
Information Systems Frontiers 1:3, 267±277 (1999)
2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Software Process Models and Project Performance

M.S. Krishnan
University of Michigan Business School, Ann Arbor, MI 48109

E-mail: mkrish@umich.edu

Tridas Mukhopadhyay
Graduate School of Industrial Administration, Carnegie Mellon

University, Pittsburgh, PA 15213

E-mail: tridas@cmu.edu

Dave Zubrow
Software Engineering Institute Carnegie Mellon University

Pittsburgh, PA 15213

E-mail: dz@sei.cmu.edu

Abstract. In this paper we review the progress in software
process research and the role of process improvement in
enhancing business outcomes of software projects. We ®rst
describe the process view of software development. Next, we
review the literature on software process research and discuss
some of the leading software process models. The business value
of software process improvements and empirical evidence from
the software industry are also discussed in this paper. We
conclude with a discussion of current challenges in software
process research and directions for future research.

Key Words. software process models, CMM, software project
performance

1. Introduction

As computers evolved from special dedicated

machines to ubiquitous entities in our daily life, the

reliance of our modern society on computer software

has grown signi®cantly in the last few decades.

Computer software is embedded in products ranging

from automobiles and refrigerators to cardiac pace-

makers. As a consequence, it is imperative for software

products to function as per speci®cations. Indeed, the

impact of software quality problems can be very

serious. For example, problems with ambulance

scheduling software in the United Kingdom resulted

in the loss of a life due to delay in the arrival of

ambulance (Flowers, 1996). Computer software also

plays a critical role in determining the success of

businesses and government in our society. Hence the

development and maintenance of software have

emerged as major concerns for the software industry

in the last few decades.

In spite of the fact that the use and management of

software is almost a necessity for the success of

businesses and government, senior executives in most

corporations are still troubled by chronic problems in

software development and maintenance. These pro-

blems are usually associated with schedule delays,

budget overruns, unacceptable product quality and

dissatis®ed customers. Such problems were together

referred to as ``software crisis'' in the late 1960s and

still continue to plague software organizations. For

instance, a report by SRI International found that

``fewer than 1% of commercial software projects

®nish on time, on budget, and to speci®cation''

(Dewey, 1988, p. 2). More recently, a 1995 survey

conducted by the Standish Group (Johnson, 1995)

reported that 31% of IT projects are cancelled prior to

completion. Furthermore, the survey reported that

nearly 53% of projects will incur signi®cant (nearly

200%) overruns compared to initial budgets, and often

contain reduced functionality compared to original

requirements. A recent American Management

Association survey of 400 CEOs indicated that only

55.6% of their information systems technology

267

projects met the initial budget targets and only 52.2%

met the initial schedule targets (AMA Newsletter for

Chief Executives, 1998). Additionally, software

problems now receive widespread attention such as

the baggage handling software which delayed the

opening of the Denver Airport (Gibbs, 1994).

The business impact of the above problems in the

software industry is signi®cant and often threatens the

pro®tability and survival of ®rms. The enormous

growth in the demand for software has fueled the

increase in the number of ®rms entering the industry

and has intensi®ed competition. In order to succeed in

the market, software managers in software ®rms are

striving for lower cost, on time delivery, higher

quality and customer satisfaction. As a consequence,

these endemic problems in software development

have caught the attention of researchers both in the

academia and industry, and a number of possible

explanations and solutions have been proposed.

The proposed solutions to the software problems

can be classi®ed into models, methodologies, and

tools. Organizations adopt these solutions to increase

software development ef®ciency and quality, and

facilitate better control of the software development

activities. The waterfall model for software develop-

ment and the structured analysis and design

techniques introduced two decades ago provided a

framework to represent in diagrams, the various

phases of product development and the speci®c

interactions among various modules in a software

respectively (Yourdon, 1991; Boehm, 1981). This

structured approach to business development was a

step forward in improving program understanding and

controlling software complexity.

A large number of CASE (Computer Aided

Software Engineering) tools were introduced in the

later half of 1980s to improve the ef®ciency and

quality of software development. These tools were

invented under the premise that many activities in

software development are mechanical, and can be

automated to a large extent. Hence the objective of

these CASE tools was to provide ef®ciency and better

control through automation of activities in various

phases of software development as well as the

interactions among these phases. However, empirical

research on software projects does not provide a clear

evidence of success in support of the use of CASE

tools in software projects. Rather a number of studies

have identi®ed the importance of effective manage-

ment of various activities in software development

and the role of management innovations in the success

of these technological solutions (Dewey, 1988; Martin

and McClure, 1988).

