Skip to main content
Log in

Statistical approaches in quantitative positron emission tomography

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Positron emission tomography is a medical imaging modality for producing 3D images of the spatial distribution of biochemical tracers within the human body. The images are reconstructed from data formed through detection of radiation resulting from the emission of positrons from radioisotopes tagged onto the tracer of interest. These measurements are approximate line integrals from which the image can be reconstructed using analytical inversion formulae. However these direct methods do not allow accurate modeling either of the detector system or of the inherent statistical fluctuations in the data. Here we review recent progress in developing statistical approaches to image estimation that can overcome these limitations. We describe the various components of the physical model and review different formulations of the inverse problem. The wide range of numerical procedures for solving these problems are then reviewed. Finally, we describe recent work aimed at quantifying the quality of the resulting images, both in terms of classical measures of estimator bias and variance, and also using measures that are of more direct clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbey C.K. and Barrett H.H. 1996. Observer signal-to-noise ratios for the ML-EM algorithm. In: Proc. of SPIE, Vol. 2712, pp. 47–58.

    Google Scholar 

  • Adler L.P. Crowe J.P., Al-Kaisi N.K., and Sunshine J.L. 1993. Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-d-glucose PET. Radiology 187(3): 743–750.

    Google Scholar 

  • Alpert N.M., Chesler D.A., Correia J.A., Ackerman R.H., Chang J.Y., Finklestein S., adn G.L. Brownell S.M.D., and Taveras J.M. 1982. Estimation of the local statistical noise in emission computed tomography. IEEE Transactions on Medical Imaging MI-1: 142–146.

    Google Scholar 

  • Baker J. 1991. Spatially variant tomographic imaging: estimation, identification and optimization. PhD thesis, Lawrence Berkeley Laboratory, University of California.

  • Barrett H.H. 1990. Objective assessment of image quality: Effects of uantum noise and object variability. Journal of the Optical Society of America A 7(7): 1266–1278.

    Google Scholar 

  • Barrett H. and Swindell W. 1981. Radiological Imaging. Academic Press, Vol. 1.

  • Barrett H.H., Wilson D.W., and Tsui B.M.W. 1994. Noise properties of the EM algorithm: I. theory. Physics in Medicine and Biology 39: 833–846.

    Google Scholar 

  • Besag J. 1986. On the statistical analysis of dirty pictures. J. Royal Statist. Soc. B 48: 259–302.

    Google Scholar 

  • Besag J., Green P., Higdon D., and Mengersen K. 1995. Bayesian computation and stochastic systems. Statistical Science 10: 3–66.

    Google Scholar 

  • Bilbro G.L., Snyder W.E., Garnier S.J., and Gault J. 1992. Mean field annealing: A formalism for constructing GNC-like algorithms. IEEE Transactions on Neural Networks 3(1): 131–138.

    Google Scholar 

  • Bouman C. and Sauer K. 1996. A unified approach to statistical tomography using coordinate descent optimization. IEEE Transactions on Image Processing 5(3): 480–492.

    Google Scholar 

  • Bowsher J.E., Johnson V.E., Turkington T.G., Jaszczak R.J., Floyd C.E., and Coleman R.E. 1996. Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Transactions on Medical Imaging 15(5): 673–686.

    Google Scholar 

  • Browne J. and De Pierro A.R. 1996. A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Transactions on Medical Imaging 15: 687–699.

    Google Scholar 

  • Byrne C. 1997. Convergent block-iterative algorithms for image reconstruction from inconsistent data. IEEE Transactions on Image Processing 6: 1296–1304.

    Google Scholar 

  • Carson R.E., Yan Y., Daube-Witherspoon M.E., Freedman N., Bacharach S.L., and Herscovitch P. 1993. An approximation formula for the variance of PET region-of-interest values. IEEE Transactions on Medical Imaging 12(2): 240–250.

    Google Scholar 

  • Carson R., Yan Y., Chodkowski B., Yap T., and Daube-Witherspoon M. 1994. Precision and accuracy of regional radioactivity quantitation using the maximum likelihood EM reconstruction algorithm. IEEE Transactions on Medical Imaging 13(3): 526–537.

