cells are required. One
type is composed of neurons with modulation field cen-
ters u; that are independent of their place field centers
x;. Because we place the modulation field centers for
these cells near corners of the environment we call them
corner cells. These neurons are capable of developing
long-ranged maps to multiple targets. However, when
we attempt to interpolate between learned target posi-
tions, we find that local errors can arise. This problem
is eliminated by adding a set of neurons with modu-
lation field centers equal to their place field centers,
u; = x;. We call these target cells. These introduce a
local component to the map, Ap,,, that is independent
of any learning process and arises purely from mod-
ulation. In combination, the corner and target cells
provide an effective map to multiple targets that can
also interpolate between learned locations to find new
targets.

4.1. Effect of Amplitude Modulation
During Learning

We will now study how target-dependent modu-
lation modifies the learning process. We start by



concentrating on the change of synaptic weights that
occurs during learning from an ensemble of exploratory
paths {X} while the target is at a fixed location u. We
define Jg- to be the synaptic efficacies that would arise
through learning in the absence of modulation, i.e., with
o = 0. A modulation term in the amplitude factor of
Eq. (1) of the form (3) modifies the synaptic weights
produced by identical exploration to

Jijw) = J5 (1 — @) + ag(ju —w;])]
X[ —a)+ag(lu—u;)]. (18)

Note that for « — 1, only those neurons with the cen-
ter of the modulation field u; close to the target u are
affected by learning.

Our purpose in introducing target-dependent mod-
ulation is to determine whether navigational maps to
multiple targets can be learned and recalled. What hap-
pens if several targets are presented sequentially during
the training period? We assume that for each target the
learning time is long enough to ensure averaging over
many paths. If the targets have positions u® labeled
by n, the total effect of learning is the superposition of
all the individual contributions

‘Iij = Zlij(u(”)). (]9)

After learning several target positions u‘™, the network
is tested with a new target position u. We want to calcu-
late the shift Ap;(x; u) of the population vector induced
by the weigths (19). To linear order in J;; the shift is
(Abbott and Blum, 1996)

Zi,j(xi —x)J;jr;(x)

Api(x; ) = S ® ;
iti

(20)

where J;; is given by (18) and (19) while r; is given by
(1) and (3).

To keep the formulas as simple as possible, we con-
sider a densely packed network of place cells and as-
sume that there are no correlations between the centers
of the place field and the modulations field. In this
case, Eq. (20) can be evaluated and yields

Api(w =Y T(lu—u”hApxu™), (21

where Ap;(x; u™) is the single target result (16)
without modulation (¢ =0) and I" is given below.

Learning Navigational Maps &9

Equation (21) shows that the resulting shift is, as ex-
pected, a linear superposition of the previously learned
navigational maps. The weight of the map pointing
toward the target u is given by the function

I'(lu—u™))
= / du'p()[(1 — ) + ag(lu' —u™))]
x [(1 —a) +ag(ju’ —ul)], (22)

where p(u’) with [ p(u')du’ = 1 is the density of cells
with modulation field center uw’. Both the utility and
limitations of this simple linear summation of individ-
ual maps will be seen in the simulation results.

4.2.  Local Effects of Amplitude Modulation

In order to estimate the shift Ap,, of the population
vector that is introduced by the target directly through
modulation, we assume « < 1 and linearize (9) in o
to find

o
Apn(x,0) = m Z(Xz’ —X)
x fx—x;Dlg(lu —w;]) —1].  (23)

Recall that each neuron is characterized by two param-
eters, the center of its place field and of its modulation
field. For large numbers of uniformly distributed cells,
the sum over i can be replaced by a sum over all com-
binations of x; and u;. Thus, we make the replacement

Z - fdi/dﬁp(i, ), (24)

where p(X,u) is the fractional density of cells with
place field centers x; = X and u; = u.

In order to proceed further, we must specify the dis-
tribution of place fields. We consider the two cases
discussed in the introduction:

e Cells with fixed modulation field centers so that the
distributions of place fields and modulation fields are
uncorrelated, p(X, u) = p(X)p(u). In this case, we
can perform the integration and find Ap,, = 0.

e Cells for which the center of the modulation field is
identical to the center of the place field, p(X, 1) =
p(X)é(a — x). If we take a uniform distribution
p(X) = pp and g to be a Gaussian, Eq. (4), then
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Figure 5. Multiple targets and amplitude modulation. (a) Effect of target cells. The modulation field of a target cell shifts the population
vector at surrounding locations toward the target at (0.25, 0.50). Note that the effect is short-range and occurs without learning. (b)—(d) Effect of
corner cells, no target cells present. Four different target locations, have been learned during a session consisting of 50 exploration trials for each
target. If one of the known targets is presented after learning, the population vector is shifted toward the correct target position. In b the target,
indicated by a small square, is at (0.25, 0.25); in c it is at (0.25, 0.75). (d) A target at a new position between the previously known locations
evokes a shift field which is the superposition of the shifts in b and c. Note that the effect is long-range but close to the target information is

missing.

we can do the integrals and find from (23)

(u—x)°
Apm X (ll — X) exXp| — m (25)
f g

The shift points from the location x toward the target
u. In other words, the presence of the target induces a
radial vector field with direction toward the target. The
amplitude of the vectors is significant in the neighbor-
hood of the target only. For locations x far away from
the target, |x — u|> > aj% + Ug, the effect vanishes.
Thus, we have a purely local effect that looks much

like the local effects of learning, but in this case no
exploration or synaptic change is required.

