A d . .
"“ Machine Learning, 44, 9-35, 2001

(© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Learning DFA from Simple Examples

RAJESH PAREKH rparekh@bluemartini.com
Blue Martini Software, 2600 Campus Drive, San Mateo, CA 94403, USA

VASANT HONAVAR honavar@cs.iastate.edu
Department of Computer Science, lowa State University, Ames, IA 50011, USA

Editor: Colin de la Higuera

Abstract. Efficientlearning of DFA is a challenging research problemrimmmatical inferencdt is known that

both exact and approximate (in the PAC sense) identifiability of DFA is hard. Pitt has posed the following open
research problemAre DFA PAC-identifiable if examples are drawn from the uniform distribution, or some other
known simple distributiorf?(Pitt, in Lecture Notes in Artificial Intelligen¢e397, pp. 18—-44, Springer-Verlag,
1989). We demonstrate that the class of DFA whose canonical representations have logarithmic Kolmogorov
complexity is efficiently PAC learnable under the Solomonoff Levin universal distributign (Ve prove that

the class of DFA is efficiently learnable under the PACS (PAC learning siitipleexamples) model (Denis,
D’Halluin & Gilleron, STACS'96—Proceedings of the 13th Annual Symposium on the Theoretical Aspects of
Computer Sciencepp. 231-242, 1996) wherein positive and negative examples are sampled according to the
universal distribution conditional on a description of the target concept. Further, we show that any concept that
is learnable under Gold’s model of learning from characteristic samples, Goldman and Mathias’ polynomial
teachability model, and the model of learning from example based queries is also learnable under the PACS model.

Keywords: DFA inference, exact identification, characteristic sets, PAC learning, collusion

1. Introduction

The problem of learning a minimum state DFA thatis consistent with a given sample has been
actively studied for over two decades. DFAs are recognizereetpriar languages which
constitute the simplest class in the Chomsky hierarchy of formal languages (Chomsky, 1956;
Hopcroft & Ullman, 1979). An understanding of the issues and problems encountered in
learning regular languages (or equivalently, identification of the corresponding DFA) are
therefore likely to provide insights into the problem of learning more general classes of
languages.

Exact learning of the target DFA from an arbitrary presentation of labeled examples is
a hard problem (Gold, 1978). Gold showed that the problem of identifying the minimum
state DFA consistent with a presentati®oomprising of a finite non-empty set of positive
examplesS* and possibly a finite non-empty set of negative exam@@ess N P-hard.
Under the standardomplexity theoreti@ssumptionP £ N P, Pitt and Warmuth (1989)
showed that no polynomial time algorithm can be guaranteed to produce a DFA with at
mostN (1-9log lodN) states from a set of labeled examples corresponding to a DFANvith
states.

10 R. PAREKH AND V. HONAVAR

Efficient algorithms for identification of DFAs assume that additional information is
provided to the learner. Trakhtenbrot and Barzdin (1973) described a polynomial time
algorithm for constructing the smallest DFA consistent witomplete labeled sample.,

a sample that includes all strings up to a particular length and the corresponding label that
states whether the string is accepted by the target DFA or not. Angluin (1981) showed that
given alive-completeset of examples (that contains a representative string for each live state
of the target DFA) and a knowledgeable teacher to answembership queriggjueries of

the form ‘Does the string y belong to the language of the target P4t is possible to
exactly learn the target DFA. In a later paper, Angluin (1987) relaxed the requirement of a
live-complete set and has described a polynomial time algorithifér learning the target

DFA using bothmembershi@ndequivalencejueries (queries of the formis'the current
hypothesis equivalent to the target DFA TheL * algorithm tacitly assumes that the learner

has the capacity teesetthe DFA to the start state before posing each membership query.
This assumption might not be realistic in situations wherein it is not feasible to remember
the start state or the path taken from the start state to reach the current state while evaluating
a membership query. To overcome this limitation of the unknown start state, Rivest and
Schapire (1993) have proposed a learning method baskdmimg sequenceabat runsN

copies ofL* in parallel, one for each of thd states of the target DFA. Thiegular positive

and negative inferend@®PNI) algorithm is a framework for identifying in polynomial time,

a DFA consistent with a given sam@dOncina & Garea, 1992). Further, iSis a superset

of a characteristic set (see Section 2.1) for the target DFA then the DFA output by the RPNI
algorithm is guaranteed to be equivalent to the target (Oncina &1&at€92; Dupont,
1996).

Pitt surveyed several approaches &mproximateidentification of DFA (Pitt, 1989).
Valiant's distribution-independent model of learning, also called gfabably approxi-
mately correc{PAC) learning model (Valiant, 1984), is a widely used framework for ap-
proximate learning of concept classes. When adapted to the problem of learning DFA,
the goal of a PAC learning algorithm is to obtain in polynomial time, with high proba-
bility, a DFA that is a good approximation of the target DFA. We define PAC learning of
DFA more formally in Section 2. Angluin’s* algorithm (Angluin, 1987) that learns DFA
in polynomial time usingnembershigndequivalenceueries can be recast under the PAC
framework to learn by posing membership queries alone. Pitt and Warmuth (1988) showed
that the problem of polynomially approximate predictability of the class of DFA is hard.
They usedprediction preserving reduction® show that if DFAs are polynomially ap-
proximately predictable then so are other known hard to learn concept classes such as
boolean formulasFurther, Kearns and Valiant (1989) showed that an efficient algorithm
for learning DFA would entail efficient algorithms for solving problems such as breaking
the RSAcryptosystem, factorin@lum integers, and detectinguadratic residuesUnder
the standararyptographic assumptionthese problems are known to be hard to solve.
Thus, they argued that learning DFA from any randomly drawn set of examples is a hard
problem.

The PAC model’s requirement of learnability under all conceivable distributions is often
considered too stringent for practical learning scenarios. Pitt’s paper (1989) identified the
following open research problemAte DFA’s PAC-identifiable if examples are drawn from

LEARNING DFA FROM SIMPLE EXAMPLES 11

the uniform distribution, or some other known simple distributiortsing a variant of
Trakhtenbrot and Barzdin’s algorithm, Lang (1992) empirically demonstrated that random
DFAs are approximately learnable from a sparse uniform sample. However, exact iden-
tification of the target DFA was not possible even in the average case with a randomly
drawn training sample. Several efforts have been made to study the learnability of concept
classes under restricted classes of distributions. Li anahyit(1991) proposed a model

for PAC learning withsimpleexamples called theimple PAGmodel wherein the class of
distributions is restricted teimpledistributions (see Section 4). Denis et al. (1996) pro-
posed a model of learning where examples are drawn at random according to the universal
distribution conditional on the knowledge of the target concept. This model is known as the
PACS learning model. In this paper, we present a method for efficient PAC learning of DFA
from simple examples. We will prove that the class of logarithmic Kolmogorov complexity
DFA (see Section 4) is learnable under the simple PAC model and the entire class of DFA
is learnable under the PACS model. Further, we demonstrate how the model of learning
from simple examples naturally extends the modéafning concepts from representative
exampleqGold, 1978), thepolynomial teachabilitymodel (Goldman & Mathias, 1993),

and the model ofearning from example based queri@ngluin, 1988) to a probabilistic
framework.

This paper is organized as follows: Section 2 briefly introduces some concepts used in
the results described in this paper. This includes a discussion of the PAC learning model,
Kolmogorov complexity, and the universal distribution. Section 3 reviews the RPNI al-
gorithm for learning DFA. Section 4 discusses the PAC learnability of the class of log-
arithmic Kolmogorov complexity DFA under the simple PAC learning model. Section 5
demonstrates the PAC learnability of the entire class of DFA under the PACS learning
model. Section 6 analyzes the PACS model in relation with other models for concept
learning. Section 7 addresses the issue of collusion that arises because a helpful teacher
can potentially encode the target DFA as a labeled training example. Section 8 concludes
with a summary of the main contributions of this paper and some directions for future
research.

2. Preliminaries

Let = be a finite set of symbols called ttadphabet X* be the set of strings ovex;
a, B, y be strings inz*; and|«| be the length of the string. A is a special string called
the null string and has length 0. Given a string= By, 8 is the prefixof « andy is
the suffixof «. Let Pref(e) denote the set of all prefixes af A language Lis a subset
of X*. The setPref(L) = {«|aB € L} is the set ofprefixesof the language and the
setL, = {8 | aB € L} is the set oftails of « in L. The standard orderof strings of
the alphabek is denoted by<. The standard enumeration of strings o¥ee= {a, b} is
A, a,b,aa ab, ba, bb, aaa, ... The set ofshort prefixes §L) of a languagé. is defined
asSy(L) = {o € Pref(L)| AB € X*suchthal, = Lg andg < «}. Thekernel N(L)
of a languagd. is defined adN(L) = {A} U {ea | @ € Sy(L),a € X,aa € Pref(L)}.
Given two sets5; andS, let §\S andS, @ S, denote theset differencend thesymmetric
differencerespectively. Let In and Ig denote the log to the basasd 2 respectively.

