éa Machine Learning, 43, 265-291, 2001
(© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Drifting Games

ROBERT E. SCHAPIRE schapire@research.att.com
AT&T Labs—Research, Shannon Laboratory, 180 Park Avenue, Room A279, Florham Park, NJ 07932-0971, USA

Editor: Yoram Singer

Abstract. We introduce and study a general, abstract game played between two players called the shepherd and
the adversary. The game is played in a series of rounds using a finite set of “chips” which are moved about in
R". On each round, the shepherd assigns a desired direction of movement and an importance weight to each of
the chips. The adversary then moves the chips in any way that need only be weakly correlated with the desired
directions assigned by the shepherd. The shepherd’s goal is to cause the chips to be moved to low-loss positions,
where the loss of each chip at its final position is measured by a given loss function.

We present a shepherd algorithm for this game and prove an upper bound on its performance. We also prove a
lower bound showing that the algorithm is essentially optimal for alarge number of chips. We discuss computational
methods for efficiently implementing our algorithm.

We show that our general drifting-game algorithm subsumes some well studied boosting and on-line learning
algorithms whose analyses follow as easy corollaries of our general result.

Keywords: boosting, on-line learning algorithms

1. Introduction

We introduce a general, abstract game played between two players callsiefiteerd
and theadversary The game is played in a series of rounds using a finite set of “chips”
which are moved about iR". On each round, the shepherd assigns a desired direction
of movement to each of the chips, as well as a nonnegative weight measuring the relative
importance that each chip be moved in the desired direction. In response, the adversary
moves each chip however it wishes, so long as the relative movements of the chips projected
in the directions chosen by the shepherd are at lBash average. Here, the average is
taken with respect to the importance weights that were selected by the shephérd, @nd
is a given parameter of the game. Since we thinkas a small number, the adversary need
move the chips in a fashion that is only weakly correlated with the directions desired by
the shepherd. The adversary is also restricted to choose relative movements for the chips
from a given seB C R". The goal of the shepherd is to force the chips to be moved to
low-loss positions, where the loss of each chip at its final position is measured by a given
loss functionL. A more formal description of the game is given in Section 2.

We present in Sectio4 a newalgorithm called “OS” for playing this game in the role
of the shepherd, and we analyze the algorithm’s performance for any parameterization of
the game meeting certain natural conditions. Under the same conditions, we also prove in
Section 5 that our algorithm is the best possible when the number of chips becomes large.

266 R. E. SCHAPIRE

As spelled out in Section 3, the drifting game is closely related to boosting, the problem
of finding a highly accurate classification rule by combining many weak classifiers or
hypotheses. The drifting game and its analysis are generalizations of Freund’s (1995)
“majority-vote game” which was used to derive his boost-by-majority algorithm. This
latter algorithm is optimal in a certain sense for boosting binary problems using weak
hypotheses which are restricted to making binary predictions. However, the boost-by-
majority algorithm has never been generalized to multiclass problems, nor to a setting in
which weak hypotheses may “abstain” or give graded predictions between two classes. The
general drifting game that we study leads immediately to new boosting algorithms for these
settings. By our result on the optimality of the OS algorithm, these new boosting algorithms
are also best possible, assuming as we do in this paper that the final hypothesis is restricted
in form to a simple majority vote. We do not know if the derived algorithms are optimal
without this restriction.

In Section 6, we discuss computational methods for implementing the OS algorithm.
We give a useful theorem for handling games in which the loss function enjoys certain
monotonicity properties. We also give a more general technique using linear programming
for implementing OS in many settings, including the drifting game that corresponds to
multiclass boosting. In this latter case, the algorithm runs in polynomial time when the
number of classes is held constant.

In Section 7, we discuss the analysis of several drifting games corresponding to previ-
ously studied learning problems. For the drifting games corresponding to binary boosting
with or without abstaining weak hypotheses, we show how to implement the algorithm
efficiently. We also show that there are parameterizations of the drifting game under which
OS is equivalent to a simplified version of the AdaBoost algorithm (Freund & Schapire,
1997; Schapire & Singer, 1999), as well as Cesa-Bianchi et al.’s (1996) BW algorithm
and Littlestone and Warmuth'’s (1994) weighted majority algorithm for combining the ad-
vice of experts in an on-line learning setting. Analyses of these algorithms follow as easy
corollaries of the analysis we give for general drifting games.

2. Drifting games

We begin with a formal description of the drifting game. An outline of the game is shown in
figure 1. There are two players in the game calledgtiepheraind theadversary The game

is played inT rounds usingn chips On each round, the shepherd specifiagaht vector

w! e R" for each chipi. The direction of this vecton! =w!/|w!||,, specifies a desired
direction of drift, while the length of the vectdw! || , specifies the relative importance of
moving the chip in the desired direction. In response, the adversary chodséss/actor

Z! for each chig. The adversary is constrained to choose edtom a fixed seB C R".
Moreover, thez’'s must satisfy

Sowi -z Y], @

DRIFTING GAMES 267

parameters: number of roundls
dimension of space
setB C R" of permitted relative movements
norml, wherep > 1
minimum average drif§ > 0
loss functionL : R" — R
number of chipsn

— shepherd chooses weight veatdre R" for each chig
— adversary chooses drift vemz}re B for each chig so that

t
Wi

m m
Sowidzad|
i=1 i=1

,

m T
the final loss suffered by the shepherdfjsy ~ L (> z,‘)
i1 \t=L

Figure L The drifting game.

or equivalently

Xi [wilpvi-7

_ >
Zi ”W}”p B

wheres > 0 is a fixed parameter of the game. (Here and throughout the paper, when clear
from context,Y"; denotesy ", ; likewise, we will shortly use the notation, for 3°/_,.)
In words,V! - Z' is the amount by which chiphas moved in the desired direction. Thus, the
left hand side of Eq. (2) represents a weighted average of the drifts of the chips projected in
the desired directions where ctiip projected drift is weighted byw! ||,/ >"; [w}[|p. We
require that this average projected drift be at Iéast

Thepositionof chipi at timet, denoted byg, is simply the sum of the drifts of that chip
up to that point in time. Thus =0andg™ =4 +2. The final position of chip at the
end of the game ig' ™.

