
Machine Learning, 44, 9–35, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Learning DFA from Simple Examples

RAJESH PAREKH rparekh@bluemartini.com
Blue Martini Software, 2600 Campus Drive, San Mateo, CA 94403, USA

VASANT HONAVAR honavar@cs.iastate.edu
Department of Computer Science, Iowa State University, Ames, IA 50011, USA

Editor: Colin de la Higuera

Abstract. Efficient learning of DFA is a challenging research problem ingrammatical inference. It is known that
both exact and approximate (in the PAC sense) identifiability of DFA is hard. Pitt has posed the following open
research problem: “Are DFA PAC-identifiable if examples are drawn from the uniform distribution, or some other
known simple distribution?” (Pitt, in Lecture Notes in Artificial Intelligence, 397, pp. 18–44, Springer-Verlag,
1989). We demonstrate that the class of DFA whose canonical representations have logarithmic Kolmogorov
complexity is efficiently PAC learnable under the Solomonoff Levin universal distribution (m). We prove that
the class of DFA is efficiently learnable under the PACS (PAC learning withsimpleexamples) model (Denis,
D’Halluin & Gilleron, STACS’96—Proceedings of the 13th Annual Symposium on the Theoretical Aspects of
Computer Science, pp. 231–242, 1996) wherein positive and negative examples are sampled according to the
universal distribution conditional on a description of the target concept. Further, we show that any concept that
is learnable under Gold’s model of learning from characteristic samples, Goldman and Mathias’ polynomial
teachability model, and the model of learning from example based queries is also learnable under the PACS model.

Keywords: DFA inference, exact identification, characteristic sets, PAC learning, collusion

1. Introduction

The problem of learning a minimum state DFA that is consistent with a given sample has been
actively studied for over two decades. DFAs are recognizers forregular languages which
constitute the simplest class in the Chomsky hierarchy of formal languages (Chomsky, 1956;
Hopcroft & Ullman, 1979). An understanding of the issues and problems encountered in
learning regular languages (or equivalently, identification of the corresponding DFA) are
therefore likely to provide insights into the problem of learning more general classes of
languages.

Exact learning of the target DFA from an arbitrary presentation of labeled examples is
a hard problem (Gold, 1978). Gold showed that the problem of identifying the minimum
state DFA consistent with a presentationScomprising of a finite non-empty set of positive
examplesS+ and possibly a finite non-empty set of negative examplesS− is N P-hard.
Under the standardcomplexity theoreticassumptionP 6= N P, Pitt and Warmuth (1989)
showed that no polynomial time algorithm can be guaranteed to produce a DFA with at
mostN(1−ε)log log(N) states from a set of labeled examples corresponding to a DFA withN
states.

10 R. PAREKH AND V. HONAVAR

Efficient algorithms for identification of DFAs assume that additional information is
provided to the learner. Trakhtenbrot and Barzdin (1973) described a polynomial time
algorithm for constructing the smallest DFA consistent with acomplete labeled samplei.e.,
a sample that includes all strings up to a particular length and the corresponding label that
states whether the string is accepted by the target DFA or not. Angluin (1981) showed that
given alive-completeset of examples (that contains a representative string for each live state
of the target DFA) and a knowledgeable teacher to answermembership queries(queries of
the form “Does the string y belong to the language of the target DFA?”) it is possible to
exactly learn the target DFA. In a later paper, Angluin (1987) relaxed the requirement of a
live-complete set and has described a polynomial time algorithm (L∗) for learning the target
DFA using bothmembershipandequivalencequeries (queries of the form “Is the current
hypothesis equivalent to the target DFA?”). TheL∗ algorithm tacitly assumes that the learner
has the capacity toresetthe DFA to the start state before posing each membership query.
This assumption might not be realistic in situations wherein it is not feasible to remember
the start state or the path taken from the start state to reach the current state while evaluating
a membership query. To overcome this limitation of the unknown start state, Rivest and
Schapire (1993) have proposed a learning method based onhoming sequencesthat runsN
copies ofL∗ in parallel, one for each of theN states of the target DFA. Theregular positive
and negative inference(RPNI) algorithm is a framework for identifying in polynomial time,
a DFA consistent with a given sampleS(Oncina & Garc´ıa, 1992). Further, ifS is a superset
of a characteristic set (see Section 2.1) for the target DFA then the DFA output by the RPNI
algorithm is guaranteed to be equivalent to the target (Oncina & Garc´ıa, 1992; Dupont,
1996).