12 R. PAREKH AND V. HONAVAR

Figure 1 Deterministic finite state automaton.

2.1. Finite automata

A deterministicfinite state automaton (DFA) is a quintuple= (Q, 3, ¥, do, F) where,

Q is afinite set of stateg; is a finite alphabeigy € Q is the start stater € Q is the set
of accepting states, ardds the transition functionQ x X~ — Q. A statedy € Q such that
Va € X, 8(dg, @) = dp is called adeadstate. The extension éfto handle input strings is
standard and is denoted &% The set of all strings accepted Byis its languagel- (A). The
language accepted by a DFA is calleggular languageFigure 1 shows the state transition
diagram for a sample DFA. Aon-deterministidinite automaton (NFA) is defined just like
the DFA except that the transition functiérdefines a mapping fro® x ¥ — 2°. In
general, a finite state automaton (FSA) refers to either a DFA or a NFA.

Given any FSAA/, there exists a minimum state DFA (also called th@onical DFA
A) such thatL (A) = L(A"). Without loss of generality, we will assume that the target
DFA being learned is a canonical DFA. LEtdenote the number of states Af It can be
shown that any canonical DFA has at most one dead state (Hopcroft & Ullman, 1979). One
can define a standard encoding of DFA as binary strings such that any DFA\vgitates
is encoded as a binary string of lengfi(N Ig N). A labeled examplea(, c(«)) for Ais
such thatr € ¥* andc(a) = + if @ € L(A) (i.e.,« is a positive example) ar(a) = — if
a ¢ L(A) (i.e., a is a negative example). L&" and S~ denote the set gbositiveand
negativeexamples ofA respectively.A is consistent with sample S= ST U S if it
accepts all positive examples and rejects all negative examples.

A setS* is said to bestructurally completavith respect to a DFAA if S™ covers each
transition of A (except the transitions associated with the dead stgtand uses every
element of the set of final states Afas an accepting state (Pao & Carr, 1978; Parekh &
Honavar, 1993; Dupont et al., 1994). It can be verified that theSset= {b, aa, aaaa}
is structurally complete with respect to the DFA in figure 1. Given aXetlet PTA(S™)
denote theprefix tree acceptofor St. PTA(S™) is a DFA that contains a path from the
start state to an accepting state for each strin§irmodulo common prefixes. Clearly,
L(PTA(S")) = St. Learning algorithms such as the RPNI (see Section 3) require the states
of the PTA to be numbered in standard order. If we consider thereiS™) of prefixes of

LEARNING DFA FROM SIMPLE EXAMPLES 13

>_a-_a,

Figure 2 Prefix tree automaton.

the setSt then each state of the PTA corresponds to a unique element in tRec&")
i.e., for each statg of the PTA there exists exactly one striagin the setPref(St) such
that§*(qo, @j) = g and viceversa. The strings &fef(S*) are sorted in standard order
< and each statg is numbered by the position of its corresponding stein@ the sorted
list. The PTAfor the setS" = {b, aa, aaaad} is shown in figure 2. Note that its states are
numbered in standard order.

Given a FSAA and a partitionr on the set of state® of A (ighoring the dead statl and
its associated transitions), we define tuotient automaton A= (Q,, §,, X, B(qo,),
F.) obtained by merging the statesAthat belong to the same block of the partitioras
follows: Q, = {B(q, 7) | q € Q} is the set of states with each state represented uniquely
by the blockB(q,) of the partition that contains the statg F, = {B(q,7) | q € F}
is the set of accepting states, aiyd: Q, x ¥ — 2% is the transition function such that
VB(Gi. 7). B(q;. m) € Qr, Va € X, B(q;, 7) = 8:(B(qi. 7)., @) iff g, q; € Q andq; =
3(qi,). Note that a quotient automaton of a DFA might be a NFA and viceversa. For ex-
ample, the quotient automaton corresponding to the partitien{{Qog, Q1}, {Q2}, {Qs}}
of the set of states of the DFA in figure 1 is shown in figure 3.

The set of all quotient automata obtained by systematically merging the states of a DFA
A represents &attice of FSA (Pao & Carr, 1978). This lattice is ordered by grammar
coverrelation=. Given two partitionsr; = {By, By, ..., B} andnj = {By, By, ..., By}
of the states ofA, we say thatr; coversr; (writtenm; < m;) if r = k — 1 and for some

Figure 3 Quotient automaton.

14 R. PAREKH AND V. HONAVAR

1<l,m <k, m = {7;\{Bi, Bn}U{B; U Bn}}. Thetransitive closureof < is denoted by

<. We say thatA,;, < Ay, iff L(A;,) € L(Ay). Given a canonical DFAA and a seS*

that is structurally complete with respectAgthe lattice2 (S™) derived fromPTA(S") is

guaranteed to contaif (Pao & Carr, 1978; Parekh & Honavar, 1993; Dupont et al., 1994).
A sampleS = St U S is said to becharacteristicwith respect to a regular language

L (with a canonical acceptod) if it satisfies the following two conditions (Oncina &

Garaa, 1992):

e Vo e N(L), if @ € L thena € St elsedp € =* such thaty € S'.
e Voe Sy(L), VB e N(L), if Ly # Lg thendy € £* such thatay € S" andfy € S7) or
(By € St anday € S).

Intuitively, Sy(L), the set of short prefixes df is a live complete set with respect to
A'in that for each live statg € Q, there is a stringe € Sy(L) such thaé*(qo,) = Q.
The kernelN (L) includes the set of short prefixes as a subset. TN, is also a live
complete set with respect #. Further,N(L) covers every transition between each pair of
live states ofA. i.e., for all live states), q; € Q, foralla € %, if §(g;, a) = g; then there
exists a stringy € N(L) such thaty = wa andé§*(qp, @) = ;. Thus, condition 1 above
which identifies a suitably defined suffik € X* for each stringx € N(L) such that the
concatenated string8 € L implies structural completeness with respecitaCondition
2 implies that for any two distinct states &f there is a suffixy that would correctly
distinguish them. In other words, for any, q; € Q whereq; # q;, 3y € ¥* such that
8*(gi, y) € F andé*(q;, y) ¢ F or viceversa. Given the languagecorresponding to
the DFA A in figure 1, the set of short prefixes & (L) = {1, a, b, aa} and the kernel
is N(L) = {1, a, b, aa, aaa}. It can be easily verified that the st= S" U S~ where
St = [b, aa, aaaa andS™ = {A, a, aaa, baa} is a characteristic sample far.

2.2. PAC learning of DFA

Let X denote thesample spaceefined as the set of all strings*. Letx € A denote a
concept For our purposex is aregular languageWe identify the concept with the corre-
sponding DFA and denote the class of all DFA as¢brecept clasg. Therepresentation

R that assigns a name to each DFACiiis defined as a functioR : C — {0, 1}*. R is the

set of standard encodings of the DFAZINAssume that there is an unknown and arbitrary
but fixed distributiorD according to which the examples of the target concept are drawn.

Definition 1(due to Pitt (1989)). DFAs are PAC-identifialifé there exists a (possibly
randomized) algorithrid such that on input of any parameterandgs, for any DFAM of
sizeN, for any numbem, and for any probability distributio® on strings of¥* of length
at mostm, if 4 obtains labeled examples bdf generated according to the distribution
then.A produces a DFAV’ such that with probability at least2 §, the probability (with
respect to distributio®) of the setfa | « € L(M) & L(M’)} is at mosk. The run time of
A (and hence the number of randomly generated examples obtaindlisyequired to
be polynomial inN, m, 1/¢, 1/, and|X|.

LEARNING DFA FROM SIMPLE EXAMPLES 15

In several typical learning tasks all example strings for a given target concept are of the
same length. Example strings of DFAs can be of different lengths. Thus, in the context of
DFA learningD is restricted to a probability distribution on string=0f of length at mosin
in order to prevent inordinately long strings from being drawn. Note that for any distribution
D overx* andfor an arbitrarily smajf > 0, there exists a length such that the probability
of any string of length greater thanis at mosty. Thus, there is a distributioP assigning
zero probability to all strings of length greater tharsuch thatD approximatesD within
y (Pitt, 1989). In theL* algorithm for learning DFA (Angluin, 1987), the longest example
seen by the learner is typically the longest counter-example presented by the teacher. If we
assume a scenario wherein the teacher always presents the learner with the shortest possible
counter-example then it can be shown that counter-examples of length no mor&ithah 2
are needed to correctly learn the target DFA\b$tates. Thus, in practice we will assume
thatm>2N — 1.