At the end ofT rounds, we measure the shepherd’s performance using a fuictibn
the final positions of the chips; this function is called thss function Specifically, the
shepherd’s goal is to minimize

% DoLET.

Summarizing, we see that a game is specified by several parameters: the number of
roundsT ; the dimensiom of the space; a norijit|| , onR"; a setB € R"; a minimum drift
constant > 0; a loss functiorL ; and the number of chips.

Since the length of weight vectors are measured using ap-norm, it is natural to
measure drift vectorg using a dualq-norm where Ip + 1/q=1. When clear from
context, we will generally drop andq subscripts and write simplyw| or ||z||.

@)

268 R. E. SCHAPIRE

As an example of a drifting game, suppose that the game is played on the real line and
that the shepherd’s goal is to get as many chips as possible into the intefXal$ppose
further that the adversary is constrained to move each chip left or right by one unit, and
that, on each round, 10% of the chips (as weighted by the shepherd’s chosen distribution
over chips) must be moved in the shepherd’s desired direction. Then for this ganie,
B={-1,+1} ands =0.1. Any norm will do (since we are working in just one dimension),
and the loss function is

|0 ifse[2,7]
L(S)_{l otherwise.

We will return to this example later in the paper.

Drifting games bear a certain resemblence to the kind of games studied in Blackwell's
(1956) celebrated approachability theory. However, it is unclear what the exact relationship
is between these two types of games and whether one type is a special case of the other.

3. Relation to boosting

In this section, we describe how the general game of drift relates directly to boosting.
In the simplest boosting model, there is a boosting algorithm that has access to a weak
learning algorithm that it calls in a series of rounds. Thererargiven labeled exam-
ples(x1, Y1), ..., Xm, Ym) Wherex; € X andy; € {—1, +1}. On each round, the booster
chooses a distributioBD (i) over the examples. The weak learner then must generate a weak
hypothesid; : X — {—1, +1} whose error is at most/2 — y with respect to distribution

D;. That is,

Pri-ply #ht(x)] <3 —». 3)

Here,y > 0 is known a priori to both the booster and the weak learner. Aftesunds,
the booster outputs a final hypothesis which we here assume is a majority vote of the weak
hypotheses:

H(x) = sign(Z hy (x)). (4)
t

For our purposes, the goal of the booster is to minimize the fraction of errors of the final
hypothesis on the given set of examples:

Ly 5
Sy HOO- (®)

We can recast boosting as just described as a special-case drifting game; a similar game,
called the “majority-vote game,” was studied by Freund (1995) for this case. The chips are
identified with examples, and the game is one-dimensional sathdt The drift of a chip
Z is +1 if examplei is correctly classified by, and—1 otherwise; that isz = yih¢ ()

DRIFTING GAMES 269

andB={-1, +1}. The weightw! is formally permitted to be negative, something that
does not make sense in the boosting setting; however, for the optimal shepherd described in
the next section, this weight will always be nonnegative for this game (by Theorem 7), so
we henceforth assume that > 0. The distributiorD (i) corresponds ta!/ Y, wf. Then

the condition in Eq. (3) is equivalent to

2l ()=

Zw}z}zZwa}. (6)

This is the same as Eq. (1) if we &t 2y. Finally, if we define the loss function to be

or

Lis)— 1 ifs<O .
(5)_{0 if s> 0 ")
then

1 T+1

m 2 L) ®

is exactly equal to Eq. (5).

Our main result on playing drifting games yields in this case exactly Freund’s boost-by-
majority algorithm (1995). There are numerous variants of this basic boosting setting to
which Freund’s algorithm has never been generalized and analyzed. For instance, we have
so far required weak hypotheses to output valug¢s-ih +1}. Itis natural to generalize this
model to allow weak hypotheses to take valueg+id, 0, +1} so that the weak hypotheses
may “abstain” on some examples, or to take values-f, [+1] so that a whole range of
values is possible. These correspond to simple modifications of the drifting game described
above in which we simply chang® to {—1, 0, +1} or [-1, +1]. As before, we require
that Eq. (6) hold for all weak hypotheses and we attempt to design a boosting algorithm
which minimizes Eq. (8). For both of these cases, we are able to derive analogs of the
boost-by-majority algorithm which we prove are optimal in a particular sense.

Another direction for generalization is to the non-binary multiclass case in which kabels
belongtoaseY ={1,...,n}, n> 2. Following generalizations of the boosting algorithm
AdaBoost to the multiclass case (Freund & Schapire, 1997; Schapire & Singer, 1999), we
allow the booster to assign weights both to examples and labels. That is, on each round, the
booster devises a distributidi (i, £) over examples and label € Y. The weak learner
then computes a weak hypothekis: X x Y — {—1, +1} which must be correct on a
non-trivial fraction of the example-label pairs. That is, if we define

1 ify=¢

) =
xy(®) {—1 otherwise

270 R. E. SCHAPIRE

then we require

Pri o~ [he (X, €) # xy, (D] < % —v. 9

The final hypothesis, we assume, is again a plurality vote of the weak hypotheses:
H(x) = arg g;gxz he(X, y). (10)

We can cast this multiclass boosting problem as a drifting game as follows. Wahave
dimensions, one per class. It will be convenient for the first dimension always to corre-
spond to the correct label, with the remainimg- 1 dimensions corresponding to incorrect
labels. To do this, let us define a map: R" — R" which simply swaps coordinates 1
and¢, leaving the other coordinates untouched. The weight veetprorrespond to the
distribution D¢, modulo swapping of coordinates, a correction of sign and normalization:

‘[ﬂyi (Wlt)]z|

S Y

The norm used here to measure weight vectokrsigwrm. Also, it will follow from Theo-
rem 7 that, for optimal play of this game, the first coordinat@/bfs always nonnegative
and all other coordinates are nonpositive. The drift vectbesre derived as before from
the weak hypotheses:

Z =y ((he(Xi, 1), ..., e (X, M))).