As a major step towards addressing the problems in

software industry, a new initiative with a focus on the

software development process emerged in the late

eighties. The Software Engineering Institute at the

Carnegie Mellon University began its work on the

Capability Maturity Model1 (Capability Maturity

Model and CMM are registered with the U.S. Patent

and Trademark Of®ce) to aid the Department of

Defense in the acquisition of software intensive

systems (Humphrey, 1989). Built on broader theories

of quality and continuous process improvement, but

tailored to software development, the CMM1

provided the DoD a standard means for measuring

the contractor capability via its de®nition of process

maturity. As the CMM was widely adopted as a

standard process model in the defense sector,

commercial organizations within these corporations

began to investigate whether they could bene®t from

the approach to software process improvement out-

lined in the CMM. Momentum grew over the years to

today where software process improvement has

become a global movement. In the last few years

software process improvement has emerged as an

integrated solution to software problems in various

corporations. In addition, empirical evidence of the

bene®ts of process improvements are now widely

recognized (Herbsleb et al., 1997; Krishnan, 1996;

Gopal, Mukhopadhyay and Krishnan, 1999).

In this paper we review the progress in software

process research and the role of process improvement

in enhancing business outcomes of software projects.

We describe the process view of software develop-

ment in section two. In section three we review the

literature on software process research and discuss

some of the leading software process models.

Business value of software process improvements

and empirical evidence from the software industry are

discussed in section four. We conclude in section ®ve

with a discussion of current challenges in software

process research and directions for future research.

2. Process View

A system of operations or steps in producing a product

or service is termed a process. Software development

268 Krishnan, Mukhopadhyay and Zubrow

has been traditionally viewed as a set of purely

engineering tasks. In contrast, a process view of

software development presents the set of tasks

involved in software development and maintenance

as an integrated process that can be controlled,

measured and improved (Humphrey, 1989). This

process focus in software originated from analogies

drawn by viewing software development in compar-

ison to other mature ®elds such as manufacturing.

In successful manufacturing ®rms, all tasks and

roles involved in the shop ¯oor right from procure-

ment of raw materials to shipment of the ®nished

product are well de®ned as a process and adequate

checks are in place to ensure process control. For

example, the ®nished products are checked for quality

within well de®ned tolerance levels, and in the event

of any deviation, the source of defects in the process

are identi®ed and adequate measures to correct and

improve the process are taken. As a consequence,

product quality, development time and cost are

relatively more predictable and controlled in the

manufacturing industry as compared to the software

industry. Hence the primary motivation for a process

view of software development is the belief that the

problems referred to as ``software crisis'' earlier can

be solved to a large extent by incorporating all the

tasks involved in software development into a well

de®ned process and subsequently aligning the

incentive structures within the software organization

to ensure the following: (a) the de®ned process is

followed; (b) any deviations from the process are

tracked; (c) process outcome metrics are tracked and

used in guiding periodic improvements to the process.

The ®rst initiative on this process view of software

development was pioneered in the late 1980s by a

group headed by Watts Humphrey at the Software

Engineering Institute (SEI) of Carnegie Mellon

University (Humphrey, 1989). This subsequently led

to well de®ned process models and frameworks that

facilitate software organizations to de®ne their soft-

ware process, ensure strict adherence to the process

standards, track the performance of their projects and

improve their existing processes (Paulk et al., 1994; El

Emam et al., 1997; Kuvaja et al., 1994). It is argued

that a process based approach to software develop-

ment induces discipline. It is believed that this

discipline will subsequently manifest itself into a

consistent pattern of behavior by individuals and

groups of people following a common process. Since

a de®ned process will describe how to act or react to

certain situations that may arise in software develop-

ment, a process based approach to software

development will facilitate repeatability and a

systematic data driven solution to problems faced by

software managers.

The bene®ts of this process view are apparent

speci®cally in large software projects involving many

software professionals. In large software projects with

multiple groups, it is important that the priorities,

behaviors, and actions of various individuals and

groups are aligned with the common goal of the

project. A process view of software development

provides a uni®ed view and the needed alignment of

the entire set of tasks and actions across various

groups and individuals in the project. In the absence of

such a uni®ed view towards a common set of goals,

the behavior and actions of various groups may

contradict each other and subsequently affect the

performance of the project. In summary, a process

approach to software development brings discipline to

various tasks in software development and this

discipline leads to consistency and uniformity in

products delivered at the end of these tasks. Instilling

such discipline in all tasks in software development

and maintenance will lead to an increased capability

of the process and better quality, schedule and cost

results in software projects.

3. Software Process Models

Software process research in the last decade has led to

several approaches for software organizations to use in

characterizing the state of their current software

practices in consistent terms, and in setting goals and

priorities for improving their processes. In particular, a

number of models and frameworks for assessing

software process capability of organizations have

been developed. Some of these frameworks for

software process improvement are SEI CMM,

SPICE, ISO-9000-3, Bootstrap, and Trillium (Emam

and Goldenson, 1996; Paulk, 1995; Paulk et al., 1993;

Kuvaja et al., 1994). Most of these frameworks are

based on fundamental principles of quality manage-

ment. The basic premise of these frameworks is that

consistent application of well-de®ned and measured

software processes, coupled with continuous improve-

ment of process, will substantially improve the

productivity of software organizations and the quality

Software Process Models and Project Performance 269

of their products. We next brie¯y discuss some of the

popular software process models and frameworks for

process capability evaluation and assessment.

