Skip to main content
Log in

Signals in Stochastically Generated Neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

To incorporate variation of neuron shape in neural models, we developed a method of generating a population of realistically shaped neurons. Parameters that characterize a neuron include soma diameters, distances to branch points, fiber diameters, and overall dendritic tree shape and size. Experimentally measured distributions provide a means of treating these morphological parameters as stochastic variables in an algorithm for production of neurons. Stochastically generated neurons shapes were used in a model of hippocampal dentate gyrus granule cells. A large part of the variation of whole neuron input resistance RN is due to variation in shape. Membrane resistivity Rm computed from RN varies accordingly. Statistics of responses to synaptic activation were computed for different dendritic shapes. Magnitude of response variation depended on synapse location, measurement site, and attribute of response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen P, Silfvenius H, Sunberg SH, Sveen O (1980) A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea pig hippocampal slices in vitro. J. Physiol. (Lond.) 307:273–299.

    Google Scholar 

  • Bekkers JM, Stevens CF (1996) Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. J. Neurophysiol. 75:1250–1255.

    Google Scholar 

  • Benz R, Frölich P, Länuger P, Montal M(1975) Electrical capacity of black lipid film of lipid bilayers made from monolayers. Biochem. Biophys. Acta 394:323–334.

    Google Scholar 

  • Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J. Comput. Neurosci. 3:313–336.

    Google Scholar 

  • Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, threedimensional analysis of granule cell dendrites in the rat dentate gyrus. J. Comp. Neurol. 302:206–219.

    Google Scholar 

  • Cook EP, Johnston D (1997) Active dendrites reduce locationdependent variability of synaptic input trains. J. Neurophysiol. 78:2116–2128.

    Google Scholar 

  • Cotman C, Taylor D, Lynch G (1973) Ultrastructural changes in synapses in the dentate gyrus of the rat during development. Brain Res. 63:205–213.

    Google Scholar 

  • Cowan J (1972) Stochastic models of neuroelectric activity. In: SA Rice, KF Freed, JC Light, eds. Statistical Mechanics: New Concepts, New Problems, New Applications. Proc. 6-th IUPAP Conf. Statistical Mechanics. University of Chicago Press, Chicago, IL. pp. 109–127.

    Google Scholar 

  • Cowan WM, Stanfield BB, Kishi K (1980) The development of the dentate gyrus. Current Topics in Develop. Biol. 15:103–157.

    Google Scholar 

  • Crain B, Cotman C, Taylor D, Lynch G (1973) Aquantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res. 63:195–204.

    Google Scholar 

  • de Schutter ED, Bower JM (1994a) An active membrane model of the cerebellar purkinje cell. I: Simulation of current clamps in slice. J. Neurophysiol. 71(1):375–400.

    Google Scholar 

  • de Schutter E, Bower JM (1994b) An active membrane model of the cerebellar purkinje cell. II: Simulation of synaptic responses. J. Neurophysiol. 71(1):401–419.

    Google Scholar 

  • Desmond NL, Levy WB (1984) Dendritic caliber and the threetwo power relationship of dentate granule cells. J. Comp. Neurol. 227:589–596.

    Google Scholar 

  • Desmond NL, Levy WB (1985) Granule cell dendritic spine density in the rat hippocampus varies with spine shape and location. Neurosci. Letters 54:219–224.

    Google Scholar 

  • Fettiplace R, Andrews DM, Haydon DA (1971) The thickness, composition and structure of some lipid bilayers and natural membranes. J. Membr. Biol. 5:277–296.

    Google Scholar 

  • Hama K, Arii T, Kosaka T (1989) Three-dimensional morphometrical study of dendritic spines of the granule cell in the rat dentate gyrus with hvem stereo images. J. Electron Microscopy Technique 12:80–87.

    Google Scholar 

  • Harris KM, Stevens JK (1989) Dendritic spines of CA1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9:2982–2997.

    Google Scholar 

  • Hayat MA (1981) Principles and Techniques of Electron Microscopy: Biological Applications (2nd ed.), University Park Press, Baltimore, MD.

    Google Scholar 

  • Haydon DA, Requena J, Urban BW (1980) Some effect of aliphatic hydrocarbons on the electrical capacity and ionic currents of the squid giant axon membrane. J. Physiol. (Lond.) 309:229–245.