It can be verified that the condition in Eq. (9) is equivalent to Eq. (1) with2y. For
binary weak hypotheseB8 = {—1, +1}".
The final hypothesi$l makes a mistake on exampbe, y) if and only if

he(X, y) < max hi (X, £).
th t y)_Wthj (X, 0)

Therefore, we can count the fraction of mistakes of the final hypothesis in the drifting game
context as

% Z L (§T+l)

where

1 ifs<maxs,...,s)
L(s) = 11
® {O otherwise. D

DRIFTING GAMES 271

Thus, by giving an algorithm for the general drifting game, we also obtain a generalization
of the boost-by-majority algorithm for multiclass problems. The algorithm can be imple-
mented in this case in polynomial time for a constant number of classesl the algorithm

is provably best possible in a particular sense.

We note also that a simplified form of the AdaBoost algorithm (Freund & Schapire,
1997; Schapire & Singer, 1999) can be derived as an instance of the OS algorithm simply
by changing the loss functioh in Eq. (7) to an exponentidl (s) = exp(—ns) for some
n > 0. More details on this game are given in Section 7.2.

Besides boosting problems, the drifting game also generalizes the problem of learning
on-line with a set of “experts” (Cesa-Bianchi et al., 1997; Littlestone & Warmuth, 1994).
In particular, the BW algorithm of Cesa-Bianchi et al. (1996) and the weighted majority
algorithm of Littestone and Warmuth (1994) can be derived as special cases of our main
algorithm for a particular natural parameterization of the drifting game. Details are given
in Section 7.3.

4. The algorithm and its analysis

We next describe our algorithm for playing the general drifting game of Section 2. Like
Freund’s boost-by-majority algorithm (1995), the algorithm we present here uses a “poten-
tial function” which is central both to the workings of the algorithm and its analysis. This
function can be thought of as a “guess” of the loss that we expect to suffer for a chip at a
particular position and at a particular point in time.

We denote the potential of a chip at posit®on roundt by ¢;(s). The final potential is
the actual loss so thatr = L. The potential functiong, for earlier time steps are defined
inductively:

Pr-1(9) = JUQ%Q squ(¢t(s+ 2)+wW-z—8[w|p). (12)

We will show later that, under natural conditions, the minimum above actually exists.
Moreover, the minimizing vectaw is the one used by the shepherd for the algorithm we
now present. We call our shepherd algorithm “OS” for “optimal shepherd.” The weight
vectorw! chosen by OS for chipis any vectomw which minimizes

squ(¢>t (S +2)+w-z—5|wlp).

Returning to the example at the end of Section 2, figure 2 shows the potential function
¢r and the weights that would be selected by OS as a function of the position of each chip
for various choices df. For this figure,T = 20.

We will need some natural assumptions to analyze this algorithm. The first assumption
states merely that the allowed drift vectorsBrare bounded; for convenience, we assume
they have norm at most one.

Assumptiorl. sup.g lIzllq < 1.

We next assume that the loss functiors bounded.

R. E. SCHAPIRE

t

272

20

15

10

n

\/

=15
position

positio
t

position
t

position

<
- [} o 0 e —) [=) w0 —) =] 7 2
(=] n_v | [=] 0_ S n_v |
wBiem / jenusioed WBtem / reguejod wBrem / renusjod
(=] (=]
N o
w0 Ju0
2 e
o o
2 e
|||||||||||||||||||||||||||| = e il bkl I =
k<] o o)
wE - wE —
g Au 3 &
o Q
(=] o
© ¢
o o
—) =) - - b = T - 0 =
_ >

-0.5
-10

=] = =1

wbiem / fenuarod wbem / reyuaiod

-0.5
-0.5

wbiem / renusiod

20. The vertical dotted lines show the boundary of the goal interval][Zurves are only meaningful

Figure 2 Plots of the potential function (top curve in each figure) and the weights selected by OS (bottom curves)

as a function of the position of a chip in the example game at the end of Section 2 for various choiegs of

with T
at integer values.

DRIFTING GAMES 273

Assumptior2. There existfinité min andL maxsuch that min < L(S) < Lmaxforalls € R".

In fact, this assumption need only hold for aliith ||s||q < T since positions outside this
range are never reached, given Assumption 1.

Finally, we assume that, for any directionit is possible to choose a drift whose projec-
tion ontov is more thard by a constant amount.

Assumptior8. There exists a numbgr> 0 such that for alv € R" there existz € B with
W-z> (6 + wliwl.

Lemma l. Given Assumptiont, 2and3,forallt =0,...,T:
1. the minimum in Eq(12) exists and
2. Lmin < ¢t(S) < Lmaxforall se R".

Proof: By backwards induction obh. The base cases are trivial. Let us $and let
F(z2) = ¢1(s+ 2). Let

HW) = supF(2) +w-z—§||w]).

zeB

Using Assumption 1, for anw, w’:
I[HW) — HWw)| < sup|(F@2) +w-z—8[lw[)) — (F2) +W - z— 8w}

zeB
= sup|(w —w') - z+ (||| — lw])]
zeB

<@+ 9Iw —w.