3.1. Capability Maturity Model
The Capability Maturity Model (CMM) was devel-

oped by the Software Engineering Institute (SEI) of

Carnegie Mellon University. As depicted in Table 1,

the CMM speci®es ®ve maturity levels to assess an

organization's process capability by measuring the

degree to which processes are de®ned and managed.

These levels range from no process or ad hoc rules in

software development at the lowest maturity level to

continuously improving and optimized process at the

highest level. Each maturity level consists of several

key process areas (Paulk et al., 1993, 1994) (see Table

1). Key process areas are classi®ed into goals and

common features. In each key process area, several

goals are de®ned to represent the desired outcomes of

the process. Guidance for realizing the goals is

provided in the form of key practices grouped in

terms of practices for implementing and institutiona-

lizing the process. A series of such practices and

process improvement initiatives lead to the transition

of an organization's process to the next higher

maturity level.

3.2. ISO-9000
ISO-9000 is a general quality standard from the

International Standards Organization. This quality

standard was originally designed for the manufac-

turing industry and was later extended to service and

software industries. Several ®rms have been desig-

nated by the International Standards Organization as

ISO-9000 auditors. These ®rms then certify other

organizations as ISO-9000 compliant based on a

rigorous audit of quality practices followed by the

organization in their internal processes. ISO-9000 is a

family of standards and contains several parts. The set

of standards stress the following three broad quality

concepts (ISO, 1987):

i. An organization should achieve and sustain the

quality of product or service produced so as to

meet continually the customer's stated or implied

needs.

ii. An organization should track outcomes of quality

practices and provide con®dence to its own

management that the intended quality is being

achieved and sustained.

iii. An organization should provide con®dence to the

purchaser that the intended quality is being, or

will be, achieved in the delivered product or

service provided. When contractually required,

this provision of con®dence may involve agreed

demonstration of requirements.

Only some of the parts of the full ISO-9000 set of

standards are relevant to software development. The

part most relevant to software development is ISO-

9000-3 (ISO, 1991; 1994). This part provides detailed

quality guidelines for development, supply and

maintenance of software products and services and

includes an interpretation of the general ISO-9000

standard for a software organization. It includes

guidelines for quality practices in both development

and support activities. The speci®c activities

addressed in ISO-9000-3 are listed in Table 2.

Although ISO-9000-3 primarily addresses custom

software development where speci®c software is

Table 1. Overview of the SEI-CMM

Level Focus Key process areas

5 Optimizing Continual process

improvement

Defect prevention, Technology change management,

Process change management

Quality

Productivity

4 Quantitatively

Managed

Product and process

quality

Quantitative process management, Software quality management

3 De®ned Engineering processes

and organizational

support

Organization process focus, Organization process de®nition, Training program,

Integrated software management, Software product engineering,

Intergroup coordination

Peer reviews

2 Repeatable Project management

processes

Requirements management, Software project planning, Software project tracking &

oversight, Software subcontract management, Software quality assurance, Software

con®guration management Risk

Waste1 Initial Competent people and

heroics

This table is a courtesy of Mark C. Paulk of the Software Engineering Institute at Carnegie Mellon University.

270 Krishnan, Mukhopadhyay and Zubrow

developed as per the purchaser's requirements, these

quality concepts can also be used in projects that

develop packaged software for a market.

Note that in spite of the fact that both ISO-9000

and the CMM model for software process improve-

ment address the importance of a de®ned process with

guidelines and practices to achieve quality, there are

some inherent differences between the two

approaches (Paulk, 1995). Unlike the CMM model

discussed earlier that provides a framework for

continuous process improvement, the ISO-9000-3

aims primarily to establish an acceptable baseline

for software process. The ISO standards address the

minimum criteria for an acceptable quality system. In

addition, the CMM can be used both for an internal

assessment by the organizations and external audit,

whereas ISO-9000 certi®cation can be provided only

by external auditors. Paulk (1995) provides a detailed

analysis comparing and contrasting the CMM and

ISO-9000-3 standards. Based on the ISO-9000

standards, the British Standards Institute (BSI) in

collaboration with the UK Department of Trade and

Industry (DTI) and software industry representatives

have developed quality guidelines for software

purchasers, software suppliers and quality auditors.

This guideline is referred to as ``TickIT'' guide to

Software Quality Management System Construction

and Certi®cation using ISO-9001.