Definition 2 DFAs areprobably exactly learnable ithere exists a (possibly randomized)
algorithm.A such that for any given value of the input paramétdor any DFAM of size
N, for any numbem, and for any probability distributio® on strings ofX* of length
at mostm, if A obtains labeled examples bdf generated according to the distribution
then A produces a DFAM’ such that with probability at least2 §, M’ is equivalent to
Mi.e., Ph({a |« € L(M) @ L(M")} = 0). The run time of4 (and hence the number of
randomly generated examples obtained4jyis required to be polynomial iN, m, 1/§,
and|X|.

2.3. Kolmogorov complexity

Note that the definition of PAC learning requires that the concept class (in this case the
class of DFA) must be learnable under any arbitrary (but fixed) probability distribution.
This requirement is often considered too stringent in practical learning scenarios where it
is not unreasonable to assume that a learner is first providediviffieandrepresentative
examples of the target concept. Intuitively, when we teach a child the rufesltplication

we are more likely to first give simple examples likex3 than examples like 1377 428.

A representative saif examples is one that would enable the learner to identify the target
concept exactly. For example, the characteristic set of a DFA would constitute a suitable
representative set. The question now is whether we can formalize what simple examples
mean.Kolmogorov complexityprovides a machine independent notionsahplicity of
objects. Intuitively, the Kolmogorov complexity of an object represented by a binary string
«a isthe length of the shortest binary program that computé&bjects that have regularity in
their structure (i.e., objects that can be easily compressed) have low Kolmogorov complexity.
For example, consider the strisg = 010101..01 = (01)°%. On a particular machine

M, a program to compute this string would biérint 01 500 times On the other hand
consider a totally random strirgg = 110011010.. 00111. Unlikes,, it is not possible to
compress the string; which means that a program to compsgeon M would be ‘Print
1100111010000..00117, i.e., the program would have to explicitly specify the striag

The length of the program that compuggss shorter than that of the program that computes

16 R. PAREKH AND V. HONAVAR

$. Thus, we could argue that has lower Kolmogorov complexity thasm with respect to
the machineM.

We will consider theprefixversion of the Kolmogorov complexity that is measured with
respect to prefix Turing machines and denotedkhyA Turing machineM is a prefix
Turing machindf the set of inputsP for which M halts is aprefix codei.e., no element
of P is a prefix of any other element &. Cons@er a prefix Turing machine that imple-
ments the partial recursive functign: {0, 1}* — {0, 1}*. For any stringx € {0, 1}*, the
Kolmogorov complexity otx relative tog is defined a4 («) = min{|x| | ¢(7) = o}
whererr € {0, 1}* is a program input to the Turing machine. Prefix Turing machines can be
effectively enumerated and there existdm@iversal Turing Maching€U) capable of simu-
lating every prefix Turing machine. Assume that the universal Turing machine implements
the partial functiony,. The Optimality Theorenfor Kolmogorov complexity guarantees
that for any prefix Turing maching there exists a constanj such that for any string,

Ky (@) < Ky(a) + c4. Note that we use the name of the Turing Machine (g8yand the
partial function it implements (say) interchangeably i.eK4 (o) = Km (). Further, by

the Invariance Theorenit can be shown that for any two universal machirgsand v,
there is a constamt € N (where\ is the set of natural numbers) such that for all strigs
|Ky, (@) — Ky, (@)| < n. Thus, we can fix a single universal Turing machihend denote

K (@) = Ky (a). Note that there exists a Turing machine that computes the identity function
x - {0,1}* — {0, 1}* whereVa, x (@) = «. Thus, it can be shown that the Kolmogorov
complexity of an object is bounded by its length, ik () < || + K(Ja|) + n wheren is

a constant independent @f

Suppose that some additional information in the form of a stfirng available to the
Turing machinep. The conditional Kolmogorov complexity of any objegtgiven g is
defined aKy (x| B) = min{|x| | ¢ ({7, B)) = a} wherer € {0, 1}* is a program and
(x,y) is a standard pairing functiénNote that the definition of conditional Kolmogorov
complexity does not charge for the extra informatgihat is available t@ along with
the programrr. Fixing a single universal Turing machiri¢ we denote the conditional
Kolmogorov complexity ofx by K («a | 8) = Ky (a | B). It can be shown thaf (@ | B) <
K (@) + n wheren is a constant independent @f

2.4. Universal distribution

The Solomonoff Levin universal distribution is auniversal enumerable probability dis-
tribution in that it multiplicatively dominates all enumerable probability distributions. For-
mally, Vi ¢ N+ 3c > 0V¥x € M [em(x) > P (x)] wherePy, P, ... is an enumeration of
all enumerable probability distributions andis the set of natural numbers. It can be shown
thatm(x) = 2-K®0+O0@ Thus, undem, simple objects (or objects with low Kolmogorov
complexity) have a high probability, and complex or random objects have a low proba-
bility. Given a stringr € X*, the universal distribution conditional on the knowledge of
m;, is defined asn; (o) = 2-K@IN+OD (Denis et al., 1996). Furtherr € * > m; ()
<1

The interested reader is referred to Li andaviigi (1997) for a thorough treatment of
Kolmogorov complexity, universal distribution, and related topics.

LEARNING DFA FROM SIMPLE EXAMPLES 17

3. The RPNI algorithm

The regular positive and negative inferen¢@PNI) algorithm (Oncina & Garna, 1992)

is a polynomial time algorithm for identification of a DFA consistent with a given set
S= S" U S. If the sample is a characteristic set for the target DFA then the algorithm is
guaranteed to return a canonical representation of the target DFA. Our description of the
RPNI algorithm is based on the explanation given in Dupont (1996).

Alabeled sampl& = ST U S is provided as input to the algorithm. It constructs a prefix
tree automatoPTA(S") and numbers its states in the standard order. Then it performs an
ordered search in the space of partitions of the set of state$A{S") under the control
of the set of negative examplé&s . The partition,g, corresponding to the automaton
PTA (Sh) itself is {{0}, {1}, ..., {N — 1}} whereN is the number of states of the PTA.
M,, = PTA(S") is consistent with all the training examples and is treated as the initial
hypothesis. The current hypothesis is denotedwyand the corresponding partition is
denoted byr. The algorithm is outlined in figure 4. The nesfedloop refines the partition
7 by merging the states &fTA (S") in order. At each step, a partitichis obtained from
the partitiont by merging the two blocks that contain the statesnd j respectively.

Algorithm RPNI

Input: A sample $ =S+t U S~
Output: A DFA compatible with S

begin
/! Initialization _
7 =m = {{0},{1},...,{N —-1}}
M, = PTA(SY)
/! Perform state merging
fori=1toN —1
forj=0toi—1
1/l Merge the block of ™ containing state i with the block containing state j
i = a\{B(,), B(j,)} U{B(,7)U B(j,n)}
/] Obtain the quotient automaton Mz
Mz = derive(M, 7)
/] Determinize the quotient automaton (if necessary) by state merging
= determistic.merge(Msz)
/l Does My reject all strings in S~ 7
if consistent(Mz,5™)
then
/] Treat M3 as the current hypothesis
My = My
T=7
break
end if
end for
end for
return M,
end

Figure 4 The RPNI algorithm.

18 R. PAREKH AND V. HONAVAR

The functionderiveobtains the quotient automatd;, corresponding to the partitioh.
M; might be a NFA in which case the functiateterministicmergeconverts the NFA
to a DFA by recursively merging the states that cause non-determinism. For example, if
0, gj, andg are states oM; such that for soma € X, §(q, a) = {q;, g¢} then the
statesq; andgx are merged together. This recursive merging of states can go on for at
mostN — 1 steps and the resulting automatily is guaranteed to be a DFA (Dupont,
1996). Note that iV is a NFA then the resulting DFA obtainéd; obtained by invoking
deterministicmergeis not necessarily equivalent ¥;. However, sincetr <« 7 we know
by the grammar covers relation thatM;) € L(M;) and thus, ifM; accepts a negative
example inS~ then so wouldM;. The function,consistentM;, S™) returnsTrueif M;
is consistent with all examples i@ andFalseotherwise. If a partitionz is found such
that the corresponding DFM;; is consistent witt5~ thenM;; replacesM,, as the current
hypothesis.