Therefore,H is continuous. Moreover, fov € R", by Assumptions 2 and 3 (as well as
our inductive hypothesis),

HW) > Lmin + (6 +) IWll — $lIW[| = Lmin + pliw]l. (13)
Since
H (0) S LmaXa (14)

it follows thatH (w) > H(0) if ||w|| > (Lmax— Lmin)/u- Thus, for computing the minimum
of H,we only need consider points in the compact set
{W : ||W|| < I—max_ I—min}.

Since a continuous function over a compact set has a minimum, this proves Part 1.
Part 2 follows immediately from Egs. (13) and (14). O

274 R. E. SCHAPIRE

We next prove an upper bound on the loss suffered by a shepherd employing the OS
algorithm against any adversary. This is the main result of this section. We will shortly see
that this bound is essentially best possible for any algorithm. It is important to note that
these theorems tell us much more than the almost obvious point that the optimal thing to
do is whatever is best in a minmax sense. These theorems prove the nontrivial fact that
(nearly) minmax behavior can be obtained without the simultaneous consideration of all of
the chips at once. Rather, we can compute each weight wettmerely as a function of
the position of chip, without consideration of the positions of any of the other chips.

Theorem 2. Under the condition of Assumptiods-3, the final loss suffered by the OS
algorithm against any adversary is at m@si(0) where the functiong, are defined above.

Proof: Following Freund’s analysis (1995), we show that the total potential never in-
creases. Thatis, we prove by induction that

Z¢t(§[+l) < Z¢t—1(ﬁt)- (15)

This implies, through repeated application of Eq. (15), that
i T+1\ _ i T+1 1 i
S OLET) = D en(sTY) = D do(s) = 00(0)
I I I

as claimed.
The definition of._1 given in Eq. (12) implies that fon! chosen by the OS algorithm,
and for allz € B and allse R":
Pi(s+2) +w -z—8|w | < pi_a(9.
Therefore,
Yoa(s) =D (s +2)
i i
=D (#eals) —wi -z +8]wi)
I

< Z Pi-1()

where the last inequality follows from Eq. (1). O

Returning again to the example at the end of Section 2, figure 3 shows a plot of the bound
¢0(0) as a function of the total number of rountis It is rather curious that the bound is not
monotonic inT (even discounting the jagged nature of the curve caused by the difference
between even and odd length games). Apparently, for this game, having more time to get
the chips into the goal region can actually hurt the shepherd.

DRIFTING GAMES 275

0.9

0.8

optimal loss

o
o

0.5

0.4 — e — e

Figure 3 A plot of the loss boung(0) as a function of the total number of roun@isor the example game at
the end of Section 2. The jagged nature of the curve is due to the difference between a game with an odd or an
even number of steps.

5. A lower bound

In this section, we prove that the OS algorithm is essentially optimal in the sense that, for
any shepherd algorithm, there exists an adversary capable of forcing a loss matching the
upper bound of Theorem 3 in the limit of a large number of chips. Specifically, we prove
the following theorem, the main result of this section:

Theorem 2. Let A be any shepherd algorithm for playing a drifting game satisfying
Assumptiong§—3where all parameters of the game are fixegcept the number of chips m.
Let¢, be as defined above. Then for any 0, there exists an adversary such that for m
sufficiently largethe loss suffered by algorithm A is at legg{0) — €.

To prove the theorem, we will need two lemmas. The first gives an abstract result on
computing a minimax of the kind appearing in Eq. (12). The second lemma uses the first
to prove a characterization ¢f in a form amenable to use in the proof of Theorem 3.

276 R. E. SCHAPIRE

Lemma4. LetS be any nonemptyounded subset @&?. Let C be the convex hull of S.
Then

in{%sup{erax (X, y) € St =sufy: 0y eC}.
oe

Proof: LetC be the closure of. First, for anyx € R,

suply +ax: (X,y) € S} =supgy +ax: (X,y) € C}
= suply + ax : (x,y) € C}. (16)

The first equality follows from the fact that, (k, y) € C then
N
X y) =Y PG, %)
i=1
for some positive integel, pi € [0,1], >, pi=1, (X, ¥i) € S. Butthen
N
y+oax= pi (Vi +0tXi)§miaX(Yi + aX).
i=1
The second equality in Eqg. (16) follows simply because the supremum of a continuous

function on any set is equal to its supremum over the closure of the set. For this same
reason,

suply : (0,y) € C} =supy: (0,y) € C}. (17)
Becaus€ is closed, convex and bounded, and because the fungtierx is continuous,
concave inx, y) and convex imx, we can reverse the order of the “inf sup” (see, for instance,

Corollary 37.3.2 of Rockafellar (1970)). That is,

inf sup (y+ax)= sup inf(y+ ax). (18)
ER (x,y)eC (x,y)eC “€

Clearly, if x #£0 then
inf (y + aX) = —o0.
aeR
Thus, the right hand side of Eq. (18) is equal to

sugy : (0,y) € C}.

Combining with Egs. (16) and (17) immediately gives the result. O

DRIFTING GAMES 277

Lemma5. Under the condition of Assumptiofis3,and for¢; as defined above
N
¢ra(9) =_inf supd " djpi(s+2))
vivi=1 =

where the supremum is taken over all positive integerslNz,, . .., zy € B and all non-
negative d, ..., dy satisfyingzj d; =1land

ZdjV-Zi = 4.
j

Proof: To simplify notation, let us fix ands. Let F andH be as defined in the proof of
Lemmal. Foijv| =1, let

N
G(v) =sup)y d;F(z) (19)
=1

where again the supremum is taken odes andz;’s as in the statement of the lemma.
Note that by Assumption 3, this supremum cannot be vacuous. Throughout this proof, we
usev to denote a vector of norm one, whileis a vector of unrestricted norm. Our goal is

to show that

inf G(v) = inf H (w). (20)
\% w

Let us fixv momentarily. Let
S={(v-z—4,F(@2):ze B}.

