Skip to main content
Log in

Representation of Visual Space in Area 7a Neurons Using the Center of Mass Equation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The firing rate of neurons in parietal area 7a of the behaving Rhesus monkey with its head fixed incorporates both visual and eye position information. This neural tuning is not in an ego-centered coordinate space. This physiological result was unexpected as behavioral deficits following parietal damage in human and monkey subjects suggested the existence of egocentric representations. A formulation to extract a world-centered system from area 7a neurons is presented that depends on the linearity of the eye position signal and the similarity of the equation describing the tuning of these neurons to the center of mass equation. This formulation permits the computation of the location of objects in world coordinates using either serial analysis of a single neuron's activity or parallel processing of a collection of neurons. Experimental predictions are made for the relationship between different parameters of angle of gaze neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF (1994) Decoding neuronal firing and modelling neural networks. Q. Rev. Biophys. 27:291–331.

    Google Scholar 

  • Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51:16–31.

    Google Scholar 

  • Andersen RA, Asanuma C, Cowan WM (1985a) Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes. J. Comp. Neurol. 232:443–455.

    Google Scholar 

  • Andersen RA, Asanuma C, Essick GK, Siegel RM (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions within inferior parietal lobule. J. Comp. Neurol. 232:443–455.

    Google Scholar 

  • Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J. Neurosci. 10:1176–1196.

    Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1985b) The encoding of spatial location by posterior parietal neurons. Science 230:456–458.

    Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1987) Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Exp. Brain. Res. 67:316–322.

    Google Scholar 

  • Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 3:532–548.

    Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: Anatomic location and visual response properties. J. Neurophysiol. 69:902–914.

    Google Scholar 

  • Critchley M (1953) The Parietal Lobes. Hafner Press, New York.

    Google Scholar 

  • Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848.

    Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1963) The Feynman Lectures on Physics. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Fuster JM (1990) Inferotemporal units in selective visual attention and short-term memory. J. Neurophysiol. 64:681–697.

    Google Scholar 

  • Galletti C, Battaglini PP, Fattori P (1993) Parietal neurons encoding spatial locations in craniotopic coordinates. Exp. Brain Res. 96:221–229.

    Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243:234–236.

    Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419.

    Google Scholar 

  • Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exper. Brain Res. 70:216–220.

    Google Scholar 

  • Gnadt JW, Mays LE (1995) Neurons in monkey parietal area LIP are tuned for eye-movement parameters in three-dimensional space. J. Neurophysiol. 73:280–297.

    Google Scholar 

  • Graziano MS, Hu XT, Gross CG (1997) Visuospatial properties of ventral premotor cortex. J. Neurophysiol. 77:2268–2292.

    Google Scholar 

  • Grinvald A, Siegel RM, Bartfield E, Frostig RD (1991) High resolution imaging of functional architecture in striate cortex of behaving monkey. PNAS 88:11559–11563.

    Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc. Roy. Soc. Lond. (Biol.) 198:1–59.

    Google Scholar 

  • Hyvarinen J (1982) The Parietal Cortex of Monkey and Man. Springer-Verlag, New York.

    Google Scholar 

  • Koch C, Douglas R, Wehmeier U (1990) Visibility of synaptically induced conductance changes: Theory and simulations of anatomically characterized cortical pyramidal cells. J. Neurosci. 10:1728–1744.

    Google Scholar 

  • Law MI, Constantine-Paton M (1981) Anatomy and physiology of experimentally produced striped tecta. J. Neurosci. 1:749–759.

    Google Scholar 

  • Lehky SR, Pouget A, Sejnowski TJ (1990) Neural models of binocular depth perception. Cold Spring Harb. Symp. Quant. Biol. 55:765–777.

    Google Scholar 

  • Livingstone MS, Hubel DH (1984) Specificity of intrinsic connections in primary primate visual cortex. J. Neurosci. 4:2830–2835.

    Google Scholar 

  • Lynch JC (1980) The functional organization of the posterior parietal cortex. Behav. and Br. Sci. 3:485–534.

    Google Scholar 

  • Matin E (1982) Saccadic suppression and the dual mechanism theory of direction constancy [letter]. Vision. Res. 22:335–336.