    Google Scholar 

  • Hines M (1984) Efficient computation of branched nerve equations. Int. J. Biomed. Comput. 15:69–76.

    Google Scholar 

  • Hines M (1989) A program for simulation of nerve equations with branching geometries. J. Physiol. (Lond.) 117:500–544.

    Google Scholar 

  • Holmes WR (1989) The role of dendritic diameters in maximizing the effectiveness of synaptic inputs. Brain Res. 478:127–137.

    Google Scholar 

  • Holmes WR, Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptormediated calcium influx and intracellular calcium concentration changes. J. Neurophysiol. 63:1148–1168.

    Google Scholar 

  • Holmes WR, Rall WR (1992) Electrotonic models of neuronal dendrites and single neuron computation. In T McKenna, J Davis, SF Zornetzer, eds. Single Neuron Computation. Academic Press, New York. pp. 7–25.

    Google Scholar 

  • Iansek R, Redman SJ (1973) The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J. Physiol. 234:665–688.

    Google Scholar 

  • Jack JJB, Miller S, Porter R, Redman SJ (1971) The time course of minimal excitatory post-synaptic potentials evoked in spinal motoneurons by group Ia afferent fibres. J. Physiol. 215:321–352.

    Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric Current Flow in Excitable Cells. Clarendon Press, Oxford.

    Google Scholar 

  • Johnston D, Wu SM-S (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge.

    Google Scholar 

  • Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. 472:615–663.

    Google Scholar 

  • Jou SF, Winslow JL, Wang S, Wojtowicz JM (1995) Families of generated hippocampal dentate granule shapes used to determine effects of location on synaptic response. Society for Neurosci. Abstr. 21:584.

    Google Scholar 

  • Koch C, Zador A (1993) The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13:413–422.

    Google Scholar 

  • Liu G, Tsien R (1995) Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375:404–408.

    Google Scholar 

  • Major G (1992) The physiology, morphology and modelling of cortical pyramidal neurones. Ph.D. thesis, Oxford University.

  • Major G, Larkman AU, Jonas P, Sakmann B, Jack JJB (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci. 14(8):4613–4638.

    Google Scholar 

  • Manor Y, Rinzel J, Segev I, Yarom Y (1997) Low-amplitude oscillations in the inferior olive: A model based on electrical coupling of neurons with heterogeneous channel densities. J. Neurophysiol. 77(5):2736–52.

    Google Scholar 

  • Nitzan R, Segev I, Yarom Y (1990) Voltage behavior along the irregular dendritic structure of morphologically and physiologically characterized vagal motoneurons in the guinea pig. J. Neurophysiol. 63(2):333–346.

    Google Scholar 

  • Pettit DL, Wang SSH, Gee KR, Augustine GJ (1997) Chemical twophoton uncaging: A novel approach to mapping glutamate receptors. Neuron 19:465–471.

    Google Scholar 

  • Pierce JP, Mendell LM (1993) Quantitative ultrastructure of Ia boutons in the ventral horn: Scaling and positional relationships. J. Neurosci. 13:4748–4763.

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C. Press Syndicate of the University of Cambridge, New York.

    Google Scholar 

  • Rall W (1957) Membrane time constant of motoneurons. Science 126:454.

    Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exper. Neurol. 1:491–527.

    Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: RF Reiss, ed. Neural Theory and Modeling. Stanford University Press, Palo Alto, CA. pp. 73–97.

    Google Scholar 

  • Rall W (1989) Cable theory for dendritic neurons. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Synapses to Networks. MIT Press, Cambridge, MA. pp. 9–62.

    Google Scholar 

  • Rall W, Burke RE, Holmes WR, Jack, JJB, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol. Rev. 72(4) (Suppl.):S159–S186.

    Google Scholar 

  • Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13:648–688.

    Google Scholar 

  • Rapp M, Segev I, Yarom Y (1994) Physiology, morphology and detailed passive models of guinea-pig cerebellar purkinje cells. J. Physiol. 474(1):101–118.

    Google Scholar 

  • Segev I, Fleshman JW, Burke RE (1989) Compartmental models of complex neurons. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Synapses to Networks. MIT Press, Cambridge, MA. pp. 63–96.