ThenSis bounded by Assumptions 1-3 (and part 2 of Lemma 1), so we can apply Lemma 4
which gives

inf supF(2) + a(v-z—§8)) = G(Vv). (21)
a€R z¢B
Note that
inf H(av) = inf supF(2) + av -z — af)
a>0 a>0zcB
> inf supF(2) + av-z— ad)
a€R z¢B

> inf supF(z2) + av -z — |«|8) = inf H(av)
a€R 2B aeR

(where the second inequality uses< |@|). Combining with Eq. (21) gives

inf inf H(av) > inf G(v) > inf inf H(aV).
vV a>0 \ V. aeR

278 R. E. SCHAPIRE

Since the leftand rightterms are both equal tg iHf(w), this implies Eq. (20) and completes
the proof. O

Proof of Theorem 3: We will show that, fom sufficiently large, on rount] the adversary
can choose th#'’s so that

LS a2 had) - 5 22

Repeatedly applying Eqg. (22) implies that

_ZL T+1 Zd) T+1 Z% e = ¢p(0) — €

proving the theorem.

Fix t. We use a random construction to show that there eXistwith the desired
properties. For each weight vecta} chosen by the shepherd, 1, ..., diy € [0, 1] and
Zi1, ..., ZN € B besuch thaEj dj =1,

D diwi -z = 8| wi]
i
and

Zdu¢t (S +2j) = da(s) — Zfl'

Suchd;’s andz;’s must exist by Lemma 5. Using Assumption 3,2gtbe such that
t t
W - Zio > (§ +) ”Wi H

Finally, letZ; be a random variable that & with probability« andz;; with probability
(1 — a)d;; (independent of the othé;’s). Here,

€
B 4T(|—max_ I—min))

Letv; = w!/||wH|[, and letay = [|w![|/ Y"; [Iw!]|. By Assumption 1|v; - Zj| < 1. Also,
EVi -Zi]> (1 —a)d+a(S +u) =8 +apu.
Thus, by Hoeffding’s inequality (1963),

2,2

Pr[Za,—vi \Zi < 6] < exp< ZZM) < e @n/2, (23)

DRIFTING GAMES 279

LetS= (1/m) Y ¢ (s + Zi). Then

E[S] > — Z |:(¢t 1()(l—a) + api(s +Zi0):|
:—23@1) +a(d(s +20) — ()] - r -)
= m Z(ﬁt—l(ﬁt) — a(Lmax— Lmin) — % (24)

By Hoeffding’s inequality (1963), sincEmin < ¢t(S + Zi) < Lmax
PI[S < E[S] — a(Lmax— Lmin)] < €2™. (25)
Now letm be so large that
e—2a2m+e—uz2p_2/2 <1
Then by Egs. (23) and (25), there exists a choicg sfsuch that
ZW z —Zav. Z=>s

and such that

- Z‘P SIH Z¢t ﬁt +Z
E[S] — a(Lmax — Lmin)

LS) - S

by Eq. (24) and our choice of.

v

A%

6. Computational methods

In this section, we discuss general computational methods for implementing the OS
algorithm.

6.1. Unate loss functions

We first note that, for loss functioriswith certain monotonicity properties, the quadrant in
which the minimizing weight vectors are to be found can be determined a priori. This often
simplifies the search for minima. To be more precisedfos {—1, +1}" andx,y € R",

280 R. E. SCHAPIRE

let us writex >, yif oix; > o;y; forall 1 <i < n. We say that a functiori : R" — R is
unate with sign vectoior € {—1, +1}"if f(x) > f(y) whenevex >, v.

Lemma 6. If the loss function L is unate with sign vecter € {—1, +1}", then so isp;
(as defined aboydort =0,..., T.

Proof: By backwards induction on The base case is immediate. xet, y. Then for
anyze Bandw € R", x +z >, y + z, and so

H(X+2) +W-Z-5[wW| = ¢ (y+2)+w-z—3[w|
by inductive hypothesis. Therefor®, 1(X) > ¢¢_1(y), and sap;_1 is also unate. O
For the main theorem of this subsection, we need one more assumption:
Assumptiort. If z € B and ifZ is such thatz| = |z| for all i, thenz' € B.

Theorem 7. Under the condition of Assumptioris-4, if L is unate with sign vector
o € {—1, +1}", then for anys € R", there is a vectow which minimizes

SUp(@i(S+2) +w-z—§|lwl)

zeB

and for whichw <, 0.

Proof: LetF andH be asinthe proof of Lemma 1. By Lemmalbjs unate. Letv € R"
have some coordinatdor whichojw; > 0 so thatw £, 0. Letw’ be such that

: {wi ifj #i
w, =

! —wj ifj=i.
We show thaH (W) < H(w). Letz € B. If 5jz > 0then
F@+w-z-35|w|>F@+w-z-35|w].

If iz < Othenletz’ be defined analogously #d. By Assumption 4z € B. Thenz <, 7
and soF (z) < F(Z). Thus,

F(Z)+w-Z-68|w| > F@+wW-z-§|w|.
Hence,H(WwW) < H(w).
Applying this argument repeatedly, we can derive a vestarith w <, 0 and such that

H (W) < H(w). This proves the theorem. O

Note that the loss functions for all of the games in Section 3 are unate (and also satisfy
Assumptions 1-4). The same will be true of all of the games discussed in Section 7. Thus,

DRIFTING GAMES 281

for all of these games, we can determine a priori the signs of each of the coordinates of the
minimizing vectors used by the OS algorithm.

6.2. A general technique using linear programming

In many cases, we can use linear programming to implement OS. In particular, let us assume
that we measure weight vectoksusing thel; norm (i.e.,p = 1). Also, let us assume that
|B| is finite. Then giverp, ands, computing

¢1-1(9) = minmax(g(s+2) +w -z —§llwl)

can be rewritten as an optimization problem:

variables: weR" beR
minimize: b
subjectto: Vze B : ¢i(s+2)+w-z—§|w| <b.

