Skip to main content
Log in

Completeness and Admissibility for General Heuristic Search Algorithms—A Theoretical Study: Basic Concepts and Proofs

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

We propose a formal generalization for various works dealing with Heuristic Search in State Graphs. This generalization focuses on the properties of the evaluation functions, on the characteristics of the state graphs, on the notion of path length, on the procedures that control the node expansions, on the rules that govern the update operations. Consequently, we present the algorithm family ϱ and the sub-family Ã, which include Nilsson's A or A* and many of their successors such as HPA, B, A *ε , Aε, C, BF*, B′, IDA*, D, A**, SDW. We prove general theorems about the completeness and the sub-admissibility that widely extend the previous results and provide a theoretical support for using diverse kinds of Heuristic Search algorithms in enlarged contexts, specially when the state graphs and the evaluation functions are less constrained than ordinarily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagchi, A. and A. Mahanti. (1983). “Search Algorithms Under Different Kinds of Heuristics—A Comparative Study,” J. ACM 30(1), 1–27.

    Google Scholar 

  • Bagchi, A. and A. Mahanti. (1985). “Three Approaches to Heuristic Search in Networks,” J. ACM 32(1), 1–27.

    Google Scholar 

  • Chakrabarti, P.P., S. Ghose, A. Acharya, and S.C. de Sarkar. (1989). “Heuristic Search in Restricted Memory,” Art. Int. 41(2), 197–221.

    Google Scholar 

  • Davis, H.W., A. Bramanti-Gregor, and J. Wang. (1988). “The Advantages of Using Depth and Breadth Components in Heuristic Search.” In Z.W. Ras and L. Saitta (eds.), Methodologies for Intelligent Systems 3. Elsevier Science Publishing Co., pp. 19–28.

  • Dechter, R. and J. Pearl. (1985). “Generalized Best-First Search Strategies and the Optimality of A*,” J. ACM 32(3), 505–536.

    Google Scholar 

  • Dechter, R. and J. Pearl. (1988). “The Optimality of A*.” In L. Kanal and D. Kumar (eds.), Search in Art. Int. Springer-Verlag, pp. 166–199.

  • Dubois, D., J. Lang, and H. Prade. (1987). “Theorem Proving Under Uncertainty. A Possibility Theory-Based Approach.” Proc. 10th IJCAI. Milan, Italy, pp. 984–986.

  • Farreny, H. (1995). Recherche Heuristiquement Ordonnée: Algorithmes et Propréetés. Masson, Paris.

  • Farreny, H. (1996a). “Une Généralisation Pour la Recherche Heuristiquement Ordonnée: Les Algorithmes et la Propriété d'arrét Avec Découverte de Solution.” Proc. RFIA 96. Rennes, France, pp. 225–234.

  • Farreny, H. (1996b). “A Generalization for Heuristically-Ordered Search: Algorithms, Results About Termination and Admissibility.” Proc. IEEE Int. Conf. on SMC (2). Beijing, China, pp. 1442–1447.

  • Farreny, H. (1996c). “Algorithms for L-Admissible Standard State Graphs.” Proc. SBIA 96. Curitiba, Brazil. In D.L. Borges and C.A.A. Kaestler (eds.), Lectures Notes in Artificial Intelligence 1159. Springer, pp. 41–50.

  • Farreny, H. (1997a). “Recherche Heuristiquement Ordonnée dans les Graphes d'états: Élargissement des cas D'admissibilité et Sous-Admissibilité,” Revue d'Intelligence Artificielle 11(4), 407–448.

    Google Scholar 

  • Farreny, H. (1997b). “NewResults About Sub-Admissibility for General Families of Heuristic Search Algorithms.” Proc. EPIA 97. Coimbra, Portugal. In E. Costa and A. Cardoso (eds.), Lectures Notes in Artificial Intelligence 1323. Springer, pp. 241–254.

  • Farreny, H. (1997c). “Recherche Heuristiquement Ordonne dans les Graphes d'états: Élargissement des cas D'admissibilité et Sous-Admissibilité,” Revue d'Intelligence Artificielle 11(4), 407–448.

    Google Scholar 

  • Gelperin, D. (1977). “On the Optimality of A*,” Art. Int. 8(1), 69–76.

    Google Scholar 

  • Ghallab, M. (1982). Optimisation de processus dàcisionnels pour la robotique, Thése de Doctorat d'Etat, Université Paul Sabatier, Toulouse, France.

    Google Scholar 

  • Ghallab, M. and D.G. Allard. (1982). “Near Admissible Heuristic Search Algorithm.” Proc. 2d World Conf. on Mathematics at the Service of Man. Las Palmas, Spain.

  • Ghallab, M. and D.G. Allard. (1983). “A”: An Efficient Near Admissible Heuristic Search Algorithm.” Proc. 8th IJCAI. Karlsruhe, Germany, pp. 789–791.

  • Gonella, R. (1989). Diagnostic de pannes sur avions: mise en oeuvre d'un raisonnement révisable, Thése de l' École Nationale Supérieure de l'Aéronautique et de l'Espace, Toulouse, France.

  • Harris, L.R. (1973). “The Bandwith Heuristic Search.” Proc. 3d IJCAI. Stanford, USA, pp. 23–29.

  • Harris, L.R. (1974). “The Heuristic Search Under Conditions of Error,” Art. Int. 5(3), 217–234.

    Google Scholar 

  • Hart, P.E., N.J. Nilsson, and B. Raphael. (1968). “A Formal Basis for the Heuristic Determination of Minimal Cost Paths,” IEEE Trans. on SSC 4, 100–107.