3.3. SPICE
Software Process Improvement and Capability

dEtermination (SPICE), aka ISO-15504, is an emer-

ging international standard for conducting software

process assessment. It provides a framework and set

of requirements that can accommodate a variety of

models of software practice and assessment methods

(Rout and Simms, 1998). A set of requirements is

speci®ed that allow users to determine if their

assessment conforms to the standard. This approach

allows users of other process improvement models

such as the CMM to comply with the standard without

abandoning their existing improvement approach.

The SPICE document set, however, contains much

more than the requirements. To support the standard

and give organizations that are embarking on software

process improvement a starting point, SPICE also

includes a reference model of practices and an

assessment method. The SPICE reference model

follows a continuous architecture for capability.

Thus each process category is rated separately on a

scale from 0 to 5. This approach differs from a staged

model like the CMM where rating is based on the

implementation of clusters of process areas and

practices and is reported for the organization as a

whole.

SPICE is also seeking to harmonize with ISO-

12207, the standard for Software Life Cycle

Processes. Both standards address software develop-

ment processes and hence, the need for harmonization

of the standards. However, the SPICE reference

model provides greater detail and serves as a suitable

basis for conducting assessment and guiding improve-

ment.

3.4. Trillium
The Trillium process model is based on the CMM and

quality practices outlined in other models. A

consortium of telecommunication companies headed

by Bell Canada developed this model (Trillium,

1994). A unique feature of this model is that it was

designed to primarily address the speci®c require-

ments of software development in the

telecommunications industry. This model identi®es

the key industry practices and provides guidelines for

Table 2. Activities in software process addressed by ISO-9000 quality system

Lifecycle activities Support activities in software development

Contract review Con®guration management

Purchaser's requirement speci®cation Document control

Development planning Quality records maintenance

Quality planning Measurement and metrics

Design and implementation Rules, practices and conventions

Testing and validation Tools and techniques

Product acceptance Purchasing

Replication, delivery and installation Training

Maintenance

Software Process Models and Project Performance 271

improving the software development process cap-

ability in a competitive business environment. The

focus is primarily on delivering software products that

meet the expectations of the customer and exhibits

highest quality, fast development schedule and lower

lifecycle costs (Trillium, 1994).

Similar to the ®ve levels of process maturity in the

CMM, the Trillium model also speci®es ®ve levels of

process improvements. As shown in Table 3 these

levels range from unstructured, ad hoc process at the

lowest level to fully integrated process at the highest

level where formal methodologies are extensively

used, repositories for development history and process

are effectively utilized and process improvement is

engineer-driven. The process risk gradually decreases

from ``High'' to ``Lowest'' with the increase along

the ®ve levels. The Trillium model contains eight

capability areas and each capability area contains

several ``roadmaps'' with practices at multiple

process improvement levels as shown in Table 4.

For a given roadmap, the level of practices is based on

their respective degree of maturity. The fundamental

practices are at the lower levels, whereas more

advanced ones are at the higher levels. In order to

increase effectiveness of higher level practices, it is

recommended that the lower level practices be

implemented and sustained (Zahrin, 1998).

The Trillium model is quite similar to the CMM.

The key process areas of the CMM have been

condensed into fewer capability areas that are

elaborated and expanded into various roadmaps. In

addition, Trillium also draws from business process

reengineering and total quality management. The

differences between Trillium and the CMM model are

outlined by Popel and Wise (1996).

3.5. BOOTSTRAP
The BOOTSTRAP methodology for software process

assessment and improvement originated in a

European Community project (ESPRIT) with a

focus on evaluating investments in technology

(Kujava, 1994). The primary goal of this methodology

was to aid adoption of software engineering

technology in the small and medium sized organiza-

tions in the European software industry. This

methodology addresses process management issues

both at the organizational level and at the level of

individual software producing units within the

organization. Unlike some process assessment frame-

works discussed earlier, the BOOTSTRAP

methodology not only provides an assessment of the

Table 3. Trillium process improvement levels

Level Description Risk

Level 1: Unstructured Hero-driven product development High

Level 2: Repeatable and project oriented Project management process in place Medium

Level 3: De®ned and process oriented Process-oriented engineering standards in place Low

Level 4: Managed and integrated Manager-driven process improvement Lower

Level 5: Fully integrated Fully integrated Lowest

Table 4. Trillium capability areas and roadmaps

Capability Areas Roadmaps

Organizational process quality Quality management, Business process engineering

Human resource development

and management

Human resource development and management

Process Process de®nition, Technology management, Process improvement and engineering, Measurements,

Management Project management, Subcontract management, Customer-supplier relationship, Requirements

management, Estimation

Quality systems Quality system

Development practices Development process, Development technique, Internal documentation, Veri®cation and validation,

Con®guration management, Reuse, Reliability management

Development environment Development environment

Customer support Problem response analysis, Usability engineering, Lifecycle cost modeling, User documentation,

Customer engineering, User training

272 Krishnan, Mukhopadhyay and Zubrow

current practices followed within an organization, but

also provides speci®c tools and methods to analyze

assessment results. This methodology also aids in

transforming the results of process assessment into an

action plan to improve process maturity. Hence it

provides a structured guide to sustain process

improvements.