    Google Scholar 

  • Matin L, Matin E (1972) Visual perception of direction and voluntary saccadic eye movements. Bibl. Ophthalmol. 82:358–368.

    Google Scholar 

  • Matin L, Pearce D, Matin E, Kibler G (1966) Visual perception of direction in the dark: Roles of local sign, eye movements, and ocular proprioception. Vision. Res. 6:453–469.

    Google Scholar 

  • Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed and orientation. J. Neurophysiol. 49:1127–1147.

    Google Scholar 

  • Mishkin M, Lewis ME, Ungerleider LG (1982) Equivalence of parieto-preoccipital subareas for visuospatial ability in monkeys. Behav. Brain. Res. 6:41–55.

    Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual attention processing in extrastriate cortex. Science 229:782–784.

    Google Scholar 

  • Mountcastle VB, Andersen RA, Motter BC (1981) The influence of attentive fixation upon the excitability of the light sensitive neurons of the posterior parietal cortex. J. Neurosci. 1:1218–1235.

    Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: Command functions for operations within extra-personal space. J. Neurophys. 78:871–908.

    Google Scholar 

  • Mussa-Ivaldi FA, Giszter SF (1992) Vector field approximation: A computational paradigm for motor control and learning. Biol. Cybern. 67:491–500.

    Google Scholar 

  • Olson CR, Gettner SN (1995) Object-centered direction selectivity in the macaque supplementary eye field. Science 269:985–988.

    Google Scholar 

  • Poggio T, Koch C (1985) Ill-posed problems in early vision: From computational theory to analog networks. Proc. R. Soc. Lond. B226:303–323.

    Google Scholar 

  • Pouget A, Sejnowski TJ (1994) A neural model of the cortical representation of egocentric distance. Cerebral Cortex 4:314–329.

    Google Scholar 

  • Pouget A, Sejnowski TJ (1997) Spatial transformations in the parietal cortex using basis functions. J. Cognitive Neurosci. 9:222–237

    Google Scholar 

  • Read HL, Siegel RM (1997) Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey. Cerebral Cortex 7:647–661.

    Google Scholar 

  • Robinson DL, Goldberg ME, Goldberg GB (1978) Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations. J. Neurophysiol. 41:910–932.

    Google Scholar 

  • Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J. Comput. Neurosci. 1:89–107.

    Google Scholar 

  • Salinas E, Abbott LF (1996) A model of multiplicative neural responses in parietal cortex. Proc. Natl. Acad. Sci. U.S.A. 93:11956–11961.

    Google Scholar 

  • Sakata H, Shibutani H, Kawano K (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. J. Neurophysiol. 43:1654–1672.

    Google Scholar 

  • Sanes DH, Constantine-Paton M (1983) Maltered activity patterns during development reduce neural tuning. Science 221:1183–1185.

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior. J. Neurosci. 8:4049–4068.

    Google Scholar 

  • Snippe HP (1996) Parameter extraction from population codes: A critical assessment. Neural Comput. 8:511–529.

    Google Scholar 

  • Sparks DL, Mays LE (1983) Spatial localization of saccade targets. I Compensation for stimulation-induced perturbation. J. Neurophysiol. 49:45–63.

    Google Scholar 

  • Tootell RB, Silverman MS, Switkes E, De Valois RL (1985) On the mathematical structure of the visuotopic mapping of macaque striate cortex. Science 227:1065–1066.

    Google Scholar 

  • Van Essen DC, Maunsell JH, Bixby JL (1981) The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. J. Comp. Neurol. 199:293–326.

    Google Scholar 

  • Westheimer G (1957) Kinematics of the eye. J. Opt. Soc. Am. 47:967–974.

    Google Scholar 

  • Wong-Riley M, Carroll EW (1984) Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature 307:262–264.

    Google Scholar 

  • Zipser D, Andersen RA (1988a) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–684.

    Google Scholar 

  • Zipser D, Andersen RA (1988b) The role of the teacher in learning-based models of parietal area 7a. Brain. Res Bull. 21:505–512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, R.M. Representation of Visual Space in Area 7a Neurons Using the Center of Mass Equation. J Comput Neurosci 5, 365–381 (1998). https://doi.org/10.1023/A:1008844027878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008844027878

Navigation