4.3.  Simulations with Modulation

Simulations were run as in the case with a single tar-
get. We use the same set of place fields, but for each
place field there are five neurons with different centers
of the modulation field. The total number of neurons is
N = 121 x5 = 605. In each group of five neurons, the
first neuron has a modulation field center identical to
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Figure 6.  Unknown target position. A network of 5 x 121 neurons (4 corner cells and 1 target cell at each of the 11 x 11 grid locations) has
been trained with four different target positions close to the corners of the box (the dashed squares in b show two of these positions). A target at
a previously unknown position (small square) evokes a shift field pointing toward the target; (a) the shifts are a superposition of the local effects
of the target cells (Fig. 5(a)) and the long-range effects of the corner cells (Fig. 5(d)), (b) the same principles also work in the presence of an

obstacle.

the place field center (w; = x;). These neurons are the
target cells. The other four neurons are the corner cells
with modulation field centers at (0.25, 0.25), (0.25,
0.75), (0.75,0.25), (0.75,0.75). The shape of the mod-
ulation field is triangular, Eq. (5) with parametera = 2.
To get a significant modulatory effect we set ¢ = 1.

Figure 5(a) shows the local effect of modulation
(without learning) due to a single target. The arrows in
Fig. 5(a) point radially toward the target, but the am-
plitude of the arrows is negligible beyond the width
of the modulation field (1/a = 0.5). Recall that this
effect is due to neurons with aligned place field and
modulation field centers. It arises simply because neu-
rons close to the target are modulated to higher activity
levels than neurons away from the target and thus the
encoded location is shifted toward the target.

In order to study the effect of learning, we temporar-
ily turn off the local effect by disregarding the contri-
bution of the target cells. We are interested in studying
both the encoding of multiple target maps and inter-
polation between learned targets. The network has
been trained using four target positions at (0.25, 0.25),
(0.25,0.75), (0.75, 0.25), and (0.75, 0.75). During the
learning session, each target was presented 50 times.
The network was then tested with two of the previ-
ously known targets at (0.25, 0.25), (0.25, 0.75) and
one unknown target at (0.25, 0.50). It is obvious from
Figs. 5(b) and (c) that presentation of a previously
encountered target generates the desired vector fields

pointing toward the target. When the novel target is
presented in Fig. 5(d), however, the situation is less
clear. As predicted from theoretical considerations, the
superposition of the two vector fields maps to known
targets yields a combined vector field where all the vec-
tors far from the new target point toward it, but local
uncertainties arise. This is seen in the region directly
to the right of the target where the arrows are extremely
short, and a few, in fact, point away from the target.

As mentioned in the introduction, local errors, like
those seen in Fig. 5(d), can be eliminated by adding
back the effects of the target cells as shown in Fig. 5(a).
In Fig. 6(a), we combine the local effect generated by
the target cells and the long-range effect generated by
learning through the corner cells. We now have a vector
field that is correct both in the local neighborhood and
far from the target. An accurate map to any one of a
set of targets can be recalled by the presence of a given
target, and maps to new target locations are generated
through interpolation. Additional tests demonstrated
accurate interpolation to targets located anywhere in
the box.

In a final simulation, we have combined the task of
obstacle avoidance with multiple targets (Fig. 6(b)).
During learning, two targets (dashed squares in
Fig. 6(b)) at (0.25, 0.25) and (0.25, 0.75) were pre-
sented, and the model rat performed 100 successful
search trials to each of these targets. After learning,
we tested with a new target at an intermediate position
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(0.25,0.5). The resulting navigational map has a long-
range component that guides the rat around the barrier
to the target. The long-range effect arises from a super-
position of the previously learned vector fields. There
is also a short-range component that guides the animal
to the new target once it is close to it. In this simula-
tion, the target cells had a Gaussian modulation field
of width o, = 0.1. The effect of the target cell is neg-
ligible beyond a distance of 0.2 units from the target.

5. Discussion

Our analysis of map formation by hippocampal place
cells has involved only a few basic principles: pop-
ulation encoding of spatial position; correlation-
dependent, temporally asymmetric modification of
synapses; random exploration of an environment; and
target-dependent modulation of place cell activity.
With these simple components, a network of place cells
can develop maps that indicate the direction toward a
target around obstacles and away from walls. These
maps are extremely easy to follow; the animal merely
has to head from its present location toward the loca-
tion encoded by place cell activity. As it moves, the
encoded location will lead the actual location of the
animal along the paths stored in the map.

