Skip to main content
Log in

Control of Walking in the Stick Insect: From Behavior and Physiology to Modeling

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Classical engineering approaches to controlling a hexapod walker typically involve a central control instance that implements an abstract optimal gait pattern and relies on additional optimization criteria to generate reference signals for servocontrollers at all the joints. In contrast, the gait of the slow-walking stick insect apparently emerges from an extremely decentralized architecture with separate step pattern generators for each leg, a strong dependence on sensory feedback, and multiple, in part redundant, primarily local interactions among the step pattern generators. Thus, stepping and step coordination do not reflect an explicit specification based on a global optimization using a representation of the system and its environment; instead they emerge from a distributed system and from the complex interaction with the environment. A similarly decentralized control at the level of single leg joints also may explain the control of leg dynamics. Simulations show that negative feedback for control of body height and walking direction combined with positive feedback for generation of propulsion produce a simple, extremely decentralized system that can handle a wide variety of changes in the walking system and its environment. Thus, there is no need for a central controller implementing global optimization. Furthermore, physiological results indicate that the nervous system uses approximate algorithms to achieve the desired behavioral output rather than an explicit, exact solution of the problem. Simulations and implementation of these design principles are being used to test their utility for controlling six-legged walking machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbib, M. (Ed.) 1995. The Handbook of Brain Theory and Neural Networks, Bradford Books/MIT Press: Cambridge, MA.

    Google Scholar 

  • Bässler, U. 1983. Neural Basis of Elementary Behavior in Stick Insects, Springer-Verlag: Heidelberg.

    Google Scholar 

  • Bässler, U. 1986. Afferent control of walking movements in the stick insect Cuniculina impigra. II. Reflex reversal and the release of the swing phase in the restrained foreleg. J. Comp. Physiol. A, 158:351-362.

    Google Scholar 

  • Beer, R.D. and Gallagher, J.C. 1992. Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior, 1:91-122.

    Google Scholar 

  • Beer, R.D., Chiel, H.J., Quinn, R.D., Espenschied, K.S., and Larsson, P. 1992. A distributed neural network architecture for hexapod robot locomotion. Neural Computation, 4:356-365.

    Google Scholar 

  • Berns, K., Piekenbrock, St., and Dillmann, R. 1994. Learning control of a six-legged walking machine. In Proceedings of the Fifth International Symposium on Robotics and Manufacturing, M. Jamashidi, Ch. Ngyuen, R. Lumia, and J. Yuh (Eds.), ASME Press: New York, Vol. 5, pp. 29-34.

    Google Scholar 

  • Brown, T.G. 1911. The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. London, Ser. B, 84:308-319.

    Google Scholar 

  • Brunn, D.E. and Dean, J. 1994. Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus which monitor middle leg position. J. Neurophysiol., 72:1208-1219.

    Google Scholar 

  • Büschges, A., Schmitz, J., and Bässler, U. 1995. Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J. Exp. Biol., 198:435-456.

    Google Scholar 

  • Burrows, M. 1996. The Neurobiology of an Insect Brain, Oxford University Press: Oxford.

    Google Scholar 

  • Chrachri, A. and Clarac, F. 1987. Induction of rhythmic activity in motoneurons of crayfish thoracic ganglia by cholinergic agonists. Neurosci. Letters, 77:49-54.

    Google Scholar 

  • Churchland, P.S. and Sejnowski, T.J. 1988. Perspectives on cognitive neuroscience. Science, 242:741-745.

    Google Scholar 

  • Cohen, A.H. and Boothe, D.L. 1999. Sensorimotor interactions during locomotion: Principles derived from biological systems. Autonomous Robots, 7:239-245.

    Google Scholar 

  • Cruse, H. 1976a. The function of the legs in the free walking stick insect, Carausius morosus. J. Comp. Physiol., 112:235-262.

    Google Scholar 

  • Cruse, H. 1976b. The control of body position in the stick insect (Carausius morosus) when walking over uneven surfaces. Biol. Cybern., 24:25-33.

    Google Scholar 

  • Cruse, H. 1985a. Which parameters control the leg movement of a walking insect? II. The start of the swing phase. J. Exp. Biol., 116:357-362.

    Google Scholar 

  • Cruse, H. 1985b. Coactivating influences between neighbouring legs in walking insects. J. Exp. Biol., 114:513-519.

    Google Scholar 

  • Cruse, H. 1990. What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences, 13:15-21.

    Google Scholar 

  • Cruse, H. and Steinkuehler, U. 1993. Solution of the direct and inverse kinematic problems by a common algorithm based on the mean of multiple computations. Biol. Cybern., 69:345-351.

    Google Scholar 

  • Cruse, H. and Bartling, C. 1995. Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol., 41:761-771.

    Google Scholar 

  • Cruse, H., Müller-Wilm, U., and Dean, J. 1993. Artificial neural nets for a 6-legged walking system. In From Animals to Animats 2, J.-A. Meyer, H.L. Roitblat, and S.W. Wilson (Eds.), MIT Press: Cambridge, MA, pp. 52-60.