Let || S*|| and||S™ || denote the sums of the lengths of exampleStimndS™ respectively.
PTA(S") hasO(||S"|)) states. The nestefdr loop of the algorithm perform® (|| S*|1?)
state merges. Further, each time two blocks of the partitiosre merged, the routine
deterministicmergein the worst case would cau€k || ST ||) state mergings and the function
consistenthat checks for the consistency of the derived DFA with the negative examples
would incur a cost ofO(]|S||). Hence the time complexity of the RPNI algorithm is
O((IS*I + 151D - I1SHI1%).

Example We demonstrate the execution of the RPNI algorithm on the task of learning
the DFA in figure 1. Note that for convenience we have shown the target DFA in figure 5
without the dead statdy and its associated transitions. Assume that a saB\pleS™ U S
whereS" = {b, aa, aaaa andS™ ={A, a, aaa, baa)}. It can be easily verified thed is a
characteristic sample for the target DFA. The DFA=PTA(S") is depicted in figure 2
where the states are numbered in the standard order. The initial partitiondsty =

{0}, {1}, {2}, {3}. {4}. {5}}.

The algorithm attempts to merge the blocks containing states 1 and 0 of the partition
The quotient FSAM; and the DFAM;; obtained after invokingleterministicmergeare

Figure 5 Target DFAA.

LEARNING DFA FROM SIMPLE EXAMPLES 19

Figure 6. M; obtained by fusing blocks containing the states 1 ands0 afid the correspondingl;; .

@-@)-eE)

Figure 7. M; (same adVl;) obtained by fusing blocks containing the states 2 and:0.of

shown in figure 6. The DFAV; accepts the negative examples S—. Thus, the current
partitions remains unchanged.

Next the algorithm merges the blocks containing states 2 and 0 of the parttifidre quo-
tient FSAM;; is depicted in figure 7. Sindd; is a DFA, the procedurdeterministicmerge
returns the same automaton igl; = M;. M; accepts the negative example S- and
hence the partitiomw remains unchanged.

Table 1 lists the different partitiors obtained by fusing the blocks ab, the partitions
7 obtained bydeterministicmergeof 7, and the negative example (belongingS0), if
any, that is accepted by the quotient F&IA. The partitions marked denote the partition
7 for which M, is consistent with all examples B and hence is the current hypothesis.
It is easy to see that the DFA corresponding to the partitiea {{0}, {1, 4}, {2}, {3, 5}} is
exactly the target DFA we are trying to learn (figure 1).

4. Learning logarithmic Kolmogorov complexity DFA under the simple PAC model

Li and Vitanyi (1991) have proposed a simple PAC learning model where the class of
probability distributions is restricted ®impledistributions. A distribution is simple if it is
multiplicatively dominated by some enumerable distribution. Simple distributions properly
include all computable distributions. Distributions that we commonly use in statistics such
as theuniform distribution normal distribution geometric distributionandPoisson distri-
butionare simple if restricted to finite precision parameters. Furthesithple distribution
independent learning theoresays that a concept class is learnable under the universal
distributionm iff it is learnable under the entire classsifinple distributiongrovided the
examples are drawn according to the universal distribution (Li &Wf, 1991). Thus, the
simple PAC learning model is sufficiently general. Concept classes suchrasdom DNF

20 R. PAREKH AND V. HONAVAR

Table 1 Execution of the RPNI algorithm.

Partition7z Partition7 Negative example
{{0, 13, {2}, {3}, {4}, {5} {{0,1,3,4,5}, {2} a
{{0, 23, {1}, {3}, {4}, {5}} {{0, 23, {1}, {3}, {4}, {5}} A
{{0}, {1, 2}, {3}, {4}, {5}} {{0}, {1, 23, {3}, {4}, {5}} a
{{0. 3}, {1}, {2}, {4}, {5}} {{0, 3}, {1, 4}, {2}, {5}} A
{{0}, {1, 3}, {2}, {4}, {5}} {{0}, {1, 3.4, 5}, {2}} a
{{0}, {1}, {2, 3}, {4}, {5}} {{0}, {1}, {2, 3}, {4}, {5}} baa
{{0. 4}, {1}, {2}, {3}, {5}} {{0, 4}, {1, 5}, {2}, {3}} a
{{0}, {1, 4}, {2}, {3}, {5}} {{0}, {1, 4}, {2}, {3, B}}* —
{{0, 3,5}, {1, 4}, {2}} {{0.3,5}, {1, 4}, {2}}

{{0}. {1, 3,4, 5}, {2}} {0}, {1 3,4,5}, {21} a
{{0}. {1, 4}, {2, 3, 5}} {{0} {1, 4}, {2, 3, 5}} baa
{{0}, {1, 4}, {2}, {3, 5}} {{0}, {1, 4}, {2}, {3, B}}* —
{{0}, {1,3,4,5}, {2} {{0}, {1, 3,4, 5}, {2}} a

andsimple k-reversible DFAre learnable under the simple PAC model whereas their PAC

learnability in the standard sense is unknown (Li &ii, 1991). We show that the class

of DFA whose Kolmogorov complexity i©(lg N) are polynomially learnable under the

simple PAC learning mod&lWe saw in Section 2.3 that a natural learning scenario would

typically involve learning from asimpleandrepresentativeset of examples for the target

concept. We adopt Kolmogorov complexity as a measure of simplicity and define simple

examples as those with low Kolmogorov complexity, i.e., with Kolmogorov complexity

O(lg N). Further, a characteristic set for the DBAcan be treated as its representative set.
We demonstrate that for every DFA with Kolmogorov complexiiyig N) there exists

a characteristic set of simple examplgs

Lemma 1. For any N state DFA with Kolmogorov complexity(I N) there exists a
characteristic set of simple examplesstich that the length of each string in this set is at
mostZ2N — 1.

Proof: Consider the following enumeration of a characteristic set of examples for a DFA
A=(Q,8, X, qo, F)with N states.

1. Fix an enumeration of the shortest paths (in standard order) from thejstateach
state inQ except the dead state. This is the set of short prefixés dhere are at most
N such paths and each path is of length at nibst 1.

2. Fixan enumeration of paths that includes each path identified above and its extension by
each letter of the alphab&t. From the paths just enumerated retain only those that do
not terminate in the dead state Af This represents the kernel 8f There are at most
N(]Z| + 1) such paths and each path is of length at nbst

LEARNING DFA FROM SIMPLE EXAMPLES 21

3. Let the characteristic set be denoteddy= §" U §..

(A) For each stringx identified in step 2 above, determine the first suffixin the
standard enumeration of strings such #éte L(A). Since|a| < N, andg is the
shortest suffix in the standard order it is clear fhgt) < 2N — 1. Each suchg is
amember of5f.

(B) For each pair of stringsx(8) in order wherex is a string identified in step B is a
string identified in step 2, andandp lead to different states & determine the first
suffix y in the standard enumeration of strings suchdhat L(A) andBy & L(A)
or viceversa. Sincgy| < N — 1, |8| < N, andy is the shortest distinguishing suffix
for the states represented byand g it is clear thatjay|, |[8y| <2N — 1. The
accepted string from amongy andgy is a member of§" and the rejected string
is a member ofy; .

Trivial upper bounds on the sizes § and S are || < N2(|Z| + 1) + N(|Z)),
IS | < N2(|Z| + 1) — N. Thus,|S| = O(N?). Further, the length of each string & is
less than A — 1.

The strings in& can be ordered such that individual strings can be identified by an
index of lengthO(Ig N) bits. There exists a Turing machihd that implements the above
algorithm for constructing the s&. M takes as input an encoding of the DFA of length
O(lg N) bits and an index of lengt®(Ig N) bits and outputs the corresponding string
belonging toS.. Thus,Va € &, K(a) = O(lg N). This proves the lemma. O

Lemma 2. Suppose a sample S is drawn accordingrtoFor 0 < § < 1, there exist
constants k > 0 and k > 0 such that if|S| > Nkl(ln(§) + In(ky) + In(N?)) then with
probability greater tharl — §, S C S.

Proof: FromLemmalweknowthar € S, K(a) = O(lg N). Further|S| = O(N?).
By definition,m(«) > 2-X@_ Thusm(a) > 27X 19N or equivalentlym(«) > N~ where
kq is a positive constant.