The minimizing valueb is the desired value ap;_;(s). Note that, with respect to the
variablesw andb, this problem is “almost” a linear program, if not for the norm operator.
However, wherL is unate with sign vectosr, and when the other conditions of Theorem 7
hold, we can restriatv so thatw <, 0. This allows us to write

n
Wl == oiw.
i=1

Addingw <, 0as aconstraint (or rather, a sehafonstraints), we now have derived a linear
program withn + 1 variables andB| + n constraints. This can be solved in polynomial
time.

Thus, for instance, this technique can be applied to the multiclass boosting problem
discussed in Section 3. In this caBex= {—1, +1}". So, for anys, ¢;_1(s) can be computed
from ¢ in time polynomial in 2 which may be reasonable for smallin addition,¢; must
be computed at each reachable posisamann-dimensional integer grid of radidsi.e.,
forallse {—t,—t+1,...,t— 1, t}". This involves computation @f; at(2t + 1)" points,
giving an overall running time for the algorithm which is polynomial#T + 1)". Again,
this may be reasonable for very smlllt is an open problem to find a way to implement
the algorithm more efficiently.

7. Deriving old and new algorithms
In this section, we show how a number of old and new boosting and on-line learning

algorithms can be derived and analyzed as instances of the OS algorithm for appropriately
chosen drifting games.

282 R. E. SCHAPIRE

7.1. Boost-by-majority and variants

We begin with the drifting game described in Section 3 corresponding to binary boosting
with B = {—1, +1}. For this game,

hr-1(s) = TJQ max{¢i(s — 1) —w — dw, g (s+ 1) + w — dw}

where we know from Theorem 7 that only nonnegative valuas néed to be considered.
It can be argued that the minimum must occur when

$p(s—1) —w—950w=¢:(s+1) +w—Sw,

i.e., when

w=¢t(5—1);¢t(s+1)_ (26)
This gives

pa® =T s+ D+ s D).
Solving gives

k
ot=T Tt 1+56§
he(s) =2 Z < K)(m
0<k=<(T-t—s)/2

(where we follow the convention th&}) = 0 if k < 0 ork > n). Weighting examples
using Eq. (26) gives exactly Freund's (1995) boost-by-majority algorithm (the “boosting
by resampling” version).

WhenB = {—1, 0, +1}, a similar but more involved analysis gives

1-56
2

1+6
5 ¢t(S+ 1)+

$r-1() =max{ (1= 8¢i(s) + (s + 1), $r(s — 1)}

(27)

and the corresponding choice ofis ¢:(S) — ¢t(s+ 1) or (¢t(s — 1) — ¢t (s + 1))/2,
depending on whether the maximum in Eq. (27) is realized by the first or second quantity.
We do not know how to solve the recurrence in Eq. (27) so that the bég(®l given in
Theorem 2 can be put in explicit form. Nevertheless, this bound can easily be evaluated
numerically, and the algorithm can certainly be implemented efficiently in its present form.
We have thus far been unable to solve the recurrence for the cas® thgt—1, +1],
even to a point at which the algorithm can be implemented. However, this case can be
approximated by the case in whigh= {i/N : i = —N, ..., N} for a moderate value

DRIFTING GAMES 283

loss

O ! L L
0 20 40 60 80 100
T

Figure 4 A comparison of the boungg(0) for the drifting games associated with AdaBoost (Section 7.2)
and boost-by-majority (Sections 3 and 7.1). For AdaBogsis set as in Eq. (28). For boost-by-majority,
the bound is plotted wheB is {—1, +1}, {—1,0,+1} and [-1, +1]. (The latter case is approximated by
B = {i/100 :i = —100,...,100.) The bound is plotted as a function of the number of roumdshe
drift parameter is fixed té6 = 0.2. (The jagged nature of tHg = {—1, +1} curve is due to the fact that games
with an even number of rounds—in which ties count as a loss for the shepherd k@Qhat 1—are harder than
games with an odd number of rounds.)

of N. In the latter case, the potential function and associated weights can be computed
numerically. For instance, linear programming can be used as discussed in Section 6.2.
Alternatively, it can be shown that Lemma 5 combined with Theorem 7 implies that

$r-1(S) = max{pgi(s + z1) + (1 — P)pi(s+) :
21,22€B,pe0,1], pa+ (1— p)zx = 3}

which can be evaluated using a simple search over all paizs (sinceB is finite).

Figure 4 compares the bourg(0) for the drifting games associated with boost-by-
majority and variants in whiclB is {—1, +1}, {—1, 0, +1} and [-1, +1] (using the ap-
proximation that was just mentioned), as well as AdaBoost (discussed in the next section).
These bounds are plotted as a function of the number of rotinds

7.2. AdaBoost and variants

As mentioned in Section 3, a simplified, non-adaptive version of AdaBoost can be derived
as an instance of OS. To do this, we simply replace the loss function (Eq. (7)) in the binary
boosting game of Section 3 with an exponential loss fundtis) = e " wheren > 0 is

a parameter of the game. As a special case of the discussion below, it will follow that

$i(s) =kl

284 R. E. SCHAPIRE

wherex is the constant

1-56 146
e']

2 2

K = e_”.

Also, the weight given to a chip at positi@on roundt is

el —e
Tt —1nS
€
‘ (2)

which is proportional toe™"® (in other words, the weighting function is effectively un-
changed from round to round). This weighting is the same as the one used by a hon-adaptive
version of AdaBoost in which all weak hypotheses are given equal weight. 8itités

an upper bound on the loss function of Eq. (7), Theorem 2 implies an upper bound on the
fraction of mistakes of the final hypothesis of

$o(0) =«
When
1 1+6
n=3 In (m) (28)

so thatx is minimized, this gives an upper bound of
(1 _ 82)T/2 — (l _ 4)/2)1—/2
which is equivalent to a non-adaptive version of Freund and Schapire’s (1997) analysis.