The BOOTSTRAP process architecture rests on a

triad of process categories in the areas of

Organization, Methodology and Technology. These

three major categories consist of several process

areas. Each process area speci®es several key

practices and activities. The important process areas

within each of the three categories of the triad are

shown in Table 5. The organization category

addresses the process management issues at the

organizational level and captures information on the

resources and pro®les in various projects of the

organization and on the organization as a whole. The

issues addressed in the process areas of methodology

and technology category are more con®ned to the

speci®c software projects.

The questions in the BOOTSTRAP assessment

questionnaire are also divided in the three main

categories as depicted in Table 5. The BOOTSTRAP

methodology uses the same ®ve level process

capability scale used by CMM (as shown in Table

1). However, there are some salient differences in the

way assessment scores are computed in this approach.

First, the process areas de®ned in BOOTSTRAP

architecture are not con®ned to one single capability/

maturity level as in the CMM but span across several

levels similar to the Trillium process model. Second,

in the BOOTSTRAP method, the ®nal process

assessment output is not expressed as a single

aggregate number indicating the maturity level. The

®nal output is a pro®le of key attributes. The method

offers a scoring algorithm to be used by assessment

teams in analyzing responses to the questionnaire.

Each question is measured on a four-point scale and is

translated into numeric equivalents for aggregation to

average scores. This scoring algorithm ensures that all

the key attributes are directly represented on the ®ve

maturity scales (Kujava, 1994). The BOOTSTRAP

methodology also captures the concept of organiza-

tion wide quality system speci®ed in ISO-9000

standards.

4. Business Value from Software Process
Improvements

As discussed earlier, the CMM and various other

software process models provide guidelines and

frameworks to adopt disciplined methods and

practices to software development and maintenance.

The basis for all these process models rests on the

belief that following a de®ned process with dis-

ciplined methods and practices will lead to signi®cant

business bene®ts for software organizations. These

bene®ts are in terms of cost reductions, and quality

and cycle-time improvements in software projects. In

spite of these beliefs in substantial bene®ts from

process improvements and disciplined practices,

software organizations have been rather slow in

adopting such practices until the past few years.

There are several reasons for this resistance to adopt

these practices by software organizations.

First, some software developers and managers

believe that enforcing a rigid discipline to software

development through a de®ned process may reduce

the freedom for developers and curtail their innova-

tion. However this belief is not correct (Humphrey,

1996). Second, software organizations often view the

substantial initial effort required to institutionalize a

de®ned process and the ongoing effort to follow the

process as overhead expenses. Finally, since it is often

Table 5. Process areas in BOOTSTRAP architecture

Process category Process areas

Organization & Management practices

& Quality management

& Resource management

Methodology Product engineering

& Requirements analysis

& De®nition

& Detailed design and implementation

& Testing and integration

& Acceptance and transfer

& Operational support and maintenance

Process engineering

& Process description

& Process control

& Process measurement

Life-cycle independent (support) functions

& Project management

& Quality assurance

& Risk management

Technology & Technology management

& Product engineering technology

Software Process Models and Project Performance 273

dif®cult in software projects to isolate the cause of

improvements in costs or quality to a speci®c practice,

there has been a concern regarding the effectiveness

of software process improvements and related

practices. This validity concern is mainly due to the

lack of controlled and rigorous empirical evidence to

support the bene®ts claimed from process improve-

ment and related practices.

Several studies have been conducted to assess

bene®ts from process improvements. Most of these

studies report evidence in support of business bene®ts

from software process improvement. We brie¯y

discuss the key results of some of these studies and

summarize their ®ndings. Empirical evidence

reported in support of software process bene®ts can

be broadly classi®ed in to the following three

categories:

1. Survey reports based on responses from managers

and developers in software development ®rms.

2. Longitudinal case studies of a few projects

conducted within a company.

3. Empirical studies that estimate the effects of

process on costs, quality and cycle-time using

statistical models on pooled data from several

projects.

Although all three categories of evidence con-

tribute to our understanding of software process

bene®ts, these results must be viewed in the context

of their unique strengths and limitations.

4.1. Survey studies
Based on over 138 survey responses from senior

technical personnel, project managers and members

of SEPG in several organizations, Herbsleb et al.

(1997) report consistent perceptions of improved

project performance along several dimensions as

process maturity increased. Deephouse et al. (1993)

in another survey based on responses from SEPG

members of several organizations report positive

association between project performance and key

practices followed to improve software processes.

