Skip to main content
Log in

Silicon Synaptic Conductances

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We have developed compact analog integrated circuits that simulate two synaptic excitatory conductances. A four-transistor circuit captures the dynamics of an excitatory postsynaptic current caused by a real AMPA conductance. A six-transistor circuit simulates the effects of a real voltage-dependent NMDA conductance. The postsynaptic current dynamics are modeled by a current mirror integrator with adjustable gain. The voltage dependence of the silicon NMDA conductance is realized by a differential pair. We show the operation of these silicon synaptic conductances and their integration with the silicon neuron (Mahowald and Douglas, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Deiss S, Douglas R, Whatley A (1998) A pulse-coded communication infrastructure for neuromorphic systems. In: W Maass, CM Bishop, eds. Pulsed Neural Networks. The MIT Press. pp. 157–178.

  • Diorio C, Mahajan S, Hasler P, Minch B, Mead C (1995) A highresolution non-volatile analog memory cell. Proc. 1995 IEEE Intl. Symp. on Circuits and Systems 3: 2233–2236.

    Google Scholar 

  • Douglas R, Mahowald M, Mead C (1995) Neuromorphic analog VLSI. Ann. Rev. Neurosci. 18: 255–281.

    Google Scholar 

  • Dupeyron D, Le Masson S, Deval Y, Le Masson G, Dom J-P (1996) A BiCMOS implementation of the Hodgkin-Huxley formalism. In: Proceedings of the Fifth International Conference on Micorelectronics for Neural Networks and Fuzzy Systems. MicroNeuro, Lausanne, Switzerland. pp. 311–316.

    Google Scholar 

  • Durbin R, Rumelhart DE (1989) Product units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural Computation 1: 133–142.

    Google Scholar 

  • Elias JG (1993) Artificial dendritic trees. Neural Computation 9: 419–440.

    Google Scholar 

  • Elias JG, Northmore DPM, Westerman W (1997) An analog memory circuit for spiking silicon neurons. Neural Computation 9: 419–440.

    Google Scholar 

  • Häfliger P, Mahowald M (1999) Spike-based normalizing hebbian learning in an analog VLSI artificial neuron. Analog Integrated Circuits and Signal Processing 18: Special Issue on Learning in Silicon (2/3): 130–140.

    Google Scholar 

  • Häfliger P, Rasche C (1999) Floating gate analog memory for parameter and variable storage in a learning silicon neuron. Proc. 1999 IEEE Intl. Symp. on Circuits and Systems (ISCAS). Accepted.

  • Johnston D, Wu S (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, MA.

    Google Scholar 

  • König P, Engel A, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19(4): 130–137.

    Google Scholar 

  • Mahowald M, Douglas R (1991) A silicon neuron. Nature 354: 515–518.

    Google Scholar 

  • Mahowald M, Mead C (1991) Silicon retina. Sci. Amer. 264(5): 76–82.

    Google Scholar 

  • Mead C (1989) Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Mel B (1992a) The clusteron: Toward a simple abstraction for a modeled cortical neuron. In: M Kaufmann, ed.Advances in Neural Information Processing Systems. San Mateo, CA. vol. 4, pp. 35–42.

  • Mel B (1992b) NMDA-based pattern discrimination in a modeled cortical neuron. Neural Computation 4: 502–517.

    Google Scholar 

  • Rasche C, Douglas RJ, Mahowald M (1998) Characterization of a pyramidal silicon neuron. In: LS Smith, A Hamilton, eds. Neuromorphic Systems: Engineering Silicon from Neurobiology.World Scientific, pp. 169–177.

  • Schultz SR, Jabri MA (1995) A silicon basis for synaptic plasticity. Neural Processing Letters 2(6): 17–22.

    Google Scholar 

  • Watson A (1997) Neuromorphic engineering. Science 277: 1934–1935.

    Google Scholar 

  • Westerman WC, Northmore DP, Elias JG (1997) Neuromorphic synapses for artificial dendrites. Analog Integrated Circuits and Signal Processing 13: 167–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasche, C., Douglas, R. Silicon Synaptic Conductances. J Comput Neurosci 7, 33–39 (1999). https://doi.org/10.1023/A:1008963426194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008963426194

Navigation