We next consider a more general drifting game imensions whose loss function is a
sum of exponentials

k
L(9) =) _bjexp(—n;u; -s) (29)
=1

where theb;’s, ;’s andu;’s are parameters with; > 0, n; > 0, [lu;j ||y =1 andu; >, Ofor

some sign vectar. ForthisgameB =[—1, +1]"andp = 1. Many (non-adaptive) variants

of AdaBoost correspond to special cases of this game. For instance, AdaBoost.M2 (Freund
& Schapire, 1997), a multiclass version of AdaBoost, essentially uses the loss function

n
L(s) = Z e—(ﬂ/Z)(Sl—SJ)
i=2

where we follow the multiclass setup of Section 3 so thét the number of classes, and
the first component in the drifting game is identified with the correct class. (As before, we

DRIFTING GAMES 285

only consider a non-adaptive game in whick 0 is a fixed, tunable parameter.) Likewise,
AdaBoost.MH (Schapire & Singer, 1999), another multiclass version of AdaBoost, uses
the loss function

n
L(s) = e + Z s,
=

Note that both loss functions upper bound the “true” loss for multiclass boosting given in
Eqg. (11). Moreover, both functions clearly have the form given in Eq. (29).
We claim that, for the general game with loss function as in Eq. (29),

¢i(s) =Y bjk] " exp(—nu; - 5) (30)
j
where
Kj = 1_58”1 + 1+9 e
=2 2 '

Proof of Eq. (30) is by backwards induction tinFor fixedt ands, let
T8 -
WZXj:ijj 5 uj exp(—njuj - S).

We will show that this is the minimizing weight vector that gets used by OS for a chip at
positions at timet. Let
b] = ijJT_t exp(—njuj - 9).

Note that

] — @ 1j
p(S+2)+W-z2= Zb}(exp(—njuj -Z) + (%)Uj -z>

J

(€l e
< Zb,— (#) (31)
]

x e +e el —e
e < — X
- 2 2
for all € R andx € [—1, +1] by convexity ofe”". Also, by our assumptions ds), u;
andn;, we can compute

Iwiy =3 b (@) (32)
i

since

286 R. E. SCHAPIRE

Thus, combining Egs. (31) and (32) gives

$r-1(5) < SUNPt(S+2) +W-Z—5[|wl1)

zeB
/
=D _bKy
]

= ijKJT_H_l exp(—njuj - 9).
j

This gives the needed upper boundggn; (s).
For the lower bound, using Theorem 7 (siricés unate with sign vectoro), we have

¢—1(9 = min - max (¢i(s+2) +w-z—5[|wly)
w>,0ze{- o, o}
- rcnzi(r;max{Xj: bje™ +c—sc, Xj:bje’” —Cc— Sc}

where we have used; - o = 1 andw - o = |w]1 (Sinceu; >, 0 andw >, 0). We

also have identified with ||w]||;. Solving the min max expression gives the desired lower
bound. This completes the proof of Eq. (30).

7.3. On-line learning algorithms

In this section, we show how Cesa-Bianchi et al's (1996) BW algorithm for combining
expert advice can be derived as an instance of OS. We will also see how their algorithm can
be generalized, and how Littlestone and Warmuth’s (1994) weighted majority algorithm
can also be derived and analyzed.

Suppose that we have accessrtdexperts.” On each rount each expert provides a
predictiong! € {—1, +1}. A “master” algorithm combines their predictions into its own
predictiony; € {—1, +1}. Anoutcomey; € {—1, +1} is then observed. The master makes
a mistake ify; # y;, and similarly for expert if &' # y;. The goal of the master is to
minimize how many mistakes it makes relative to the best expert.

We will consider master algorithms which use a weighted majority vote to form their
predictions; that is,

Y = sign(> w}é}).
i1

The problem is to derive a good choice of weights We also assume that the master
algorithm is conservative in the sense that rounds on which the master’s predictions are
correct are effectively ignored (so that the weighisonly depend upon previous rounds

on which mistakes were made).

DRIFTING GAMES 287

Let us suppose that there is one expert that makes atlnmaistakes. We will (re)derive
an algorithm (namely, BW) and a bound on the number of mistakes made by the master,
given this assumption. Since we restrict our attention to conservative algorithms, we can
assume without loss of generality that a mistake occurs on every round and simply proceed
to bound the total number of rounds.

To set up the problem as a drifting game, we identify one chip with each of the experts.
The problem is one dimensional so= 1. The weightau! selected by the master are the
same as those chosen by the shepherd. Since we assume that the master makes a mistake
on each round, we have for althat

yi y wiE <0, (33)
i
Thus, if we define the drift! to be—y !, then
> wiz =0
i

Settings = 0, we see that Eq. (33) is equivalent to Eq. (1). ABox= {—1, +1}.
Let M! be the number of mistakes made by expesh rounds 1...,t — 1. Then by
definition ofZ,
§ =2M'—t+1

Let the loss functior. be

1 ifs<2k-T
L(s) =) (34)
0 otherwise.

ThenL(gT“) = 1if and only if experi makes a total ok or fewer mistakes ifT rounds.
Thus, our assumption that the best expert makes at kmosdtakes implies that

1<) L(s™). (35)
i
On the other hand, Theorem 2 implies that

1
— Y L(E) < 6000, (36)

By an analysis similar to the one given in Section 7.1, it can be seen that

$i-1(8) = 3(P(s+ 1) + ¢ (s—).