    Google Scholar 

  • Casey M., Gadagkar H., and Newport D. 1995. A component based method for normalization in volume PET. In: 3rd International Meeting on fully 3D Reconstruction in Nuclear Medicine and Radiology, Aix-les-Bains, pp. 67–71.

  • Censor Y. 1983. Finite series-expansion reconstruction methods. IEEE Proceed. 71(3): 409–418.

    Google Scholar 

  • Chan M., Herman G.T., and Levitan E. Bayesian image reconstruction using a high-order interacting MRF model. 1995. In: Proceedings of the 8th International Conference on Image Analysis and Processing, San Remo, Italy, Springer, pp. 609–614.

  • Chan M.T., Leahy R., and Cherry S. 1997. Comparing lesion detection performances of pet image reconstruction algorithms: A case study. IEEE Transactions on Nuclear Science 44(4): 1558–1563.

    Google Scholar 

  • Chen C., Lee S., and Cho Z. 1991. Parallelization of the EM algorithm for 3D PET image reconstruction. IEEE Transactions on Medical Imaging 10: 513–522.

    Google Scholar 

  • Cherry S.R. and Phelps M.E. 1996. Imaging brain function with positron emission tomography. In: Toga A.W. and Mazziotta J.C. (Eds.), Brain Mapping: The Methods. Academic Press. ch. 8.

  • Cherry S.R., Shao Y., Siegel S., Silverman R.W., Meadors K., Young J., Jones W.F., Newport D., Moyers C., Mumcuoglu E., Andreaco M., Paulus M., Binkley D., Nutt R., and Phelps M.E. 1997. MicroPET: A high resolution PET scanner for imaging small animals. IEEE Transactions on Nuclear Science 44(3): 1161–1166.

    Google Scholar 

  • Coakley K.J. 1991. A cross-validation procedure for stopping the EM algorithm and deconvolution of neutron depth profiling spectra. IEEE Transactions on Nuclear Science 38(1): 9–15.

    Google Scholar 

  • Craven P. and Wahba G. 1979. Smoothing noisy data with spline function. Numerische Mathematik 31: 377–403.

    Google Scholar 

  • De Pierro A.R. 1995. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Transactions on Medical Imaging 14: 132–137.

    Google Scholar 

  • Defrise M., Kinahan P.E., Townsend D.W., Michel C., Sibomana M., and Newport D.F. 1997. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Transactions on Medical Imaging 16(2): 145–158.

    Google Scholar 

  • Dempster A., Laird N., and Rubin D. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society, Series B 39(1): 1–38.

    Google Scholar 

  • Duhaylongsod F.G., Lowe V.J., Patz E.F., Vaughn A.L., Coleman R.E., and Wolfe W.G. 1995. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). The Journal of Thoracic and Cardiovascular Surgery 110(1): 130–140.

    Google Scholar 

  • Farquhar T.H. 1998. Improved Lesion Detection in Whole Body PET. PhD thesis, University of California, Los Angeles.

  • Fessler J.A. 1994. Penalized weighted least squares image reconstruction for PET. IEEE Transactions on Medical Imaging 13: 290–300.

    Google Scholar 

  • Fessler J. 1995. Hybrid polynomial objective functions for tomographic image reconstruction from transmission scans. IEEE Transactions on Image Processing 4(10): 1439–1450.

    Google Scholar 

  • Fessler J. 1996. Mean and variance of implicitely defined biased estimators (such as penalized maximum likelihood): Applications to tomography. IEEE Transactions on Image Processing 5(3): 493–506.

    Google Scholar 

  • Fessler J.A. and Ficaro E.P. 1996. Fully 3D PET image reconstruction using a Fourier preconditioned conjugate-gradient algorithm. In: Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 3, Anaheim, CA, pp. 1599–1562.

    Google Scholar 

  • Fessler J.A., Ficaro E.P., Clinthorne N.H., and Lange K. 1997. Groupedcoordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Transactions on Medical Imaging 16(2): 166–175.

    Google Scholar 

  • Fessler J.A. and Hero A.O. 1995. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Transactions on Image Processing 4: 1417–1429.

    Google Scholar 

  • Fessler J.A. and Rogers W.L. 1996. Spatial resolution properties of penalized-likelihood image reconstruction: Spatial-invariant tomographs. IEEE Transactions on Image Processing 9(5): 1346–1358.