Pitt surveyed several approaches forapproximateidentification of DFA (Pitt, 1989).
Valiant’s distribution-independent model of learning, also called theprobably approxi-
mately correct(PAC) learning model (Valiant, 1984), is a widely used framework for ap-
proximate learning of concept classes. When adapted to the problem of learning DFA,
the goal of a PAC learning algorithm is to obtain in polynomial time, with high proba-
bility, a DFA that is a good approximation of the target DFA. We define PAC learning of
DFA more formally in Section 2. Angluin’sL∗ algorithm (Angluin, 1987) that learns DFA
in polynomial time usingmembershipandequivalencequeries can be recast under the PAC
framework to learn by posing membership queries alone. Pitt and Warmuth (1988) showed
that the problem of polynomially approximate predictability of the class of DFA is hard.
They usedprediction preserving reductionsto show that if DFAs are polynomially ap-
proximately predictable then so are other known hard to learn concept classes such as
boolean formulas. Further, Kearns and Valiant (1989) showed that an efficient algorithm
for learning DFA would entail efficient algorithms for solving problems such as breaking
the RSAcryptosystem, factoringBlum integers, and detectingquadratic residues. Under
the standardcryptographic assumptionsthese problems are known to be hard to solve.
Thus, they argued that learning DFA from any randomly drawn set of examples is a hard
problem.

The PAC model’s requirement of learnability under all conceivable distributions is often
considered too stringent for practical learning scenarios. Pitt’s paper (1989) identified the
following open research problem: “Are DFA’s PAC-identifiable if examples are drawn from

LEARNING DFA FROM SIMPLE EXAMPLES 11

the uniform distribution, or some other known simple distribution?”. Using a variant of
Trakhtenbrot and Barzdin’s algorithm, Lang (1992) empirically demonstrated that random
DFAs are approximately learnable from a sparse uniform sample. However, exact iden-
tification of the target DFA was not possible even in the average case with a randomly
drawn training sample. Several efforts have been made to study the learnability of concept
classes under restricted classes of distributions. Li and Vit´anyi (1991) proposed a model
for PAC learning withsimpleexamples called thesimple PACmodel wherein the class of
distributions is restricted tosimpledistributions (see Section 4). Denis et al. (1996) pro-
posed a model of learning where examples are drawn at random according to the universal
distribution conditional on the knowledge of the target concept. This model is known as the
PACS learning model. In this paper, we present a method for efficient PAC learning of DFA
from simple examples. We will prove that the class of logarithmic Kolmogorov complexity
DFA (see Section 4) is learnable under the simple PAC model and the entire class of DFA
is learnable under the PACS model. Further, we demonstrate how the model of learning
from simple examples naturally extends the model oflearning concepts from representative
examples(Gold, 1978), thepolynomial teachabilitymodel (Goldman & Mathias, 1993),
and the model oflearning from example based queries(Angluin, 1988) to a probabilistic
framework.

This paper is organized as follows: Section 2 briefly introduces some concepts used in
the results described in this paper. This includes a discussion of the PAC learning model,
Kolmogorov complexity, and the universal distribution. Section 3 reviews the RPNI al-
gorithm for learning DFA. Section 4 discusses the PAC learnability of the class of log-
arithmic Kolmogorov complexity DFA under the simple PAC learning model. Section 5
demonstrates the PAC learnability of the entire class of DFA under the PACS learning
model. Section 6 analyzes the PACS model in relation with other models for concept
learning. Section 7 addresses the issue of collusion that arises because a helpful teacher
can potentially encode the target DFA as a labeled training example. Section 8 concludes
with a summary of the main contributions of this paper and some directions for future
research.

2. Preliminaries

Let 6 be a finite set of symbols called thealphabet; 6∗ be the set of strings over6;
α, β, γ be strings in6∗; and|α| be the length of the stringα. λ is a special string called
the null string and has length 0. Given a stringα = βγ , β is the prefix of α andγ is
the suffixof α. Let Pref(α) denote the set of all prefixes ofα. A language Lis a subset
of 6∗. The setPref(L) = {α |αβ ∈ L} is the set ofprefixesof the language and the
set Lα = {β | αβ ∈ L} is the set oftails of α in L. The standard orderof strings of
the alphabet6 is denoted by<. The standard enumeration of strings over6 = {a, b} is
λ,a, b,aa,ab, ba, bb,aaa, . . . The set ofshort prefixes Sp(L) of a languageL is defined
asSp(L) = {α ∈ Pref(L) | 6 ∃β ∈ 6∗ such thatLα = Lβ andβ < α}. Thekernel N(L)
of a languageL is defined asN(L) = {λ} ∪ {αa | α ∈ Sp(L),a ∈ 6,αa ∈ Pref(L)}.
Given two setsS1 andS2, let S1\S2 andS1⊕ S2 denote theset differenceand thesymmetric
differencerespectively. Let ln and lg denote the log to the basese and 2 respectively.