Pr(a € & is not sampled in one random draw (1 — N—%)
Pr(a € & is not sampled inS| random draws < (1 — N7)!S
Pr(somex € S is not sampled inS| random draws < |S|(1 — N~)IS
< koN2(1 — N~k)lS
since|S| = O(N?)
Pr(S € S) < kgN*(1— N7l

We want this probability to be less than

koN2(1— NS < 5
koN2(e"N")IS < s since 1- x < e X if x > 0

22 R. PAREKH AND V. HONAVAR

In(k2) + IN(N?) — N85 < In(5)
|S| > N"1<In <51> + In(ky) + In(N2)>

Thus, P(S €S >1-6. O

We now prove that the class of DFA with(Ilg N) complexity is polynomially learnable
underm.

Theorem 1. For all N, the classC=N of DFA having at most N states and Kolmogorov
complexity Qlg N) is probably exactly learnable under the simple PAC model.

Proof: Let A be a DFA with at mosN states an&K (A) = O(lg N). Let S be a charac-
teristic sample ofA enumerated as described in Lemma 1 above. Recall that the examples
in & are simple (i.e., each example has Kolmogorov compleRitlg N)). Now consider

the algorithmA; in figure 8 that draws a samp&with the following properties.

1. S= S" U S is a set of positive and negative examples corresponding to the target
DFA A

2. The examples i® are drawn at random according to the distribution

3. |§l is at leastN kl(In(%) + In(k2) 4+ In(N?)) wherek; andk, are positive constants.

Lemma 1 showed that for every DFAwith K (A) = O(lg N) there exists a characteristic
set of simple examples. where each example is of length at molit-2 1. Lemma 2 showed
that if a labeled sampl& of size at leastN (In(3) + In(kz) + IN(N?)) (wherek; andk;
are positive constants) is randomly drawn according then with probability greater than
1-4, & € S The RPNI algorithm is guaranteed to return a canonical representation of the
target DFAA if the set of exampleS provided is a superset of a characteristicgeBince
the size ofSis polynomial inN and 1/§ and the length of each string Biis restricted to
2N — 1, the RPNI algorithm, and thus the algorittda can be implemented to run in time
polynomial inN and ¥§. Thus, with probability greater than- 6, A; is guaranteed to
return a canonical representation of the target DA his proves the result. O

Algorithm 4

Input: N,0<é6<1
Output: ADFA M

begin
Randomly draw a labeled sample S according to m
Retain only those examples in S that have length at most 2N — 1
M =RPNI(S)
return M
end

Figure 8 A probably exact algorithm for learning simple DFA.

LEARNING DFA FROM SIMPLE EXAMPLES 23

5. Learning DFA under the PACS model

In Section 4 we proved that the class@€lg N) Kolmogorov complexity DFA is learnable
under the simple PAC model where the underlying distribution is restricted to the universal
distributionm. Denis et al. (1996) proposed a model of learning (called the PACS model)
where examples are drawn at random according to the universal distribution conditional
on the knowledge of the target concept. Under this model, examples with low conditional
Kolmogorov complexity given a representatiorof the target concept are called simple
examples. Specifically, for a concept with representatighe sety,;, = {o | K(a | 1) <
wlg(r} (wherep is a constant) is the set of simple examples for that concept. Further,
Simrep IS Used to denote a set of simple and representative exampleBtu PACS model
restricts the underlying distribution ta, (wherem, (o) = 2-K©@N+0M) Representative
examples for the target concept are those that enable the learner to exactly learn the target.
As explained earlier, the characteristic set corresponding to a DFA can be treated as a
representative set for the DFA. The Occam'’s Razor theorem proved by Denis et al. (1996)
states that if there exists a representative set of simple examples for each concept in a
concept class then the concept class is PACS learnable.

We now demonstrate that the class of DFA is efficiently learnable under the PACS'model
Lemma 3 proves that for any DFA with standard encodingthere exists a characteristic
set of simple example§j;, ¢

Lemma3. Forany N state DFA with standard encodingr|(= O(N Ig N)), there exists
a characteristic set of simple examplgenoted by §mep) such that each string of this
setis of length at mo&N — 1.

Proof: GivenaDFAA = (Q, 3§, =, qo, F), itis possible to enumerate a characteristic set
of examplesS. for A as described in lemma 1 such th&t| = O(N?) and each example
of & is of length at most R — 1. Individual strings inS; can be identified by specifying
an index of lengthO(Ig N). There exists a Turing machirid that implements the above
algorithm for constructing the s&. Given the knowledge of the target concepM can
take as input an index of lengt(lg N) bits and output the corresponding string belonging
toS. ThusVa € &, K(a|r) = O(lg N) < ulg(r|) whereu is a constant . We define the
set& to be the characteristic set of simple exam8gs ., for the DFAA. This proves the
lemma. O

Lemma 4 (Due to Denis et al. (1996)) Suppose that a sample S is drawn according to
m;. Foraninteger|> |r |,and0 < & < 1,if | S| > I* (In(2) + In(*) + In(1/8)) then
with probability greater tharl — §, §;,, € S.

Proof:

Claim 4.1 Vo € §;,, My (a) > 174

me () > 27D

> 2*M|g|r|

24 R. PAREKH AND V. HONAVAR

>r™

> 1"
Claim4.2 |5, < 2*

|Siml < e € {0, 1" [K(er [1) < ulg(r D}
< lfa € {0, 1}" | K(a | 1) = ulg(h}]
= B {0, 1" [18] = ulgH}|

< omlgh+1

< 2*
Claim 4.3 |S| = I* (In(2) + In(1") +In(1/8)) then P(Y;, € S =1 -6

Pr(a € §;,is not sampled in one random drpaw (1 —17*)
(claim 4.1)
Pr(e € S, is not sampled inS| random drawp < (1 —|7#)'8
Pr(somea € S, is not sampled inS| random drawp < 21*(1 — | ~)!S
(claim 4.2)
Pr(§im € S) < 2*@—17"'S

We would like this probability to be less than

ArA—1"M)I8 <5
A4S <5, sincel-x<e Xif x>0
In(2) + In(*) — |SII7* < In(8)
1S = I* (In(2) + In(1*) + In(1/8))

Thus, P(S;, €9 >1-4 O
Corollary 1. Suppose that a sample S is drawn accordingnto For an integer |> |r|,
and0 < § < 1,if |§ = I* (In(2) + In(I1*) 4+ In(1/5)) then with probability greater than
1-34, iim,rep cs.

Proof: Follows immediately from Lemma 4 sin;, e, © - O

We now prove that the class of DFA is polynomially learnable umaer

Theorem 2. For all N, the classC=N of DFA whose canonical representations have at
most N states is probably exactly learnable under the PACS model.

Proof: Let A be a canonical DFA with at mo# states and be its standard encoding.
We define the simple representative sanffllg, .., to be the characteristic sample Af

LEARNING DFA FROM SIMPLE EXAMPLES 25

Algorithm A,

Input: N,0<é<1
Output: A DFA M

begin
Randomly draw a labeled sample S according to m.,.
Retain only those examples in S that have length at most 2NV — 1
M = RPNI(S)
return(M)
end

Figure 9 A probably exact algorithm for learning DFA.

enumerated as described in Lemma 3. Recall that the length of each exarfiple, i
at most N — 1. Now consider the algorithid, (see figure 9) that draws a samﬁlawth
the following properties.

1. S= S" U S is a set of positive and negative examples corresponding to the target
DFA A.

2. The examples B are drawn at random according to the distribution

3. |§is atleast* (In(2) + In(I1*) + In(1/6)).

Lemma 3 showed that for every DFAthere exists a characteristic set of simple examples
Simrep- Corollary 1 showed that if a labeled samiBef size|S| is at least” (In(2) +
In(#) 4+ In(1/68)) is randomly drawn according tm, then with probability greater than
1-38, Simrep S S The RPNI algorithm is guaranteed to return a canonical representation
of the target DFAA if the set of exampleSis a superset of a characteristic setfoISince
the size ofSis polynomial inN and /8 and the length of each string Biis restricted to
2N — 1, the RPNI algorithm, and thus the algorittda can be implemented to run in time
polynomial inN and ¥§. Thus, with probability greater than- §, A, is guaranteed to
return a canonical DFA equivalent to the tardetThis proves that the clagsN of DFA
whose canonical representations have at hiostates is exactly learnable with probability
greater than 1 6. O

Since the number of states of the target D) (might not be known in advance we
present a PAC learning algorithps that iterates over successively larger guesseN.of
At each step the algorithm draws a random sample accordimg t@pplies the RPNI
algorithm to construct a DFA, and tests the DFA using a randomly drawn test sample. If
the DFA is consistent with the test sample then the algorithm outputs the DFA and halts.
Otherwise the algorithm continues with the next guess\foT his technique of estimating
the unknown number of states is called ttoibling techniquéAngluin, 1987).