    Google Scholar 

  • Geman S. and Geman D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(6): 721–741.

    Google Scholar 

  • Geman S. and McClure D. 1985. Bayesian image analysis: An application to single photon emission tomography. In: Proc. of Statistical Computing Section of the American Statistical Association, pp. 12–18.

  • Geman S. and McClure D. 1987. Statistical methods for tomographic image reconstruction. In: Proceedings of the 46th Session of the International Statistical Institute, Bulletin of the ISI, Vol. 52, pp. 4–20.

    Google Scholar 

  • Geyer C.J. and Thompson E.A. 1992. Constrained monte carlo maximum likelihood for dependent data. Journal of Royal Statistical Society B 54: 657–699.

    Google Scholar 

  • Gilland D.R., Tsui B. M.W., Metz C.E., Jaszczak R.J., and Perry J.R. 1992. An evaluation of maximum likelihood-expectation maximization reconstruction for SPECT by ROC analysis. The Journal of Nuclear Medicine 33: 451–457.

    Google Scholar 

  • Gindi G., Lee M., Rangarajan A., and Zubal I. 1991. Bayesian reconstruction of functional images using registered anatomical images as priors. In: Information Processing in Medical Imaging, XIIth IPMI International Conference, Wye, UK, pp. 121–131.

  • Gindi G., Lee M., Rangarajan A., and Zubal I.G. 1993. Bayesian reconstruction of functional images using anatomical information as priors. IEEE Transactions on Medical Imaging 12(4): 670–680.

    Google Scholar 

  • Girard D. 1995. The fast Monte Carlo cross-validation and cl procedures: Comments, new results and application to image recovery problems. Computational Statistics 10(3): 205–232.

    Google Scholar 

  • Green P. 1990. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Transactions on Medical Imaging 9(1): 84–93.

    Google Scholar 

  • Green P. 1996. MCMC in image analysis. In: Gilks W., Richardson S., and Spiegelhalter D. (Eds.), Markov Chain Monte Carlo in Practice. Chapman & Hall, ch. 21, pp. 381–399.

  • Grenander U. 1981. Abstract Inference. New York, John Wiley and Sons.

    Google Scholar 

  • Haber S., Derenzo S., and Uber D. 1990. Application of mathematical removal of positron range blurring in positron emission tomography. IEEE Transactions on Nuclear Science 37(3): 1293–1299.

    Google Scholar 

  • Hansen P.C. 1992. Analysis of discrete ill-posed problems by means of the l-curve. SIAM Review 34: 561–580.

    Google Scholar 

  • Hebert T. and Leahy R. 1989. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Transactions on Medical Imaging 8(2): 194–202.

    Google Scholar 

  • Hebert T., Leahy R., and Singh M. 1990. 3D ML reconstruction for a prototype SPECT system. J. Opt. Soc. Amer. Part A, Optics and Image Science 7(7): 1305–1313.

    Google Scholar 

  • Hero A.O., Fessler J.A., and Usman M. 1996. Exploring estimator biasvariance tradeoffs using the uniformCRbound. IEEETransactions on Signal Processing 44: 2026–2041.

    Google Scholar 

  • Higdon D.M., Bowsher J.E., Johnson V.E., Turkington T.G., Gilland D.R., and Jaszczak R.J. 1997. Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data. IEEE Transactions on Medical Imaging 16: 516–526.

    Google Scholar 

  • Hoffman E., Huang S., Plummer D., and Phelps M.P. 1982. Quantitation in positron emission computed tomography: Effect of nonuniform resolution. Journal of Computer Assisted Tomography 6(5): 987–999.

    Google Scholar 

  • Holte S., Schmidlin P., Linden A., and Rosenqvist G. 1990. Iterative image reconstruction for positron emission tomography: A study of convergence and quantitation problems. IEEE Transactions on Nuclear Science 37(2): 629–635.

    Google Scholar 

  • Huber P.J. 1981. Robust Statistics. New York, John Wiley and Sons.

    Google Scholar 

  • Hudson H.M. and Larkin R.S. 1994. Accelerated image reconstruction using ordered subsets of projection data. IEEE Transactions on Medical Imaging 13(4): 601–609.

    Google Scholar 

  • Huesman R. 1984. A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. Physics in Medicine and Biology 29: 543–552.