12 R. PAREKH AND V. HONAVAR

Figure 1. Deterministic finite state automaton.

2.1. Finite automata

A deterministicfinite state automaton (DFA) is a quintupleA = (Q, δ,6,q0, F) where,
Q is a finite set of states,6 is a finite alphabet,q0 ∈ Q is the start state,F ⊆ Q is the set
of accepting states, andδ is the transition function:Q×6→ Q. A stated0 ∈ Q such that
∀a ∈ 6, δ(d0,a) = d0 is called adeadstate. The extension ofδ to handle input strings is
standard and is denoted byδ∗. The set of all strings accepted byA is its language,L(A). The
language accepted by a DFA is called aregular language. Figure 1 shows the state transition
diagram for a sample DFA. Anon-deterministicfinite automaton (NFA) is defined just like
the DFA except that the transition functionδ defines a mapping fromQ × 6 → 2Q. In
general, a finite state automaton (FSA) refers to either a DFA or a NFA.

Given any FSAA′, there exists a minimum state DFA (also called thecanonical DFA,
A) such thatL(A) = L(A′). Without loss of generality, we will assume that the target
DFA being learned is a canonical DFA. LetN denote the number of states ofA. It can be
shown that any canonical DFA has at most one dead state (Hopcroft & Ullman, 1979). One
can define a standard encoding of DFA as binary strings such that any DFA withN states
is encoded as a binary string of lengthO(N lg N). A labeled example (α, c(α)) for A is
such thatα ∈ 6∗ andc(α) = + if α ∈ L(A) (i.e.,α is a positive example) orc(α) = − if
α 6∈ L(A) (i.e., α is a negative example). LetS+ and S− denote the set ofpositiveand
negativeexamples ofA respectively.A is consistent with asample S= S+ ∪ S− if it
accepts all positive examples and rejects all negative examples.

A set S+ is said to bestructurally completewith respect to a DFAA if S+ covers each
transition of A (except the transitions associated with the dead stated0) and uses every
element of the set of final states ofA as an accepting state (Pao & Carr, 1978; Parekh &
Honavar, 1993; Dupont et al., 1994). It can be verified that the setS+ = {b,aa,aaaa}
is structurally complete with respect to the DFA in figure 1. Given a setS+, let PTA(S+)
denote theprefix tree acceptorfor S+. PTA(S+) is a DFA that contains a path from the
start state to an accepting state for each string inS+ modulo common prefixes. Clearly,
L(PTA(S+)) = S+. Learning algorithms such as the RPNI (see Section 3) require the states
of the PTA to be numbered in standard order. If we consider the setPref(S+) of prefixes of

LEARNING DFA FROM SIMPLE EXAMPLES 13

Figure 2. Prefix tree automaton.

the setS+ then each state of the PTA corresponds to a unique element in the setPref(S+)
i.e., for each stateqi of the PTA there exists exactly one stringαi in the setPref(S+) such
that δ∗(q0, αi) = qi and viceversa. The strings ofPref(S+) are sorted in standard order
< and each stateqi is numbered by the position of its corresponding stringαi in the sorted
list. ThePTA for the setS+ = {b,aa,aaaa} is shown in figure 2. Note that its states are
numbered in standard order.

Given a FSAA and a partitionπ on the set of statesQ of A (ignoring the dead stated0 and
its associated transitions), we define thequotient automaton Aπ = (Qπ , δπ ,6, B(q0, π),

Fπ) obtained by merging the states ofA that belong to the same block of the partitionπ as
follows: Qπ = {B(q, π) | q ∈ Q} is the set of states with each state represented uniquely
by the blockB(q, π) of the partitionπ that contains the stateq, Fπ = {B(q, π) | q ∈ F}
is the set of accepting states, andδπ : Qπ × 6 → 2Qπ is the transition function such that
∀B(qi , π), B(qj , π) ∈ Qπ , ∀a ∈ 6, B(qj , π) = δπ (B(qi , π),a) iff qi ,qj ∈ Q andqj =
δ(qi ,a). Note that a quotient automaton of a DFA might be a NFA and viceversa. For ex-
ample, the quotient automaton corresponding to the partitionπ = {{Q0, Q1}, {Q2}, {Q3}}
of the set of states of the DFA in figure 1 is shown in figure 3.