    Google Scholar 

  • Cruse, H., Kindermann, T., Schumm, M., Dean, J., and Schmitz, J. 1998a. Walknet—A biologically inspired network to control six-legged walking. Neural Networks, 11:1435-1447.

    Google Scholar 

  • Cruse, H., Dean, J., Kindermann, T., Schmitz, J., and Schumm, M. 1998b. Simulation of complex movements using artificial neural networks. Z. Naturforschung, 53c:628-638.

    Google Scholar 

  • Dean, J. 1989. Leg coordination in the stick insect, Carausius morosus: Effects of cutting thoracic connectives. J. Exp. Biol., 145:103-131.

    Google Scholar 

  • Dean, J. 1990. Coding proprioceptive information to control movement to a target: Simulation with a simple neural network. Biol. Cybern., 63:115-120.

    Google Scholar 

  • Dean, J. 1991a. Effect of load on leg movement and step coordination of the stick insect, Carausius morosus. J. Exp. Biol., 159:449-471.

    Google Scholar 

  • Dean, J. 1991b. A model of leg coordination in the stick insect, Carausius morosus. II. Description of the kinematic model and simulation of normal step patterns. Biol. Cybern., 64:403-411.

    Google Scholar 

  • Dean, J. 1992. A model of leg coordination in the stick insect, Carausius morosus. III. Responses to perturbations of normal coordination. Biol. Cybern., 66:335-343.

    Google Scholar 

  • Dean, J. 1998. Animats and what they can tell us. Trends in Cognitive Sciences, 2:60-67.

    Google Scholar 

  • Dean, J. and Wendler, G. 1982. Stick insects walking on a wheel: Perturbations induced by obstruction of leg protraction. J. Comp. Physiol., 148:195-207.

    Google Scholar 

  • Dean, J. and Wendler, G. 1983. Stick insect locomotion on a walking wheel: Interleg coordination of leg position. J. Exp. Biol., 103:75-94.

    Google Scholar 

  • Delcomyn, F. 1980. Neural basis of rhythmic behavior in animals. Science, 210:492-498.

    Google Scholar 

  • Delcomyn, F. 1985. Factors regulating insect walking. Ann. Rev. Entomol., 30:239-256.

    Google Scholar 

  • Delcomyn, F. 1999. Walking robots and the central and peripheral control of locomotion in insects. Autonomous Robots, 7:259-270.

    Google Scholar 

  • Donner, M.D. 1987. Real-Time Control of Walking, Birkhäuser: Boston.

    Google Scholar 

  • Espenshied, K.S., Quinn, R.D., Chiel, H.J., and Beer, R.D. 1993. Leg coordination mechanisms in stick insect applied to hexapod robot locomotion. Adaptive Behavior, 1:455-468.

    Google Scholar 

  • Espenshied, K.S., Quinn, R.D., Chiel, H.J., and Beer, R.D. 1996. Biologically-based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems, 18:59-64

    Google Scholar 

  • Franceschini, N., Pichon, J.M., and Blanes, C. 1992. From insect vision to robot vision. Philos. Trans. R. Soc. London Series B, 337:283-294.

    Google Scholar 

  • Friesen, W.O. 1989. Neuronal control of leech swimming movements. In Neuronal and Cellular Oscillators. Cellular Clocks Series, J.W. Jacklet (Ed.), Marcel Dekker Inc.: NY, Vol. 2, pp. 269-316.

    Google Scholar 

  • Graham, D. and Cruse, H. 1981. Coordinated walking of stick insects on a mercury surface. J. Exp. Biol., 92:229-241.

    Google Scholar 

  • Graham, D. 1977. Simulation of a model for the coordination of leg movement in free walking insects. Biol. Cybern., 26:187-198.

    Google Scholar 

  • Graham, D. 1978. Unusual step pattern in the free walking grasshopper Neoconocephalus robustus. II. A critical test of the leg interactions underlying different models of hexapod co-ordination. J. Exp. Biol., 73:159-172.

    Google Scholar 

  • Graham, D. 1979. Effects of circum-oesophageal lesion on the behaviour of the stick insect Carausius morosus. II. Changes in walking co-ordination. Biol. Cybern., 32:147-152.

    Google Scholar 

  • Graham, D. 1985. Pattern and control of walking in insects. Adv. Insect Physiol., 18:31-140.

    Google Scholar 

  • Grillner, S., Deliagina, T., Ekeberg, Oe., El Manira, A., Hill, R.H., Lansner, A., Orlovsky, G.N., and Wallen, P. 1995. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends in Neurosciences, 18:270-279.

    Google Scholar 

  • Hallam, J. 1998. Why mix robotics and biology? IROS'98 Workshop WT1: Defining the future of biomorphic robotics, October 13, 1998, Victoria, B.C., Canada.

  • Heiligenberg, W.F. 1991. Neural Nets in Electric Fish, MIT Press: Cambridge, MA.

    Google Scholar 

  • Jander, J.P. 1985. Mechanical stability in stick insects when walking straight and around curves. In Insect Locomotion, M. Gewecke and G. Wendler (Eds.), Parey: Berlin, pp. 33-42.