    Google Scholar 

  • Johnson V. 1994a. A note on stopping rules in EM-ML reconstructions of ECT images. IEEE Transactions on Medical Imaging 13(3): 569–571.

    Google Scholar 

  • Johnson V.E. 1994b. A model for segmentation and analysis of noisy images. Journal of American Statistical Association 89(425): 230–241.

    Google Scholar 

  • Johnson V., Wong W., Hu X., and Chen C. 1991. Bayesian restoration of PET images using Gibbs priors. In: Colchester A. and Hawkes D. (Eds.), Information Processing in Medical Imaging. Wiley-Liss, pp. 15–28.

  • Johnson C., Yan Y., Carson R., Martino R., and Daube-Witherspoon M. 1995. A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm. IEEE Transactions on Nuclear Science 42(4): 1223–1227.

    Google Scholar 

  • Kaufman L. 1987. Implementing and accelerating the EM algorithm for positron emission tomography. IEEE Transactions on Medical Imaging 6(1): 37–51.

    Google Scholar 

  • Kaufman L. 1993. Maximum likelihood, least squares, and penalized least squares for PET. IEEE Transactions on Medical Imaging 12(2): 200–214.

    Google Scholar 

  • Kearfott K.J. 1985. Practical considerations, comment in “A statistical model for positron emission tomography”. Journal of American Statistical Association 80: 26–28.

    Google Scholar 

  • Kinahan P.E., Matej S, Karp J.S., Herman G.T., and Lewitt R.M. 1995. Acomparison of transformand iterative reconstruction techniques for a volume-imaging PET scanner with a large axial acceptance angle. IEEE Transactions on Nuclear Science 42: 2281–2287.

    Google Scholar 

  • Kinahan P. and Rogers J. 1989. Analytic 3D image reconstruction using all dectected events. IEEE Transactions on Nuclear Science 36: 964–968.

    Google Scholar 

  • King M., de Vries D., and Soares E. 1997. Comparison of the channelised hotelling and human observers for lesion detection in hepatic SPECT imaging SPIE 3036: 14–20.

    Google Scholar 

  • Lakshmanan S. and Derin H. 1989. Simultaneous parameter estimation and segmentation of gibbs random fields using simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-11: 799–813.

    Google Scholar 

  • Lange K. 1990. Convergence of EM image reconstruction algorithms with Gibbs smoothing. IEEE Transactions on Medical Imaging 9(4): 439–446. Correction: 10(2), June 1991, pp. 228.

    Google Scholar 

  • Lange K., Bahn M., and Little R. 1987. A theoretical study of some maximum likelihood algorithms for emission and transmission tomography. IEEE Transactions on Medical Imaging 6(2): 106–114.

    Google Scholar 

  • Lange K. and Carson R. 1984. EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography 8(2): 306–316.

    Google Scholar 

  • Leahy R. and Yan X. 1991. Incorporation of anatomical MR data for improved functional imaging with PET. In: Colchester A. and Hawkes D. (Eds.), Information Processing in Medical Imaging. Wiley-Liss, pp. 105–120.

  • Lee S.J., Rangarajan A., and Gindi G. 1995. Bayesian image reconstruction in SPECT using higher oreder mechanical models as priors. IEEE Transactions on Medical Imaging 14(4): 669–680.

    Google Scholar 

  • Lewitt R. and Muehllehner G. 1986. Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum likelihood estimation. IEEE Transactions on Medical Imaging 5(1): 16–22.

    Google Scholar 

  • Liow J.S. and Strother S.C. 1991. Practical tradeoffs between noise, quantitation, and number of iterations for maximum likelihoodbased reconstructions. IEEE Transactions on Medical Imaging 10(4): 563–571.

    Google Scholar 

  • Liow J.S. and Strother S.C. 1993. The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction. Physics in Medicine and Biology 38: 55–70.

    Google Scholar 

  • Llacer J. 1993. Results of a clinical receiver operating characteristic study comparing filtered backprojection and maximum likelihood estimator images in FDG PET studies. The Journal of Nuclear Medicine 34(7): 1198–1203.

    Google Scholar 

  • Llacer J., Veklerov E., Coakley K., Hoffman E., and Nunez J. 1993. Statistical analysis of maximum likelihood estimator images of human brain fdg studies. IEEE Transactions on Medical Imaging 12(2): 215–231.