Theorem 3. The concept class of DFA is learnable in polynomial time under the PACS
model.

Proof: Figure 10 shows a PAC learning algorithm for DFA.

26 R. PAREKH AND V. HONAVAR

Algorithm 4
Input: €,6
Output: ADFA M
begin
1) i=1,EX =¢,p(0,1/6)=0
2) repeat
Draw p(i,1/6) — p(i — 1, 1/8) examples according to m,
Add the examples just drawn to the set EX
Let S be the subset of examples in EX of length at most 2¢ — 1
M = RPNI(S)
Draw ¢(%, 1/¢, 1/8) examples according to m,. and call this set T'
if consistent(M,T)
then Output M and halt
elsei =i*x2
end if
until eternity
end

Figure 10 A PAC algorithm for learning DFA.

In algorithm A3 the polynomialp is defined such that a sampgof size p(N, %)
contains the characteristic set of simple exampﬁgﬁrep with probability greater than
1— 4. Corollary 1 gives us a bound on the sizepgN, %) that would satisfy this constraint.
The polynomial is defined ag|(i, 2, 3) = [2In(i + 1) + In(3)].

Consider the execution of the algorithdy. At any stepi wherei > N, the setS will
include the characteristic set of simple exam(#gs ., With probability greater than
(as proved in Lemma 4 and Corollary 1). In this case the RPNI algorithm will return a DFA
M that is equivalent to the targétand henceM will be consistent with the test sample
Thus, with probability at least 1 §, the algorithm will correctly output the target DFA and
halt.

Consider the probability that at some stape algorithm returns a DFM with an error
greater thar and halts.

Pr(M and A are consistenton somnag <1—¢
Pr(M andA are consistentonall € T) < (1—¢)!"!
<1- E)g[zln(i+1)+|n(§)]
< e—[ZIn(i+1)+In(%)]
sincel-x <eXif x>0
)
< —
(i +1)72
The probability that the algorithm returns a DFA with error greater thahsome step
and halts is less thap ;2 ﬁ which is in turn strictly less thaé. Thus, we have shown

that with probability greater than2 § the algorithm returns a DFA with error at mast
Further, the run time of the algorithm is polynomial i |X| andm (wherem is

’E’(S’

LEARNING DFA FROM SIMPLE EXAMPLES 27

the length of the longest test example seen by the algorithm). Thus, the class of DFA is
efficiently PAC learnable under the PACS model. O

6. Relationship of the PACS model to other learning models

In this section we study the relationship of the PACS model to learning models such as
Gold’s model (1978) opolynomial identifiability from characteristic sampleSoldman

and Mathiaspolynomial teachabilitynodel (1993), and the model of learning fremample
based querieAngluin, 1988). We explain how the PACS learning model naturally extends
these models to a probabilistic framework. In the following discussion we wil'lbe the
instance spacé€,be the concept class, aRtbe the set of representations of the concepis in

6.1. Polynomial identifiability from characteristic samples

Gold’'s model for polynomial identifiability of concept classes from characteristic samples
is based on the availability of a polynomial sized characteristic sample for any concept in
the concept class and an algorithm which when given a superset of a characteristic set is
guaranteed to return, in polynomial time, a representation of the target concept.

Definition 3([due to de la Higuera (1996)]).C is polynomially identifiable from char-
acteristic samples iff there exist two polynomiglg)) and p,() and an algorithmA4 such
that

1. Givenany sampl& = S"US of labeled examplesi returns in timep; (||ST||+ IS)
a representation € R of a concept € C such that is consistent witls.

2. For every concept € C with corresponding representatiore R there exists a charac-
teristic samples, = SFU S suchthat| SF ||+ 1S || = p2(Ir]) and if Ais provided with
asampleS= St U S whereSH € St andS, € S thenA returns a representation
r’ of a concept’ that is equivalent te.

Using the above definition Gold’s result can be restated as follows.

Theorem 4 (due to Gold (1978)) The class of DFA is polynomially identifiable from
characteristic samples.

The problem of identifying a minimum state DFA that is consistent with an arbitrary
labeled sampl& = S U S~ is known to be NP-complete (Gold, 1978). This result does
not contradict the one in Theorem 4 because a characteristic set is not any arbitrary set of
examples but a special set that enables the learning algorithm to correctly infer the target
concept in polynomial time (see the RPNI algorithm in Section 3).

6.2. Polynomial teachability of concept classes

Goldman and Mathias (1993) developed a teaching model for efficient learning of target
concepts. Their model takes into account the quantity of information that a good teacher

28 R. PAREKH AND V. HONAVAR

must provide to the learner. An additional player calledateersaryis introduced in this
model to ensure that there is no collusion whereby the teacher gives the learner an encoding
of the target concept. A typical teaching session proceeds as follows:

=

The adversary selects a target concept and gives it to the teacher.

The teacher computes a set of examples calletetiehing set

3. The adversary adds correctly labeled examples to the teaching set with the goal of
complicating the learner’s task.

4. The learner computes a hypothesis from the augmented teaching set.

n

Under this model, a concept class for which the computations of both the teacher and
the learner takes polynomial time and the learner always learns the target concept is called
polynomially T/L teachabléNithout the restrictive assumption that the teacher’'s computa-
tions be performed in polynomial time, the concept class is saidseiné polynomially T/L
teachableWhen this model is adapted to the framework of learning DFA the length of the
examples seen by the learner must be included as a parameter in the model. In the context of
learning DFA the number of examples is infinite (it includes the entir&$gand further
the lengths of these examples grow unboundedly. A scenario in which the teacher constructs
a very small teaching set whose examples are unreasonably long is clearly undesirable and
must be avoided. This is explained more formally in the following definition.

Definition 4(due to de la Higuera (1996)). A concept cl@sis semi-polynomially T/L
teachable iff there exist polynomiafs (), p2(), and ps(), a teachefT, and a learnet.,
such that for any adversa®yDV and any concept with representation that is selected
by ADV, after the following teaching session the learner returns the representatioa
conceptt’ that is equivalent ta.

1. ADVgivesrtoT.

2. T computes ateaching sgbf size at mosp; (|r |) such that each example in the teaching
set has length at mosgb(|r|).

3. ADV adds correctly labeled examples to this set, with the goal of complicating the
learner’s task.

4. The learner uses the augmentedSet compute a hypothesisin time ps(|| S|)).

Note that from Gold’s result (Theorem 4) it follows that DFA are semi-polynomially
T/L teachable. Further, we demonstrated in lemma 1 that for any DFA there exists a
procedure to enumerate a characteristic set corresponding to that DFA. This procedure
can be implemented in polynomial time thereby proving a stronger result that DFA are
polynomially T/L teachable. It was proved that the model for polynomial identification
from characteristic samples and the model for polynomial teachability are equivalent to
each other (i.e., by identifying the characteristic set with the teaching sample it was shown
that a concept class is polynomially identifiable from characteristic sarifpiess semi-
polynomially T/L teachable) (de la Higuera, 1996).

LEARNING DFA FROM SIMPLE EXAMPLES 29

Lemma 5. Let ¢ € C be a concept with corresponding representatior rR. If there
exists a characteristic sample ®r ¢ and a polynomial) such that $can be com-
puted from r and| || = pi(Jr]) then each example inc$s simple in the sense that
Va € &, K(a|r) < ulg(lr|) whereu is a constant.

Proof: Fix an ordering of the elements & and define an index to identify the individ-
ual elements. SincgS || = pu(Jr]) an index that iSO(Ig(Jr|)) bits long is sufficient to
uniquely identify each element &>°. SinceS. can be computed fromwe can construct
a Turing machine that givenreads as input an index of leng®xIg(|r |)) and outputs the
corresponding string o&. Thus,Va € &, K(a|r) < wlg(r|) whereu is a constant
independent of. O

Let us designate the characteristic set of simple exanfpléentified above to be the
set of simple representative examp&s, ., for the concept represented by. Lemma 4
and Corollary 1 together show that for an integer |r| and 0< § < 1 if a sufficiently
large samples (of size polynomial il and 1/8) is drawn at random according o, then
with probability greater than & 8, S ep € S.

Theorem 5. Any concept class that is polynomially identifiable from characteristic sam-
ples or equivalently semi-polynomially T/L teachable is probably exactly learnable under
the PACS model.

Proof: The prooffollows directly from the results of Lemma 55, Lemma 4, and Corollary 1.
O

6.3. Learning from example based queries

A variety of concept classes are known to be learnable in deterministic polynomial time
when the learner is allowed access to a teacher (or an oracle) that aesaensle based
queries(Angluin, 1988). Example based queries incledgivalencemembershipsubset
supersetdisjointednesexhaustivgustifying assignmenandpartial equivalencejueries.

