Skip to main content
Log in

Learning Game-Specific Spatially-Oriented Heuristics

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

This paper describes an architecture that begins with enough general knowledge to play any board game as a novice, and then shifts its decision-making emphasis to learned, game-specific, spatially-oriented heuristics. From its playing experience, it acquires game-specific knowledge about both patterns and spatial concepts. The latter are proceduralized as learned, spatially-oriented heuristics. These heuristics represent a new level of feature aggregation that effectively focuses the program's attention. While training against an external expert, the program integrates these heuristics robustly. After training it exhibits both a new emphasis on spatially-oriented play and the ability to respond to novel situations in a spatially-oriented manner. This significantly improves performance against a variety of opponents. In addition, we address the issue of context on pattern learning. The procedures described here move toward learning spatially-oriented heuristics for autonomous programs in other spatial domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Biswas, S. Goldman, D. Fisher, B. Bhuva, & G. Glewwe. (1995). Assessing design activity in complex CMOS circuit design. In P. Nichols, S. Chipman, & R. Brennan (Eds.), Cognitively Diagnostic Assessment. Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  2. A. Blum. (1997). Empirical support for Winnow and weighted-majority based algorithms: Results on a calendar scheuling domain. Machine Learning 26: 5–23.

    Google Scholar 

  3. S. Chatterjee & S. Chatterjee. (1987). On combining expert opinions. American Journal of Mathematical and Management Sciences 7(3/4): 271–295.

    Google Scholar 

  4. D. I. A. Cohen. (1972). The solution of a simple game. Mathematics Magazine 45(4): 213–216.

    Google Scholar 

  5. K. Crowley & R. S. Siegler. (1993). Flexible strategy use in young children's tic-tac-toe. Cognitive Science 17(4): 531–561.

    Google Scholar 

  6. M. J. Egenhofer & D.M. Mark. (1995). Naive geography, 95–8. National Center for Geographic Information and Analysis.

  7. S. L. Epstein. (1992). Prior knowledge strengthens learning to control search in weak theory domains. International Journal of Intelligent Systems 7: 547–586.

    Google Scholar 

  8. S. L. Epstein. (1994a). For the right reasons: The FORR architecture for learning in a skill domain. Cognitive Science 18(3): 479–511.

    Google Scholar 

  9. S. L. Epstein. (1994b). Toward an ideal trainer. Machine Learning 15(3): 251–277.

    Google Scholar 

  10. S. L. Epstein, J. Gelfand, & J. Lesniak. (1996). Pattern-based learning and spatially-oriented concept formation with a multi-agent, decision-making expert. Computational Intelligence 12(1): 199–221.

    Google Scholar 

  11. R. Fine. (1989). The Ideas behind the Chess Openings. Random House, New York.

    Google Scholar 

  12. I. Gelfer. (1991). Positional Chess Handbook. Macmillan, New York.

    Google Scholar 

  13. E. Goldstein. (1989). Sensation and Perception (third ed.). Wadsworth, Belmont, CA.

    Google Scholar 

  14. Y. Ishida. (1991). All about Thickness. Ishi Press, San Jose, CA.

    Google Scholar 

  15. R. A. Jacobs. (1995). Methods for combining experts' probability assessments. Neural Computation 7: 867–888.

    Google Scholar 

  16. E. Kandel. (1991). Chapter 30: Perception of motion, depth, and form. In E. Kandel, J. Schwartz, & T. Jessel (Eds.), Principles of Neural Science, Elsevier, Amsterdam, pages 440–466.

    Google Scholar 

  17. B. Kuipers & T. Levitt. (1990). Navigation and mapping in large-scale space. In S. Chen (Ed.), Advances in Spatial Reasoning, Ablex, Norwood, NJ, pages 207–251.

    Google Scholar 

  18. R. Levinson & R. Snyder. (1991). Adaptive pattern-oriented chess. In Proceedings of the Eighth International Machine Learning Workshop, Morgan Kaufmann, San Mateo, pages 85–89.

    Google Scholar 

  19. N. Littlestone. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning 2: 285–318.

    Article  Google Scholar 

  20. H. Otake. (1992). Good shape. In Opening Theory Made Easy, Ishi Press, San Jose, CA, pages 62–111.

    Google Scholar 

  21. K. Penev & A. Requicha. (1997). Automatic fixture synthesis in 3D. In Proceedings of the IEEE Conference on Robotics and Automation, IEEE Press, Albuquerque, NM, pages 1713–1718.

    Google Scholar 

  22. M. J. Ratterman & S. L. Epstein. (1995). Skilled like a person: A comparison of human and computer game playing. In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, Pittsburgh, pages 709–714.

    Google Scholar 

  23. M. J. Ratterman & S. L. Epstein. Game-Playing Expertise in Young Children. In preparation.

  24. L. Saitta, F. Neri, M. Bajo, J. Canas, S. Chaiklin, F. Esposito, D. Kayser, C. Nedellec, G. Sabah, A. Tiberghien, G. Vergnaud & S. Vosniadou (1995). Knowledge representation changes in humans and machines. In P. Reimenn, & H. Spada (Eds.), Learning in Humans and Machines, Elsevier Science, Oxford.

    Google Scholar 

  25. A. L. Samuel. (1963). Some studies in machine learning using the game of checkers. In E. A. Feigenbaum, & J. Feldman (Eds.), Computers and Thought. McGraw-Hill, New York, pages 71–105.

    Google Scholar 

  26. H. A. Simon. (1981). The Sciences of the Artificial (second ed.). MIT Press, Cambridge, MA.

    Google Scholar 

  27. A. Treisman. (1986). Features and objects in visual processing. Scientific American 255: 114–125.

    Google Scholar 

  28. B. Tversky. (1989). Parts, partonomies, and taxonomies. Developmental Psychology 25(6): 983–995.

    Google Scholar 

  29. P. Utgoff & D. Precup. (1997). Constructive function approximation. Technical Report 97–04. Department of Computer Science, University of Massachusetts.

  30. J. Vandenbrande & A. Requicha. (1993). Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE Transactions on Pattern Analysis and Machine Intelligence 15: 1269–1285.

    Google Scholar 

  31. D. Waco & Y. Kim. (1994). Reasoning for machining features using convex decomposition. Computer-Aided Design 26.

  32. S. Zeki. (1993). A Vision of the Brain. Blackwell Scientific, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, S.L., Gelfand, J. & Lock, E. Learning Game-Specific Spatially-Oriented Heuristics. Constraints 3, 239–253 (1998). https://doi.org/10.1023/A:1009734028965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009734028965

Navigation