    Google Scholar 

  • Lowe V.J., Hoffman J.M., DeLong D.M., Patz E.F., and Coleman R.E. 1994. Semiquantitative and visual analysos of FDG-PET images in pulmonary abnormalities. The Journal of Nuclear Medicine 35(11): 1771–1776.

    Google Scholar 

  • Maitra R. and O'sullivan F. 1998. Variability assessment in PET and related generalized deconvolution methods. Journal of American Statistical Association 93(444): 1340–1355.

    Google Scholar 

  • Manbeck K. 1990. Bayesian Statistical Methods Applied to Emission Tomography with Physical Phantom and Patient Data. PhD thesis, Brown University.

  • Matej S. and Lewitt R. 1996. Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Transactions on Medical Imaging 15(1): 68–78.

    Google Scholar 

  • McLachlan G. and Krishnan T. 1997. The EM Algorithm and Extensions: John Wiley & Sons, Inc., ch. 5.12.

  • Meltzer C.C., Leal J.P., Mayberg H.S., Jr. H.N.W., and Frost J.J. 1990. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. Journal of Computer Assisted Tomography 14(4): 561–570.

    Google Scholar 

  • Mumcuoglu E., Leahy R., and Cherry S. 1996. Bayesian reconstruction of PET images: Methodology and performance analysis. Physics in Medicine and Biology 41: 1777–1807.

    Google Scholar 

  • Mumcuoglu E., Leahy R., Cherry S., and Hoffman E. 1996. Accurate geometric and physical response modeling for statistical image reconstruction in high resolution PET. In: Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, Anaheim, CA, pp. 1569–1573.

  • Mumcuoglu E., Leahy R., Cherry S., and Zhou Z. 1994. Fast gradientbased methods for Bayesian reconstruction of transmission and emission PET images. IEEE Transactions on Medical Imaging 13(4): 687–701.

    Google Scholar 

  • Ollinger J. and Fessler J. 1997. Positron Emission Tomography. IEEE Signal Processing Magazine 14(1): 43–55.

    Google Scholar 

  • Ollinger J., Johns G., and Burney M. 1992. Model-based scatter correction in three dimensions. In: Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 2, Orlando, Florida, pp. 1249–1251.

    Google Scholar 

  • Palmer M.R., Bergstrom M., Beddoes M.P., and Plate B.D. 1985. Effects of detector wobble motion on image noise in positron emission tomography. IEEE Transactions on Medical Imaging MI-4: 58–62.

    Google Scholar 

  • Politte D., and Snyder D. 1991. Corrections for accidental coincidences and attenuation in maximum likelihood image reconstruction for positron emission tomography. IEEE Transactions on Medical Imaging 10(1): 82–89.

    Google Scholar 

  • Qi J., and Leahy R.M. 1999a. A theoretical study of the contrast recovery and variance of MAP reconstructions from PET data. IEEE Transactions on Medical Imaging 18(4): 293–305.

    Google Scholar 

  • Qi J. and Leahy R.M. 1999b. Fast computation of the covariance of map reconstructions of pet images. In: Proceedings of SPIE 3661: 344–355.

    Google Scholar 

  • Qi J., Leahy R.M., Cherry S.R., Chatziioannou A., and Farquhar T.H. 1998a. High resolution 3D bayesian image reconstruction using the microPET small animal scanner. Physics in Medicine and Biology 43(4): 1001–1013.

    Google Scholar 

  • Qi J., Leahy R.M., Hsu C., Farquhar T.H., and Cherry S.R. 1998b. Fully 3D bayesian image reconstruction for ECAT EXACT HR+. IEEE Transactions on Nuclear Science 45(3): 1096–1103.

    Google Scholar 

  • Rajeevan N., Rajgopal K., and Krishna G. 1992. Vector-extrapolated fast maximum likelihood estimation algorithms for emission tomography. IEEE Transactions on Medical Imaging 11(1): 9–20.

    Google Scholar 

  • Rockmore A., and Macovski A. 1976. A maximum likelihood approach to emission image reconstruction from projections. IEEE Transactions on Nuclear Science NS-23: 1428–1432.