Definition 5((due to Goldman and Mathias (1993)). An example based query is any query
of the form

V(Xq, X, . .., X) € XX doesgy (X1, Xa, ..., X) = 1?
wherer is the target concept ardis a constant.

¢ may use the instances(. . ., Xk) to compute additional instances on which to perform
membership queries. The teacher’s response to example based queries igesitinea
counter example consisting Of1, Xo, . .., Xx) € X* (along with the correct classification
corresponding to each of tlkgs) for which ¢y (X1, X2, . . ., Xx) = 0andthe labeled examples
for which membership queries were made in order to evalfyate

30 R. PAREKH AND V. HONAVAR

Theorem 6 (due to Goldman and Mathias (1993))Any concept class that is learnable
in deterministic polynomial time using example based queries is semi-polynomially T/L
teachable.

The above theorem enables us to connect learning from example based queries to PACS
learning as follows.

Theorem 7. Any concept class that is learnable in deterministic polynomial time using
example based queries is probably exactly learnable under the PACS model.

Proof: Follows directly from Theorems 5 and 6. O

Recently Castro and Guijarro (1998) have independently shown that any concept class
thatis learnable using membership and equivalence queries is also learnable under the PACS
model. Further, they have intuitively demonstrated how this result can be extended to all
example based queries. Theorem 7 above is an alternate proof of the relationship between
query learning and PACS learning.

7. Collusion and PACS learning

Learning models that involve interaction between a knowledgeable teacher and a learner can
admit collusionwherein the teacher directly passes information about the representation
of the target function as part of the training set (Jackson & Tomkins, 1992; Goldman
& Mathias, 1996). Consider for simplicity that the instance spac@j4}" (i.e., the
training examples ara bits long). The teacher and learner capriori agree on some
suitable binary encoding of concepts. The teacher can then break the representation of
the target concept in to groups ofn bits and use the training set to pass these groups
as appropriately labeled examples to the learner. The learner could quickly discover the
target concept without even considering the labels of the training examplegedtte

ing modeldue to Jackson and Tomkins (1992) prevents this coding of the target concept
by requiring that the learner must still succeed if the teacher is replaced by an adversary
(who does not code the target concept as the teacher above). Further, they argue that in
their model the learner can stop only when it is convinced that there is only one con-
cept consistent with the information received from the teacher i.e., the teacher does not
tell the learner when to stop. Otherwise learning would be trivialized in that the teacher
passes groups ofbits to the learner (as training examples) and when sufficient number of
bits have been passed to the learner so as to reconstruct the representétios target
concept, the teacher tells the learner to stop. Goldman and Mathias’ work (1996) on
polynomial teachabilityshows that aradversarywhose task is to embed the training

set (also calledeaching sétprovided by the teacher into a larger set of correctly labeled
examples is sufficient to prevent the type of collusion discussed above. An interesting
quirk of the PACS learning model is the fact that the standard encoding of the target
conceptr is itself a simple example because by definitiéqr |r) is low. Thus,r has a

high probability under the universal distributiom . The PACS learning scenario wherein

LEARNING DFA FROM SIMPLE EXAMPLES 31

examples are drawn at random according to the universal distribaotjois similar to

the teaching framework in the above teaching models where a knowledgeable teacher
draws a helpful set of examples that would enable the learner to learn the target con-
cept efficiently. The representation of the target concetihat is drawn with high prob-

ability according tom,) could be broken into groups of bits and passed to the learner

as appropriately labeled training examples. This form of collusion wherein the teacher
directly passes an encoding of the target concept would not succeed in the presence of
an adversary who embeds the training set provided by the teacher into a larger set of
correctly labeled examples because in this case the learner who is operating by accumu-
lating bits would not know precisely when it has sufficient information to reconstruct the
target.

Another (perhaps more subtle) form of collusion comes to light when considering the
problem of learning DFA under the PACS model. In DFA learning individual examples
of the teaching set can be of different lengths. As discussed above, the canonical encod-
ing of the target DFAA (a stringr of length O(N Ig N)) appears with high probability
when the examples are drawn at random accordingitoThe fact that DFA learning
does not require fixed length examples meansthabuld itself appear with high prob-
ability as part of a polynomial sized training set. Of course, the learner cannot directly
identify which example string in the training set represents the target DFA. However, as-
suming that the teacher and the learner hapdori agreed on an encoding scheme for
the DFA, the learner can decode each labeled example and determine whether it repre-
sents a valid DFA. For each example that represents a valid DFA, the learner can test
whether the DFA obtained by decoding the example is consistent with the training set and
output (say) the first DFA in lexicographic order that is consistent with the training set.
With high probability the learner would output the target DFA. This constitutes a PACS
algorithm for learning DFA that is computationally more efficient than the RPNI based
PACS algorithm presented in this paper. In this form of collusion the learner is provided
with an encoding of the target concept but must perform some additional computation
to decode the examples and check that the extracted DFA is consistent with the training
set.

It is clear that the PACS learning framework admits collusion. Any learnability results
within models that admit collusion can be criticized on the grounds that the learning algo-
rithm might be collusive. One method of avoiding collusive learning is to tighten the learning
framework suitably. Collusion cannot take place if the representation of the target concept
cannot be directly encoded as part of the training set or if the learner cannot efficiently
decode the training examples and identify the one that is consistent with the training set. In
the event that the learning framework cannot be suitably tightened to avoid collusion, one
might provide a learning algorithm that does not rely on collusion between the teacher and
the learner. The RPNI based algorithm for learning DFA under the PACS model presented
in this paper is an example of a non-collusive algorithm in a learning framework that admits
collusion. Obtaining a general answer to the question of collusion in learning would require
the development of much more precise definitions of collusion and collusion-free learning
than are currently available. A detailed exploration of these issues is beyond the scope of
this paper.

32 R. PAREKH AND V. HONAVAR

8. Discussion

The problem of exact learning of the target DFA from an arbitrary set of labeled examples and
the problem of approximating the target DFA from labeled examples under Valiant's PAC
learning framework are both known to be hard problems. Thus, the question as to whether
DFA are efficiently learnable under some restricted yet fairly general and practically useful
classes of distributions is clearly of interest. In this paper, we have provided a framework
for efficient PAC learning of DFA from simple examples.

We have demonstrated that the class of logarithmic Kolmogorov complexity DFA is
polynomially learnable under the universal distributiorithe simple PAC learning model)
and the entire class of DFA is shown to be learnable under the universal distrimt{time
PACS learning model). When an upper bound on the number of states of the target DFA is
unknown, the algorithm for learning DFA und®@f can be used iteratively to efficiently PAC
learn the concept class of DFAs for any desired error and confidence pardmeherse
results have an interesting implication on the framework for incremental learning of the
target DFA. In the RPNI2 incremental algorithm for learning DFA, the learner maintains
a hypothesis that is consistent with all labeled examples seen thus far and modifies it
whenever a new inconsistent example is observed (Dupont, 1996). The convergence of this
algorithm relies on the fact that sooner or later, the set of labeled examples seen by the
learner will include a characteristic set. If in fact the stream of examples provided to the
learner is drawn according to a simple distribution, our results show that in an incremental
setting the characteristic set would be made available relatively early (during learning)
with a sufficiently high probability and hence the algorithm will converge quickly to the
desired target. Finally, we have shown the applicability of the PACS learning model in a
more general setting by proving that all concept classes that are polynomially identifiable
from characteristic samples according to Gold’s model, semi-polynomially T/L teachable
according to Goldman and Mathias’ model, and learnable in deterministic polynomial time
from example based queries are also probably exactly learnable under the PACS model.

Li and Vitanyi (1991) have shown that the classwofplek-reversible DFA is learnable
under the simple PAC model. A k-reversible DFAsisnpleif each state of the DFA lies
on a path (from the initial state to an accepting state) of Kolmogorov compléxityN).

They have shown that the classsohplek-reversible DFA includes k-reversible DFA whose
canonical representations have Kolmogorov compleRitlg N) and also some k-reversible
DFA whose canonical representations have a higher Kolmogorov complexity, for example,
O(lg? N). We have shown that the class of logarithmic Kolmogorov complexity DFA is
learnable under the simple PAC model. It is of interest to explore whether classes of DFA of
higher Kolmogorov complexity (such @3(Igk N) wherek > 1) are efficiently learnable
under the simple PAC model.