    Google Scholar 

  • Kristan, W.B., Jr., Lockery, S.R., and Lewis, J.E. 1995. Using reflexive behaviors of the medicinal leech to study information processing. J. Neurobiology, 27:380-389.

    Google Scholar 

  • Maes, P. 1993. Behavior-based artificial intelligence. In From Animals to Animats 2, J.A. Meyer, H.L. Roitblat, and S.W. Wilson (Eds.), MIT Press: Cambridge, MA, pp. 2-10.

    Google Scholar 

  • Maes, P., Mataric, M.J., Meyer, J.-A., Pollack, J., and Wilson, S.W. (Eds.) 1996. From Animals to Animats 4, MIT Press: Cambridge, MA.

    Google Scholar 

  • McGhee, R.B. and Sun, S.-S. 1974. On the problem of selecting a gait for a legged vehicle. In Proceedings of the 6th IFAC Symposium on Automatic Control in Space. IFAC: Pittsburgh and Moscow, pp. 53-62.

    Google Scholar 

  • Müller-Wilm, U., Dean, J., Cruse, H., Weidemann, H.J., Eltze, J., and Pfeiffer, F. 1992. Kinematic model of a stick insect as an example of a 6-legged walking system. Adaptive Behavior, 1:155-169.

    Google Scholar 

  • Pearson, K.G. 1972. Central programming and reflex control of walking in the cockroach. J. Exp. Biol., 56:173-193.

    Google Scholar 

  • Pearson, K.G. and Franklin, R. 1984. Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain. Int. J. Robotics Res., 3:101-112.

    Google Scholar 

  • Pearson, K.G. and Iles, J.F. 1973. Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. J. Exp. Biol., 58:725-744.

    Google Scholar 

  • Pfeiffer, F., Eltze, J., and Weidemann, H.-J. 1995. Six-legged technical walking machine considering biological principles. Robotics and Autonomous Systems, 14:223-232.

    Google Scholar 

  • Rind, R.C. 1997. Collision avoidance: From the locust eye to a seeing machine. In From Living Eyes to Seeing Machines, M.V. Srinivasan and S. Venkatesh (Eds.), Oxford University Press: Oxford, pp. 105-125.

    Google Scholar 

  • Rixe, A. and Dean, J. 1995. Mechanisms of curve walking in the stick insect Carausius morosus. In Proceedings of the 23th Göttingen Neurobiology Conference, N. Elsner and R. Menzel (Eds.), Stuttgart: Thieme Verlag, p. 217.

    Google Scholar 

  • Ryckebusch, S. and Laurent, G. 1993. Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J. Neurophysiol., 69:1583-1595.

    Google Scholar 

  • Schmitz, J. and Haßfeld, G. 1989. The treading-on-tarsus reflex in stick insects: Phase-dependence and modifications of the motor output during walking. J. Exp. Biol., 143:373-388.

    Google Scholar 

  • Schmitz, J., Dean, J., and Kittmann, R. 1991. Central projections of leg sense organs in the stick insect, Carausius morosus (Insecta, Phasmida). Zoomorphology, 111:19-33.

    Google Scholar 

  • Schmitz, J., Ernst, S., and Reich, J. 1996. A new intersegmental coordinating influence in the walking system of the stick insect. In Brain and Evolution Proceedings of the 24th Goettingen Neurobiology Conference, N. Elsner and H.-U. Schnitzler (Eds.), Stuttgart: Thieme Verlag, p. 129.

    Google Scholar 

  • Schmitz, J. and Ernst, S. Intra-and intersegmental load compensating reactions of walking stick insects, Carausius morosus, in preparation.

  • Schmitz, J., Bartling, C., Brunn, D.E., Cruse, H., Dean, J., Kindermann, T., Schumm, M., and Wagner, H. 1995. Adaptive properties of hard-wired neuronal systems. Adaptive Eigenschaften festverdrahteter neuronaler Systeme. Verh. Dtsch. Zool. Ges., 88.2:165-179.

    Google Scholar 

  • Selverston, A. 1995. Modulation of circuits underlying rhythmic behaviors. J. Comp. Physiol. A, 176:139-147.

    Google Scholar 

  • Srinivasan, M.V., Chah, J.S., Weber, K., Venkatesh, S., Nagle, M.G., and Zhang, S.W. 1999. Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems, 26:203-216.

    Google Scholar 

  • Steinkühler, U. and Cruse, H. 1998. A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol. Cybernetics, 79:457-466.

    Google Scholar 

  • Weidemann, H.-J., Eltze, J., and Pfeiffer, F. 1993. Leg design based on biological principles. In Proc. of the 1993 IEEE Conference on Robotics and Automation, pp. 352-358.

  • Wendler, G. 1964. Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z. vergl. Physiol., 48:198-250.

    Google Scholar 

  • Wilson, D.M. 1966. Insect walking. Ann. Rev. Entomol., 11:103-122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, J., Kindermann, T., Schmitz, J. et al. Control of Walking in the Stick Insect: From Behavior and Physiology to Modeling. Autonomous Robots 7, 271–288 (1999). https://doi.org/10.1023/A:1008980606521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008980606521

Navigation