288 R. E. SCHAPIRE

Solving this recurrence gives

T -t
¢t<s>=2”<<k_t+_s)
2

where
n K. /n
(20-2 ()
In particular,
T
$o(0 =27 (< k). (37)

Combining Egs. (35)—(37) gives

(2

In other words, the number of mistakéf the master algorithm must satisfy Eq. (38) and
so must be at most

max{qe N:g=<lgm+lg (<qk>}

the same bound given by Cesa-Bianchi et al. (1996).
The weighting function obtained is also equivalent to theirs since, by a similar argument
to that used in Section 7.1, OS gives

wl = (8 1)~ (s +1)

Tt
— 2’[T1< _1)
-

_ et Tt
k—M)

Note that this argument can be generalized to the case in which the expert’s predictions
are not restricted tp—1, +1} butinstead may be all of{1, +1], or a subset of this interval,
suchag¢—1, 0, +1}. The performance of each expert then is measured on each round using
absolute Ios% |&! — ;| rather than whether or not it made a mistake. In this case, as in the
analogous extension of boost-by-majority given in Section 3, we only need to réplace
[—1, +1] or {—1, 0, +1}. The resulting bound on the number of mistakes of the master is

DRIFTING GAMES 289

then the largest for which 1/m < ¢o(0) (note thaipo(0) depends implicitly orT). The
resulting master algorithm simply uses the weights computed by OS for the appropriate
drifting game. Itis an open problem to determine if this generalized algorithm enjoys strong
optimality properties similar to those of BW (Cesa-Bianchi et al., 1996).

Littlestone and Warmuth’s (1994) weighted majority algorithm can also be derived as an
instance of OS. To do this, we simply replace the loss fundtiamthe game above with

L(s) = exp(—n(s— 2k + T))
for some parameter > 0. This loss function upper bounds the one in Eq. (34). We assume

that experts are permitted to output predictions-#1[+1] so thatB = [—1, +1]. From
the results of Section 7.2 applied to this drifting game,

& (s) =kt exp(—n(s — 2k + T))

where

e+ e
K =
2

Therefore, because one expert suffers loss at kjost

1
— < po(0) =k AT,

Equivalently, the number of mistakdsis at most
2nk +Inm
2 9
In (1+e*2'7)

exactly the bound given by Littlestone and Warmuth (1994). The algorithm is also the same
as theirs since the weight given to an expert (chip) at posfi@t timet is

wl = (e" ‘Ze") expl— (s — 2K+ T)) o« exp(— 20M;).

8. Open problems

This paper represents the first work on general drifting games. As such, there are many
open problems.

We have presented closed-form solutions of the potential function for just a few special
cases. Are there other cases in which such closed-form solutions are possible? In particular,
can the boosting games of Section 3 correspondigjto{—1, 0, +1} andB = [-1, +1]
be put into closed-form?

290 R. E. SCHAPIRE

For games in which a closed form is not possible, is there nevertheless a general method
of characterizing the loss bougd(0), say, as the number of roundisgets large?

Side products of our work include new versions of boost-by-majority for the multiclass
case, as well as binary cases in which the weak hypotheses have{rahd® +1} or
[— 1, +1]. However, the optimality proof for the drifting game only carries over to the
boosting setting if the final hypothesis has the restricted forms given in Egs. (4) and (10).
Are the resulting boosting algorithms also optimal (for instance, in the sense proved by
Freund (1995) for boost-by-majority) without these restrictions?

Likewise, can the extensions of the BW algorithm in Section 7.3 be shown to be optimal?
Can this algorithm be extended using drifting games to the multiclass case, or to the case
in which the master is allowed to output predictions-] +1] (suffering absolute loss)?

The OS algorithm is non-adaptive in the sense shaust be known ahead of time. To
what extent can OS be made adaptive? For instance, can Freund’s (2001) recent technique
for making boost-by-majority adaptive be carried over to the general drifting-game setting?
Similarly, what happens if the number of rounfiss not known in advance?

Finally, are there other interesting drifting games for entirely different learning problems
such as regression or density estimation?

Acknowledgments

Many thanks to Yoav Freund for very helpful discussions which led to this research.

Notes

1. In an earlier version of this paper, the “shepherd” was called the “drifter,” a term that was found by some
readers to be confusing. The name of the main algorithm has also been changed from “Shepherd” to “OS.”

2. Of course, the real goal of a boosting algorithm is to find a hypothesis with low generalization error. In this
paper, we only focus on the simplified problem of minimizing error on the given training examples.

References

Blackwell, D. (1956). An analog of the minimax theorem for vector pay&#ific Journal of Mathematics, 6,1
1-8.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P., Schapire, R. E., & Warmuth, M. K. (1997). How to
use expert advicdournal of the Association for Computing Machinery, 44437—-485.

Cesa-Bianchi, N., Freund, Y., Helmbold, D. P., & Warmuth, M. K. (1996). On-line prediction and conversion
strategiesMachine Learning25, 71-110.

Freund, V. (1995). Boosting a weak learning algorithm by majdrifgarmation and Computation, 121,:256-285.

Freund, Y. (2001). An adaptive version of the boost by majority algoritachine Learning, 43:3293-318.

Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to
boosting.Journal of Computer and System Sciences, 5619-139.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random varialdesnal of the American
Statistical Association, 58:3013-30.

Littlestone, N. & Warmuth, M. K. (1994). The weighted majority algoritinformation and Computation, 108
212-261.

DRIFTING GAMES 291

Rockafellar, R. T. (1970)Convex AnalysisPrinceton, NJ: Princeton University Press.
Schapire, R. E. & Singer, Y. (1999). Improved boosting algorithms using confidence-rated preditchme
Learning, 37:3297-336.

Received October 28, 1999
Revised October 28, 1999
Accepted June 1, 2000

Final manuscript July 31, 2000