The class of simple distributions includes a large variety of probability distributions (in-
cluding all computable distributions). It has been shown that a concept class is efficiently
learnable under the universal distribution if and only if it is efficiently learnable under each
simple distribution provided that sampling is done according to the universal distribution (Li
& Vit'anyi, 1991). This raises the possibility of using sampling under the universal distribu-
tion to learn under all computable distributions. However, the universal distribution is not

LEARNING DFA FROM SIMPLE EXAMPLES 33

computable. Whether one can instead get by with a polynomially computable approxima-
tion of the universal distribution remains an open question. It is known that the universal
distribution for the class of polynomially-time bounded simple distributions is computable

in exponential time (Li & Viginyi, 1991). This opens up a number of interesting possibilities

for learning under simple distributions. Denis and Gilleron (1997) have proposed a model
of learning undetelpful distributions A helpful distribution is one in which examples
belonging to the characteristic set for the concept (if there exists one) are assigned non-zero
probability. A systematic characterization of the class of helpful distributions would perhaps
give us a more practical framework for learning from simple examples.

A related question of interest has to do with the nature of environments that can be
modeled by simple distributions. In particular, if Kolmogorov complexity is an appropriate
measure of the intrinsic complexity of objects in nature and if nature (or the teacher) has
a propensity for simplicity, then it stands to reason that the examples presented to the
learner by the environment are likely to be generated by a simple distribution. Against
this background, empirical evaluation of the performance of the proposed algorithms using
examples that come from natural domains is clearly of interest.

Acknowledgments

The authors wish to thank Jack Lutz for introducing them to Kolmogorov complexity, Giora
Slutzki for several helpful discussions on automata theory, Pierre Dupont for a careful review
of an earlier draft of this paper and several helpful suggestions, Colin de la Higuera and
Frarcois Denis for discussions which helped clarify some of the issues related to collusion,
and several anonymous referees for their insightful comments that have helped us to improve
the paper significantly. Vasant Honavar is grateful to the National Science Foundation for
the research grants IRI1-9409580 and IR1-9643299 that partially supported this work.

Notes

1. Define(x, y) = bd(x)01ly wherebd is the bit doubling function defined &=l(0) = 00,bd(1) = 11, and
bd(ax) = aabd(x), a € {0, 1}.
. The results of this section were presented earlier in Parekh and Honavar (1999).
. This enumeration strategy applies to any DFA and is not restricted to simple DFA alone.
. The results of this section were presented earlier in Parekh and Honavar (1997).
. Note that if the sum of the lengths of the examples belonging to alsétén the number of examples in that
setis at mosk + 1.
6. Recently it has been shown that if a concept class is learnable under the PACS model using an algorithm
that satisfies certain properties then logarithmic Kolmogorov complexity concepts of that concept class are
learnable under the simple PAC learning model (Castro & Guijarro, 1998).

ab~rwnN

References

Angluin, D. (1981). A note on the number of queries needed to identify regular languaf@sation and
Control, 51, 76-87.

Angluin, D. (1987). Learning regular sets from queries and counterexanipiesnation and Computation, 75
87-106.

34 R. PAREKH AND V. HONAVAR

Angluin, D. (1988). Queries and concept learniktachine Learning, 2:4319-342.

Castro, J., & Guijarro, D. (1998). Query, pacs and simple-pac learning. Technical Report LSI-98-2-R, Universitat
Polytéctica de Catalunya, Spain.

Chomsky, N. (1956). Three models for the description of languRG4T, 2:3 113-124.

Denis, F., D’Halluin, C., & Gilleron, R. (1996). Pac learning with simple exam@d#ACS’96—Proceedings of
the13" Annual Symposium on the Theoretical Aspects of Computer S¢Emc@31-242).

Denis, F., & Gilleron, R. (1997). Pac learning under helpful distributionBrérteedings of the Eighth International
Workshop on Algorithmic Learning Theory (ALT'97), Lecture Notes in Atrtificial Intelligence (31.6132—
145), Sendai, Japan.

Dupont, P. (1996). Incremental regular inference. In L. Miclet, & C. Higuera, (E@m}eedings of the Third
ICGI-96, Lecture Notes in Artificial Intelligence 114@p. 222—-237), Montpellier, France, Springer.

Dupont, P. (1996)Utilisation et apprentissage de mélés de language pour la reconnaissance de la parole
continue PhD thesis, Ecole Normale Sempéure des &€communications, Paris, France.

Dupont, P., Miclet, L., & Vidal, E. (1994). What is the search space of the regular inferen&&8deedings of
the Second International Colloquium on Grammatical Inference (ICGI(pg) 25-37). Alicante, Spain.

Gold, E. (1978). Complexity of automaton identification from given dafarmation and Control, 37:3302—-320.

Goldman, S., & Mathias, H. (1993). Teaching a smarter learn&rdoeedings of the Workshop on Computational
Learning Theory (COLT'93)pp. 67—76). ACM Press.

Goldman, S., & Mathias, H (1996). Teaching a smarter leadmrnal of Computer and System Scien&s
255-267.

Colin de la Higuera (1996). Characteristic sets for polynomial grammatical inference. In L. Miclet, & C. Higuera,
(Eds.),Proceedings of the Third ICGI-96, Lecture Notes in Artificial Intelligence Ip#$759—71). Montpellier,
France, Springer.

Hopcroft, J., & Ullman, J. (1979)ntroduction to automata theory, languages, and computafReading, MA:
Addison Wesley.

Jackson, J., & Tomkins, A. (1992). A computational model of teaching?rbceedings of the Workshop on
Computational Learning Theory (COLT'98)p. 319-326). ACM Press.

Kearns, M., & Valiant, L. G. (1989). Cryptographic limitations on learning boolean formulae and finite automata.
In Proceedings of the 21st Annual ACM Symposium on Theory of Compiing33—-444). New York: ACM.

Lang, K. (1992). Random DFAs can be approximately learned from sparse uniform sanffpiecéedings of the
5th ACM workshop on Computational Learning The¢pp. 45-52).

Li, M., & Vit'anyi, P. (1991). Learning simple concepts under simple distribut®i#gvi Journal of Computing,
20:5,911-935.

Li, M., & Vit"anyi, P. (1997)An introduction to Kolmogorov complexity and its applicatip{Znd ed.) New York:
Springer Verlag.

Oncina, J., & Garcia, P. (1992). Inferring regular languages in polynomial update time. kréz €t al. (eds.),
Pattern recognition and image analygjgp. 49—-61). Singapore: World Scientific.

Pao, T., & Carr, J. (1978). A solution of the syntactic induction-inference problem for regular langOaggsuter
Languages, 353—-64.

Parekh, R., & Honavar, V. (1993). Efficient learning of regular languages using teacher supplied positive examples
and learner generated queri&és Proceedings of the Fifth UNB Conference on(pp. 195-203). Fredricton,
Canada.

Parekh, R., & Honavar, V. (1997). Learning DFA from simple exampleBréeeedings of the Eighth International
Workshop on Algorithmic Learning Theory (ALT'97), Lecture Notes in Atrtificial Intelligence {31.6116—
131). Sendai, Japan, Springer. Also presented AMirkshop on Grammar Inference, Automata Induction, and
Language AcquisitiolCML'97), Nashville, TN, July 12, 1997.

Parekh, R & Honavar, V. (1999). Simple DFA are polynomially probably exactly learnable from simple examples.
In Proceedings of the Sixteenth International Conference on Machine Learning (ICMp{2298-306). Bled,
Slovenia.

Pitt, L. (1989). Inductive inference, DFAs and computational complexitAnalogical and Inductive Inference,
Lecture Notes in Atrtificial Intelligence, 39pp. 18—44). Springer-Verlag.

Pitt, L., & Warmuth, M. K. (1988). Reductions among prediction problems: on the difficulty of predicting automata.
In Proceedings of the 3rd IEEE Conference on Structure in Complexity Tliepr$0—69).

LEARNING DFA FROM SIMPLE EXAMPLES 35

Pitt, L., & Warmuth, M. K. (1989). The minimum consistency DFA problem cannot be approximated within any
polynomial. InProceedings of the 21st ACM Symposium on the Theory of Comfpfind21-432). ACM.

Rivest, R. L. & Schapire, R. E. (1993). Inference of finite automata using homing sequirioasation and
Computation, 103:2299-347.

Trakhtenbrot, B., & Barzdin, Ya. (1973finite Automata: Behavior and Synthesfsnsterdam, North Holland.

Valiant, L. (1984). A theory of the learnabl€éommunications of the ACM, 27134-1142.

Received December 12, 1998
Revised February 22, 2000
Accepted March 30, 2000
Final Manuscript April 24, 2000