    Google Scholar 

  • Hart, P.E., N.J. Nilsson, and B. Raphael. (1972). “Correction to: A Formal Basis for the Heuristic Determination of Minimal Cost Paths,” SIGART Newsletter 37, 28–29.

    Google Scholar 

  • Kainz, G. and H. Kaindl. (1996). “Dynamic Improvements of Heuristic Evaluations During Search.” Proc. 13th AAAI. Portland, USA, pp. 311–317.

  • Köll. L.A. and H. Kaindl. (1992). “A New Approach to Dynamic Weighting.” Proc. 10th ECAI. Vienna, Austria, pp. 16–17.

  • Korf, R.E. (1985a). “Iterative-Deepening-A¤: An Optimal Admissible Tree Search.” Proc. 9th IJCAI. Los Angeles, USA, pp. 1034–1036.

  • Korf, R.E. (1985b). “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,” Art. Int. 27, 97–109.

    Google Scholar 

  • Korf, R.E. (1988a). “Optimal Path-Finding Algorithms.” In L. Kanal and D. Kumar (eds.), Search in Art. Int. Springer-Verlag, pp. 223–267.

  • Korf, R.E. (1988b). “Real-Time Heuristic Search: New Results.” Proc. 7th AAAI. Saint-Paul, Minnesota, USA, pp. 139–144.

    Google Scholar 

  • Korf, R.E. (1990). “Real-Time Heuristic Search,” Art. Int. 42, 189–211.

    Google Scholar 

  • Korf, R.E. (1992). “Linear-Space Best-First Search.” Proc. 10th AAAI. San José, Cal., USA, pp. 533–538.

  • Korf, R.E. (1993). “Linear-Space Best-First Search,” Art. Int. 62, 41–78.

    Google Scholar 

  • Mahanti, A. and K. Ray. (1988). “Network Search Algorithms with Modifiable Heuristics.” In L. Kanal and D. Kumar (eds.), Search in Art. Int. Springer-Verlag, pp. 200–222.

  • Martelli, A. (1977). “On the Complexity of Admissible Search Algorithms,” Art. Int. 8(1), 1–13.

    Google Scholar 

  • Mero, L. (1984). “A Heuristic Search Algorithm with Modifiable Estimate,” Art. Int. 23(1), 13–27.

    Google Scholar 

  • Nilsson, N.J. (1971). Problem-Solving Methods in Artificial Intelligence. Mc Graw-Hill.

  • Nilsson, N.J. (1980). Principles of Artificial Intelligence. Tioga.

  • Pearl, J. (1981). “Heuristic Search Theory: Survey of Recent Results.” Proc. 7th IJCAI. Vancouver, Canada, pp. 554–562.

  • Pearl, J. (1984a). “Some Recent Results in Heuristic Search Theory,” IEEE Trans. on PAMI 6(1), 1–12.

    Google Scholar 

  • Pearl, J. (1984b). Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley.

  • Pearl, J. and J.H. Kim. (1982). “Studies in Semi-Admissible Heuristics,” IEEE Trans. on PAMI 4(4), 392–400.

    Google Scholar 

  • Pohl, I. (1969). “First Results on the Effect of Error in Heuristic Search.” In B. Meltzer and D. Michie (eds.), Mach. Int. 5 Edinburgh University Press, pp. 219–236.

  • Pohl, I. (1970). “Heuristic Search Viewed as Path Finding in a Graph,” Art. Int. 1(4), 193–204.

    Google Scholar 

  • Pohl, I. (1973). “The Avoidance of (Relative) Catastrophe, Heuristic Competence, Genuine Dynamic Weighting and Computational Issues in Heuristic Problem Solving.” Proc. 3d IJCAI. Stanford, USA, pp. 12–17.

  • Pohl, I. (1977). “Practical and Theoretical Considerations in Heuristic Search Algorithms.” In E.W. Elcock and D. Michie (eds.), Mach. Int. 8, Wiley, pp. 55–71.

  • Russell, S. (1992). “Efficient Memory-Bounded Search Methods.” Proc. 10th ECAI. Vienna, Austria, pp. 1–5.

  • Schoppers, M.J. (1983). “On A* as a Special Case of Ordered Search.” Proc. 8th IJCAI. Karlsruhe, Germany, pp. 783–785.

  • Sen, A.K. and A. Bagchi. (1989). “Fast Recursive Formulations for Best-First Search that Allow Controlled Use of Memory.” Proc. 11th IJCAI. Detroit, USA, pp. 297–302.

  • Stentz, A. (1995). “The Focused D* Algorithm for Real-Time Replanning.” Proc. 14th IJCAI. Montreal, Canada, pp. 1652–1659.

  • Steward, B., C.F. Liaw, and C.C. White III. (1994). “A Bibliography of Heuristic Search Research Through 1992,” IEEE Trans. on SMC 24(2), 268–293.

    Google Scholar 

  • Vanderbrug, G.J. (1976). “Problem Representations and Formal Properties of Heuristic Search,” Information Sciences. 11(4), 279–307.

    Google Scholar 

  • Yager, R.R. (1986). “Paths of Least Resistance in Possibilitic Production Systems,” Fuzzy Sets and Systems 19, 121–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farreny, H. Completeness and Admissibility for General Heuristic Search Algorithms—A Theoretical Study: Basic Concepts and Proofs. Journal of Heuristics 5, 353–376 (1999). https://doi.org/10.1023/A:1009617818678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009617818678

Navigation