    Google Scholar 

  • Segev I, Rapp M, Manor Y, Yarom Y (1992) Analog and digital processing in single nerve cells: Dendritic integration and axonal propagation. In: T McKenna, J Davis, SF Zornetzer, eds. Single Neuron Computation. Academic Press, New York. pp. 173–198.

    Google Scholar 

  • Shelton DP (1985) Membrane resistivity estimated by means of a passive computer model. Neurosci. 14:111–131.

    Google Scholar 

  • Spruston N, Jaffe DB, Johnston D (1994) Dendritic attenuation of synaptic potentials and currents: The role of passive membrane properties. TINS 17(4):161–166.

    Google Scholar 

  • Spruston N, Jaffe DB, Williams SH, Johnston D (1993) Voltageand space-clamp errors associated with the measurement of electrotonically remote synaptic events. J. Neurophysiol. 70(2):781–802.

    Google Scholar 

  • Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: Comparison of sharp microelectrode and whole-cell recordings. J. Neurophysiol. 67:1346–1358.

    Google Scholar 

  • Stratford KA, Mason A, Larkman A, Major G, Jack JJB (1989) The modelling of pyramidal neurons in the visual cortex. In: R Durbin, C Miall, G Mitchison, eds. The Computing Neurons. Addison-Wesley, Reading, MA. pp. 296–321.

    Google Scholar 

  • Stricker C, Field AC, Redman SJ (1996) Statistical analysis of amplitude fluctuations in EPSCs evoked in rat CA1 pyramidal neurones in vitro. J. Physiol. (Lond.) 490.2:419–441.

    Google Scholar 

  • Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72.

    Google Scholar 

  • Takashima S (1976) Membrane capacity of squid giant axon during hyper-and depolarisations. J. Membr. Biol. 27:21–39.

    Google Scholar 

  • Takashima S, Schwan HP (1974) Passive electrical properties of squid axon membrane. J. Membr. Biol. 17:51–68.

    Google Scholar 

  • Thurbon D, Field A, Redman S (1994) Electrotonic profiles of interneurons in stratum pyramidale of the CA1 region of rat hippocampus. J. Neurophysiol. 71(5):1948–1958.

    Google Scholar 

  • Traub R, Miles R (1991) Neuronal Networks of the Hippocampus. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wang S, Wojtowicz JM (1997) Effect of GABA B receptors on synaptic interactions in dentate gyrus granule neurons of the rat. Neurosci. 79(1):117–127.

    Google Scholar 

  • Wang S, Wojtowicz JM, Atwood HL (1996) Synaptic recruitment during long-term potentiation at synapses of the medial perforant pathway in the dentate gyrus of the rat brain. Synapse 22:78–86.

    Google Scholar 

  • Wilson MA, Bower JM (1989) The simulation of large-scale neural networks. In: C Koch, I Segev, eds. Methods in Neural Modeling: From Synapses to Networks. MIT Press, Cambridge, MA. pp. 291–333.

    Google Scholar 

  • Winslow JL (1990) Analysis and numerical solution of the dendrite equation with synapses applied to cochlear neurons. Prog. Neurobiol. 34:91–105.

    Google Scholar 

  • Winslow JL (1994) Manual for WIN: A convenient video digitizing of NTSC, RS-170 or PAL video format. Physiology Department, University of Toronto, Toronto, Canada.

    Google Scholar 

  • Winslow JL (1995) Tree: A neuron tree tracing program. Physiology Department, University of Toronto, Toronto, Canada. l

    Google Scholar 

  • Winslow JL, Bjerknes M, Cheng H (1987) Three-dimensional reconstruction of biological objects using a graphics engine. Computers and Biomed. Res. 20:583–602.

    Google Scholar 

  • Witter MP (1993) Organization of the entorhinal-hippocampal system: Areviewof current anatomical data. Hippocampus 3 (special issue), 33–44.

    Google Scholar 

  • Zhang L, Valiante TA, Carlen PL (1993) Contribution of the lowthreshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats. J. Neurophysiol. 70(1):223–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winslow, J.L., Jou, S.F., Wang, S. et al. Signals in Stochastically Generated Neurons. J Comput Neurosci 6, 5–26 (1999). https://doi.org/10.1023/A:1008893415203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008893415203

Navigation