In a US Air Force sponsored research to assess the

quanti®able bene®ts and ROI for software process

improvement efforts based on SEI CMM, Brodman

and Johnson (1995), report bene®ts such as increased

productivity and reduced development schedule.

Although these reports improve our understanding

of the perceived or actual bene®ts from software

processes, it must be noted that results based on

survey reports are subjective and may not provide

quantitative evaluation of bene®ts. In addition, some

survey reports capture merely perceived bene®ts from

software process instead of actual bene®ts.

4.2. Case studies
Based on data collected from multiple case studies in

thirteen organizations, Herbsleb et. al. (1997) report

that organizations engaged in CMM based software

process improvements experienced productivity gains

from 9 to 67%, reduction in product development time

ranging from 15 to 23% and reduction in post release

defects ranging from 10 to 94%. An eight year

longitudinal study of software projects at Raytheon

reports a 190% increase in productivity and a decrease

in product trouble rates from 17.2 to 4.0 per thousand

lines of delivered code (Haley, 1996). A six year study

at Hewlett-Packard reports reduction in delivered

defects from 1.0 per thousand lines of code to 0.1 per

thousand lines of source code and cost savings of over

$100 million through process improvements (Myers,

1994).

A large Italian software house has reported

reduction in budget overruns in their projects through

process improvement. A large utility company in

Europe has experienced over 20% cost reduction in

large projects by adopting a formal process for

managing requirement speci®cations (Zahran, 1998).

IBM Federal Systems Company that developed space

shuttle ¯ight software for NASA has initiated soft-

ware process and quality practices to meet the highest

reliability and safety standards required in these

software systems. In two decades of process improve-

ment, this organization has evolved the process

capability to consistently predict its cost within 10%

of actual expenditures, achieve three-fold increase in

productivity with only one schedule overrun in ®fteen

years (Curtis and Statz, 1996). Reports on process

improvement bene®ts from several organizations are

summarized in Fox and Frakes (1997). A de®nite

strength of case studies is the access to in-depth

analysis based on detailed information from few

projects. In addition, the bene®ts reported in case

studies are based on objective data. However, there

are also limitations in the case based evidence. First,

the results are con®ned to a few projects and it may be

dif®cult to statistically test the causality in business

value bene®ts. Second, it may be possible that only

results of successful projects are released.

274 Krishnan, Mukhopadhyay and Zubrow

4.3. Field studies
The evidence from ®eld studies is based on data from

a relatively large number of projects within a single

organization or from several organizations. Krishnan

et al. (1999) examine the effect of CMM KPAs on

software quality and cost. Their analysis based on data

from over 40 projects from a large software

development laboratory in a Fortune 100 company

indicates that consistently following CMM KPA

practices improved quality, but did not show evidence

of a direct effect on cost. Higher product quality, in

turn, signi®cantly reduced cost. A recent dissertation

investigating the impact of software process maturity

on software development productivity found that after

normalizing for the effects of other effort in¯uences, a

one-level change in the rating of CMM process

maturity level resulted in a 15 to 21% reduction in

effort (Clark, 1997). This ®nding is signi®cant since

the analysis considered all the cost factors included in

the COCOMO II cost estimation model (Boehm et al.,

1995).

Gopal et al. (1999) study the effect of process

factors on effort, cycle-time and rework in offshore

development projects completed in India. Their

analyzes of data from over 30 offshore software

projects from a large software vendor show that

software process factors signi®cantly improve all

three performance measuresÐeffort, cycle-time and

rework. In a different study, Harter, Krishnan and

Slaughter (1998) investigate the relationship between

process improvement, quality, cycle time, and effort

for the development of thirty software products by a

major IT ®rm. Their ®ndings indicate that higher

levels of process maturity as assessed by the CMM are

associated with signi®cantly higher product quality

and higher cycle time and development effort.

However, the reductions in cycle time and effort due

to improved quality in their ®nding outweigh the

increases from achieving higher levels of process

maturity. Thus, the net effect of process improvement

is reduced cycle time and development effort.

A primary limitation in the evidence reported in the

above studies is that the data is often from one

organization. To improve generalizability of these

results, there is a need to pool data from several

organizations to test the effect of process improvement

on project performance. However, in combining data

from several organizations, care must be taken to

ensure that measures of productivity, quality, and other

product metrics are uniform across organizations.

5. Conclusion

In this paper we have discussed the evolution of

process based approach in software development and

described various process models and frameworks in

use. It is clear from the evidence discussed in section

four that adopting disciplined practices through a

de®ned process may provide signi®cant return on

investment. However, in order to sustain process

improvement and prevent unwanted deviations from

de®ned processes, process owners within organiza-

tions need to periodically present the business bene®ts

of process adoption to its software community. Due to

the intense pressure from the market and their

customers to release products early, software man-

agers commit a major mistake of viewing some parts

of the de®ned process unnecessary. Unless this gets

the attention of the group responsible for software

process in the organization and the required changes

to the process are implemented, this behavior of

missing process steps becomes a norm. Hence correct

monitoring of process execution especially for a few

months after the process is in place is critical for

successful adoption of software process. Senior

management recognition and support for software

process improvement programs is a must. As in any

other change management exercise, the momentum

required to sustain the major changes introduced

through process improvement programs require the

awareness and commitment from senior management.