Multiplicative modulation of neurons involved in
population coding is a powerful mechanism for increas-
ing computational complexity. We have used this prin-
ciple and applied it to hippocampal place cells. In our
case, target-dependent modulation allows a place cell
network to encode multiple maps and recall the appro-
priate map when a given target appears. Furthermore,
knowledge of an environment represented by multiple
maps to different targets is sufficient to allow a map
to a novel target to be constructed by interpolation.
While far from a complete theory of navigation, these
results show that significant progress can be made using
a small number of established properties of neuronal
coding and plasticity and an extremely simple learning
strategy. It will be interesting to explore how more so-
phisticated learning procedures would augment these
findings.

In our present model, we have made a clear distinc-
tion between an idealized exploration phase and a sep-
arate test or navigation phase. During the exploration
phase, the synaptic weights were continuously modi-
fied according to Eq. (6). The change of weights results
in a change of neuronal activity and, hence, in a shifted

population vector. The shift of the population vec-
tor, however, was not used to improve target approach
during the subsequent exploration trials. Rather, all ex-
ploratory paths were based on the same random search
strategy outlined in Section 2. In contrast, for naviga-
tion during the test phase we considered only the shift
of the population vector without any random compo-
nent. The assumption of a long exploration phase (in
simulations we used about 100 independent trials) is,
of course, rather artificial, but it has enabled us to ad-
dress the formation of navigational maps analytically.
A further advantage of this approach is that the model
rat cannot end up trapped in a cyclic path, since contri-
butions from loops average out.

Our learning scheme relies on a fundamental asym-
metry: learning occurs while the animal is searching
for a target but does not occur while it moves away in
a satisfied state. This is the essential effect that makes
the population vector shift toward the target. But there
is also a symmetric element. Even if there is no target,
the static component of learning drives the population
vector away from walls and obstacles. As a result of
learning, a smooth navigational map develops, and the
animal does not necessarily move along the shortest
possible path around a barrier to the target but on a
smoothly curving line. The above result holds for a
dense and uniform distribution of place fields combined
with a random search strategy. If learning continues
during the test phase the animal learns to cut corners
and evolves navigational strategies with shorter paths
(Abbott and Blum, 1996).

Real rats use the knowledge from the first few tri-
als immediately to improve preformance in the follow-
ing search trials. In previous work (Blum and Abbott,
1996) the choice of exploratory paths was influenced
by both a random component and the developing shift
of the population vector. This reduces the number of
paths needed to form a navigational map to around
10 to 30 in rough agreement with experimental results
(Morris et al., 1982; Morris et al., 1986). Such an ap-
proach of strategy improvement during the exploration
phase is similar to the well studied models of rein-
forcement learning (Barto et al., 1983; Dayan, 1992)
and policy iteration in dynamic programming (Dayan,
1996). These approaches develop paths of minimal
length by optimization whereas the case studied here
involves only random paths and does not necessarily
lead to maps that provide the most efficient path to the
target. Nevertheless, the paths implied by the maps we
have shown are fairly close to optimal.



Our simple model was not intended to explain all
known effects relating the hippocampus to navigation.
There are some obvious points where we can improve
the model. We mention three issues:

e Presently we have started from a spatial representa-
tion that was turned into a navigational map by learn-
ing. In would be interesting to go one step back and
learn the spatial representation itself —for example,
to learn where to locate the centers and how to adjust
the width of place fields (Tsodyks and Sejnowski,
1995). The picture would be even more complete if
we would generate place fields from views of the
environment (Burgess et al., 1994).

e Presently place fields have no directional selec-
tivity. Also the model rat was assumed to turn
instantaneously when it hits a wall and to start in
anew random direction. What is the relevance of di-
rectional selective place cells? This is another topic
that should be addressed.

e Presently, the learning mode is triggered by a hungry
animal in search for a target. Therefore unrewarded
exploration cannot generate a navigation map, ex-
cept for the stationary learning effect that drives the
animal away from walls. Can we generalize the ar-
gument to include latent learning? One possibility is
to introduce an attention variable whose value trig-
gers the learning mode.

There is an implicit assumption in the model that
implies that the synapses between hippocampal place
cells are more plastic than synapses connecting place
cells to other regions that read out and interpret their
firing patterns. This is because we assumed that con-
nections between place cells changed during learning
but that the interpretation of place cell firing remained
constant. It is not clear how this assumption would be
tested.

In our present model, we have studied two mecha-
nisms, learning and modulation, that can shift the pop-
ulation vector and guide navigation. If the same prin-
ciples are used in real systems, it should be possible to
observe experimentally the following effects:

e Modification of lateral connectivity during learning
leads in the model to a deformation of the place field
and a change in place cell activity. As a result, the
population vector (the weighted sum over the ac-
tivities of many place cells) is shifted away from the
walls, along learned paths and toward the target. This
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is accompanied by shifts in the place field shapes and
locations similar to those recently reported in exper-
imental data (Mehta et al., 1996).

e We have proposed modulation of place cell activity

in the presence of a target. This can be tested on
the single neuron level. If it occurs, the population
vector should be shifted toward the target even with-
out exploration merely by showing the target or by
providing information about it location. At present
this idea does not appear to be supported by the data
(Speakman and O’Keefe, 1990). However, this is a
local, short-ranged phenomenon and it will be inter-
esting to see if further experimentation reveals any
related effects.
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