    Google Scholar 

  • Saquib S., Bouman C., and Sauer K. 1998. Ml parameter estimation for markov random fields, with applications to bayesian tomography. IEEE Transactions on Image Processing 7: 1029–1044.

    Google Scholar 

  • Sauer K., and Bouman C. 1993. A local update strategy for iterative reconstruction from projections. IEEE Transactions on Signal Processing 41(2): 534–548.

    Google Scholar 

  • Shepp L. and Logan B. 1974. The Fourier reconstruction of a head section. IEEE Transactions on Nuclear Science NS-21: 21–33.

    Google Scholar 

  • Shepp L. and Vardi Y. 1982. Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging 1(2): 113–122.

    Google Scholar 

  • Silverman B., Jones M., Wilson J., and Nychka D. 1990. A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography. Journal of Royal Statistical Society, Ser. B 52(2): 271–324.

    Google Scholar 

  • Snyder D. and Miller M. 1985. The use of sieves to stabilize images produced with the EM algorithm for emission tomography. IEEE Transactions on Nuclear Science NS-32(5): 3864–3872.

    Google Scholar 

  • Stamos J.A., Rogers W.L., Clinthorne N.H., and Koral K.F. 1988. Object-dependent performance comparison of two iterative reconstruction algorithms. IEEE Transactions on Nuclear Science 35(1): 611–614.

    Google Scholar 

  • Strauss L. and Conti P. 1991. The application of PET in clinical oncology. Journal of Nuclear Medicine 32: 623–648.

    Google Scholar 

  • Terstegge A., Weber S., Herzog H., Muller-Gartner H.W., and Hailling H. 1996. High resolution and better quantification by tube of response modelling in 3D PET reconstruction. In: Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, Anaheim, CA, pp. 1603–1607.

  • Varah J. 1983. Pitfalls in the numerical solution of ill-posed problems. SIAM J. Sci. Comput. 4: 164–176.

    Google Scholar 

  • Vardi Y., Shepp L., and Kaufman L. 1985. A statistical model for positron emission tomography. Journal of the American Statistical Association 80(389): 8–37.

    Google Scholar 

  • Veklerov E. and Llacer J. 1987. Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Transactions on Medical Imaging 6(4): 313–319.

    Google Scholar 

  • Wahba G. 1990. Spline Models for Observational Data. Cbms-Nsf Regional Conference Series in Applied Mathematics, 59. SIAM.

  • Wang W. and Gindi G. 1997. Noise analysis of MAP-EM algorithms for emission tomography. Physics in Medicine and Biology 42: 2215–2232.

    Google Scholar 

  • Watson C.C., Newport D., and Casey M.E. 1995. A single scatter simulation technique for scatter correction in 3D PET. In: International Meeting on Fully Three Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Aix-les-Bain, France, pp. 255–268.

  • Weir I. 1997. Fully Bayesian reconstructions from single-photon emission computed tomography data. Journal of the American Statistical Association 92(437): 49–60.

    Google Scholar 

  • Wilson D.W., Tsui B.M.W., and Barrett H.H. 1994. Noise properties of the EM algorithm: II. Monte Carlo simulations. Physics in Medicine and Biology 39: 847–872.

    Google Scholar 

  • Yao J. and Barrett H.H. 1992. Predicting human performance by a channelized Hotelling model. In: SPIE Mathematical Methods in Medical Imaging, Vol. 1768, pp. 161–168.

    Google Scholar 

  • Yavuz M. and Fessler J.A. 1998. Statistical image reconstruction methods for randoms-precorrected pet scans. Medical Image Analysis 2(4): 369–378.

    Google Scholar 

  • Zhang J., W. Modestino J., and A. Langan D. 1994. Maximumlikelihood parameter estimation for unsupervised stochastic model-based image segmentation. IEEE Transactions on Image Processing 3: 404–420.

    Google Scholar 

  • Zhou Z., Leahy R., and Qi J. 1997. Approximate maximum-likelihood hyperparameter estimation for gibbs-priors. IEEE Transactions on Image Processing 6: 844–861.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leahy, R.M., Qi, J. Statistical approaches in quantitative positron emission tomography. Statistics and Computing 10, 147–165 (2000). https://doi.org/10.1023/A:1008946426658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008946426658

Navigation