Many challenges remain in this area. Although we

have primarily discussed process de®nition and

process improvement in this paper, for reaping

business value bene®ts, software managers need to

manage and improve people skills and use appropriate

methodology and automated tools deployed in

product development. For instance, rarely are process

improvement activities undertaken in isolation.

Organizations are dynamic and continually evolving.

Developing knowledge of the relative contribution of

process in light of changes in technology and human

resources remains a fertile area for research.

Likewise, little is known about how process improve-

ment might vary in response to differing

organizational goals and priorities.

In the packaged software industry, cycle time is

often touted as the highest priority. In the contract

software industry, cost may be the priority. In DoD

and mission critical areas, quality, functionality and

schedule may be preeminent. Finally, little is known

Software Process Models and Project Performance 275

with respect to the comparative effectiveness of the

various process improvement models. In particular,

we need to compare process improvement efforts

guided by a staged model like the CMM1 with

process improvement efforts guided by a continuous

architecture like that embodied in SPICE. Of course,

the answer is, it depends. To date, however, criteria or

heuristics are lacking to help organizations make this

choice. Empirical studies in the literature on process

improvement bene®ts have primarily studied the

CMM model. This is partly due to the early and

widespread adoption of the CMM process model by

commercial organizations. There is a need to study the

cost bene®t trade-offs of other software process

models such as the SPICE or BOOTSTRAP. To

further knowledge about these trade-offs, datasets

based on the experience of multiple organizations

need to be established. Furthermore, ways to gather

comparable data or to normalize data from disparate

sources need to be developed.

References

AMA Newsletter for Chief Executives. PRESIDENT, Spring 1998.

Boehm BW. Software Engineering Economics. New Jersey:

Prentice-Hall, Inc., 1981.

Boehm BW, Clark B, Horowitz E, Westland C, Madachy R, Selby

R. Cost models for future software life cycle processes:

COCOMO2.0. Annals of Software Engineering. Arthur JD,

Henry SM. eds. Amsterdam, The Netherlands: J.C. Baltzer AG,

Science Publishers, 1995;57±94.

Broadman JG, Johnson DL. Return on investment (ROI) from

software process improvement as measured by US industry.

Software Process Pilot Issue, 1995;35±47.

Clark BK. The effects of software process maturity on software

development effort, University of Southern California. Doctoral
Dissertation 1997.

Curtis B, Statz J. Building the cost-bene®t case for software process

improvement. in: Proceedings of 1996 SEPG Conference.

Atlantic City, New Jersey, May 20±23.

Deephouse C, Mukhopadhyay T, Goldenson DR, Kellner MI.

Software processes and project performance. Journal of
Management Information Systems 1996;12(3):185±203.

Dewey, Russell H. Software engineering technology and manage-

ment. SRI International, Report No. 762 1988.

Dion, R. Process improvement and the corporate balance sheet.

IEEE Software, 1993;10(4):28±35.

Dorling, A. SPICE: Software Process Improvement and Capability

Determination. Information and Software Technology
1993;35:404±406.

El Emam K, Drouin, J-N, Melo, W. SPICE: The Theory and
Practice of Software Process Improvement and Capability
Determination. IEEE Press 1997.

El Emam, Goldenson DR. Some Initial Results from the

International SPICE Trials. Software Process Newsletter,
Technical Council on Software Engineering IEEE Computer

Society, 1996;6.

Flowers S. Software Failure: Management Failure. New York, NY

John Wiley and Sons, 1996.

Fox C, Frakes W. The Quality Approach: Is it Delivering?

Communications of the ACM 1997;40(6):25±29.

Gibbs W, Wayt. Software's chronic crisis. Scienti®c American
1994;86±95.

Gopal A, Mukhopadhyay T, Krishnan MS. The Role of Software

Processes and Communication in Offshore Software

Development. Forthcoming, Communications of ACM 1999.

Harter D, Krishnan MS, Slaughter S. The Effect of Process

Improvement on Quality, Cycle time, and Effort in Software

Product Development: A Field Study. Working Paper, 1998,
Graduate School of Industrial Administration. Carnegie Mellon

University, Pittsburgh, PA 15213.

Haley TJ. Software Process Improvement at Raytheon. IEEE
Software 1996;13(6):33±41.

Herbsleb J, Zubrow D, Goldenson D, Hayes W, Paulk M. Software

Quality and the Capability Maturity Model. Communications of
the ACM 1997;40(6):30±40.

