Skip to main content
Log in

Attacking a Conjecture in Mathematical Physics by Combining Methods of Computational Analysis and Scientific Computing

  • Published:
Reliable Computing

Abstract

We consider a conjecture on the sum of eigenvalues of two integral operators arising in potential and scattering theory for the case that the underlying surface is a triaxial ellipsoid. This concerns computation of Lamé functions which are anyway of great interest in electromagnetics and mechanics. We provide a new effective scheme for the numerical treatment of these special functions. It involves computing the Lamé functions with high accuracy combined with safe error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arscott, F. M.: Periodic Differential Equations, Pergamon Press, New York, 1964.

    Google Scholar 

  2. Arscott, F. M. and Khabaza, M.: Tables of Lamè Polynomials, Pergamon Press, New York, 1962.

    Google Scholar 

  3. Corliss, G. F. and Rall, R. B.: Adaptive Self-Validating Numerical Quadrature, MRC Technical Summary Report # 2815, University of Wisconsin, Madison, 1985.

    Google Scholar 

  4. Golub, G. and Ortega, J.: Scientific Computing, Teubner, Stuttgart, 1996.

    Google Scholar 

  5. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D.: Numerical Toolbox for Verified Computing I, Springer, New York, 1993.

    Google Scholar 

  6. Hobson, E. W.: The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York, 1955.

    Google Scholar 

  7. Kelch, R.: Numerical Quadrature by Extrapolation with Automatic Result Verification, in: Adams, E. and Kulisch, U. (eds), Scientific Computing with Automatic Result Verification 143, Academic Press, San Diego, 1993.

    Google Scholar 

  8. Kulisch, U. and Miranker, W. L.: Computer Arithmetic in Theory and Practice, Academic Press, San Diego, 1981.

    Google Scholar 

  9. Lense, J.: Reihenentwicklungen in der Mathematischen Physik, 2nd ed. De Gruyter, Berlin, 1947.

    Google Scholar 

  10. Magnus, M., Oberhettinger, F., and Soni, R.: Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, New York, 1967.

    Google Scholar 

  11. Martensen, E.: Dipole Distributions in Equilibrium, in: Kleinman, R., Kress, R., and Martensen, E. (eds), Direct and Inverse Boundary Value Problems Methoden und Verfahren dermathematischen Physik 37 (143), Peter Lang, Frankfurt a. M./Bern, 1991.

    Google Scholar 

  12. Ritter, S.: The Spectrum of the Electrostatic Integral Operator for an Ellipsoid, in: Kleinman, R., Kress, R., and Martensen, E. (eds), Inverse Scattering and Potential Problems in Mathematical Physics. Methoden und Verfahren der mathematischen Physik 40 (157), Peter Lang, Frankfurt a. M./Bern, 1994.

    Google Scholar 

  13. Ritter, S.: A Sum Property of the Eigenvalues of the Electrostatic Integral Operator, Jour. Math. Anal. Appl. 196 (120) (1995).

  14. Rump, S. M.: Solving Algebraic Problems with High Accuracy, in: Kulisch, U. and Miranker, W. L. (eds), A New Approach to Scientific Computation 51, Academic Press, San Diego, 1983.

    Google Scholar 

  15. Van de Velde, E. F.: Concurrent Scientific Computing, Springer, New York, 1994.

    Google Scholar 

  16. Wilkinson, J. H.: Global Convergence of Tridiagonal QR Algorithm with Origin Shifts, Lin. Alg. and Its Appl. 1 (409) (1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobner, HJ., Ritter, S. Attacking a Conjecture in Mathematical Physics by Combining Methods of Computational Analysis and Scientific Computing. Reliable Computing 3, 287–295 (1997). https://doi.org/10.1023/A:1009927009271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009927009271

Keywords

Navigation