Humphrey WS. Managing the Software Process. Addison-Wesley,

1989.

Humphrey WS. Managing Technical People: Innovation Teamwork
and Software Process. New York, NY Addison-Wesley, 1996.

Humphrey Watts Snyder Terry R, Willis Ronald R. Software

Process Improvement at Hughes Aircraft. IEEE Software
1991;8(4):11±23.

ISO Quality Systems: Model for Quality Assurance in Design/
development, Production, Installation and Servicing. ISO-9001,

International Standards Organization, 1987.

ISO Quality Management and Quality Assurance Standards, Part 3:
Guidelines for the ISO 9001 to the Development, Supply and
Maintenance of Software. ISO-9000-3 International Standards

Organization, 1991, 1994.

Johnson Jim. CHAOS: The dollar drain of IT project failures.

Application Development Trends 1995;20(1):41±44.

Krishnan MS. Cost and Quality Considerations in Software Product

Management. Doctoral Dissertation. Graduate School of

Industrial Administration, Carnegie Mellon University, 1996.

Krishnan MS, Kriebel CH, Kekere S, Mukhopadhyay T. An

Empirical Analysis of Quality and Productivity in Software

Products. GSIA Working Paper, 1999. Carnegie Mellon

University, Pittsburgh, PA 15213.

Kuvaja PJ, Simila L, Krzanik A, Bicego S, Soukkonen Koch G.

Software Process Assessment and Improvement: The
BOOTSTRAP Approach. UK: Blackwell, 1994.

Martin J, McClure CL. Structured Techniques: The Basis for CASE.

New Jersey: Prentice-Hall, 1988.

Myers W. Hard data will lead managers to quality. IEEE Software,

1994;11(2):100±101.

Paulk MC, Weber CV, Garcia SM, Chrissis M, Bush M. Key

Practices of the Capability Maturity Model, Version 1.1.

Technical Report, CMU/SEI-93-TR-25, 1993. Software

Engineering Institute, Carnegie Mellon University, Pittsburgh,

PA 15213.

Paulk MC, Weber C, Curtis B, Chrissis MB. The Capability

276 Krishnan, Mukhopadhyay and Zubrow

Maturity ModelÐGuidelines for Improving Software Process.

Addison-Wesely, 1994.

Paulk MC. How ISO-9001 compares with the CMM. IEEE
Software. 1995;74±83.

Popel B, Wise C. Trillium and the CMM: differences between the

two models and assessment methods. Proceedings of 1996 SEPG
Conference. Atlantic City, NJ, pp. 20±23.

Rout TP, Simms PG. Introduction to the SPICE Documents and

Architecture. in SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination. El Emam

K., Drouin, J-N, and Melo, W. eds. Brussels: IEEE Press, 1997.

Trillium: Model for Telecom Product Development and Support

Process Capability, Release 3.0, Technical Report, Bell Canada

Acquisitions, Canada, 1994.

Yourdon E. Modern Structured Analysis. Yourdon Computing

Series, 1991.

Zahrin S. Software Process Improvement: Practical Guidelines for
Business Success. New Jersey: Addison Wesley, 1998.

M. S. Krishnan is Assistant Professor of Computers

and Information Systems at the University of

Michigan. He holds a Ph.D. from Carnegie Mellon

University. He won the Best Dissertation Award from

the International Conference on Information Systems

in 1997. His research primarily focuses on software

development productivity. His research appears in

Management Science, Harvard Business Review IEEE
Transactions on Software Engineering, Decision
Support Systems, Information Technology and
People and Communications of the ACM.

Tridas Mukhopadhyay is Professor of Information

Systems at Carnegie Mellon University. He holds a

Ph.D. from the University of Michigan. He is the

Director of the Master of Science in Electronic

Commerce program at CMU. His research appears

in Information Systems Research, Communication of
the ACM, Journal of Manufacturing and Operations
Management, MIS Quarterly, Omega, IEEE
Transactions on Software Engineering, Journal of
Operations Management, Accounting Review,
Management Science, Journal of Management
Information Systems, Decision Support Systems,
Journal of Experimental and Theoretical Arti®cial
Intelligence, Journal of Organizational Computing,
International Journal of Electronic Commerce,
American Psychologist and other publications. He is

on the editorial board of Information Systems
Frontier, Journal of Management Information
Systems, Journal of Organizational Computing,
Management Information Systems Quarterly,
Journal of the Association for Information Systems,

and Information Systems Research.

Dave Zubrow is Team Leader at the Software

Engineering Measurement and Analysis group of the

Software Engineering Institute at Carnegie Mellon

University. He holds a Ph.D. from Carnegie Mellon

University. He has researched extensively on software

process management and measurement. He is a

member of the editorial board for Software Quality
Professional.

Software Process Models and Project Performance 277