The set of all quotient automata obtained by systematically merging the states of a DFA
A represents alattice of FSA (Pao & Carr, 1978). This lattice is ordered by thegrammar
coverrelation¹. Given two partitionsπi = {B1, B2, . . . , Br } andπ j = {B1, B2, . . . , Bk}
of the states ofA, we say thatπi coversπ j (writtenπ j ¹ πi) if r = k − 1 and for some

Figure 3. Quotient automaton.

14 R. PAREKH AND V. HONAVAR

1≤ l ,m ≤ k, πi = {π j \{Bl , Bm} ∪ {Bl ∪ Bm}}. The transitive closureof ¹ is denoted by
¿. We say thatAπ j ¿ Aπi iff L (Aπ j) ⊆ L(Aπi). Given a canonical DFAA and a setS+

that is structurally complete with respect toA, the latticeÄ(S+) derived fromPTA(S+) is
guaranteed to containA (Pao & Carr, 1978; Parekh & Honavar, 1993; Dupont et al., 1994).

A sampleS = S+ ∪ S− is said to becharacteristicwith respect to a regular language
L (with a canonical acceptorA) if it satisfies the following two conditions (Oncina &
Garcı́a, 1992):

• ∀α ∈ N(L), if α ∈ L thenα ∈ S+ else∃β ∈6∗ such thatαβ ∈ S+.
• ∀α ∈ Sp(L), ∀β ∈ N(L), if Lα 6= Lβ then∃γ ∈6∗ such that(αγ ∈ S+ andβγ ∈ S−) or
(βγ ∈ S+ andαγ ∈ S−).

Intuitively, Sp(L), the set of short prefixes ofL is a live complete set with respect to
A in that for each live stateq ∈ Q, there is a stringα ∈ Sp(L) such thatδ∗(q0, α) = q.
The kernelN(L) includes the set of short prefixes as a subset. Thus,N(L) is also a live
complete set with respect toA. Further,N(L) covers every transition between each pair of
live states ofA. i.e., for all live statesqi ,qj ∈ Q, for all a ∈ 6, if δ(qi ,a) = qj then there
exists a stringγ ∈ N(L) such thatγ = αa andδ∗(q0, α) = qi . Thus, condition 1 above
which identifies a suitably defined suffixβ ∈ 6∗ for each stringα ∈ N(L) such that the
concatenated stringαβ ∈ L implies structural completeness with respect toA. Condition
2 implies that for any two distinct states ofA there is a suffixγ that would correctly
distinguish them. In other words, for anyqi ,qj ∈ Q whereqi 6≡ qj , ∃γ ∈ 6∗ such that
δ∗(qi , γ) ∈ F andδ∗(qj , γ) 6∈ F or viceversa. Given the languageL corresponding to
the DFA A in figure 1, the set of short prefixes isSp(L) = {λ,a, b,aa} and the kernel
is N(L) = {λ,a, b,aa,aaa}. It can be easily verified that the setS = S+ ∪ S− where
S+ = {b,aa,aaaa} andS− = {λ,a,aaa, baa} is a characteristic sample forL.

2.2. PAC learning of DFA

Let X denote thesample spacedefined as the set of all strings6∗. Let x ⊆ X denote a
concept. For our purpose,x is aregular language. We identify the concept with the corre-
sponding DFA and denote the class of all DFA as theconcept classC. Therepresentation
R that assigns a name to each DFA inC is defined as a functionR : C → {0, 1}∗.R is the
set of standard encodings of the DFAs inC. Assume that there is an unknown and arbitrary
but fixed distributionD according to which the examples of the target concept are drawn.

Definition 1 (due to Pitt (1989)). DFAs are PAC-identifiableiff there exists a (possibly
randomized) algorithmA such that on input of any parametersε andδ, for any DFAM of
sizeN, for any numberm, and for any probability distributionD on strings of6∗ of length
at mostm, if A obtains labeled examples ofM generated according to the distributionD,
thenA produces a DFAM ′ such that with probability at least 1− δ, the probability (with
respect to distributionD) of the set{α | α ∈ L(M)⊕ L(M ′)} is at mostε. The run time of
A (and hence the number of randomly generated examples obtained byA) is required to
be polynomial inN, m, 1/ε, 1/δ, and|6|.

LEARNING DFA FROM SIMPLE EXAMPLES 15

In several typical learning tasks all example strings for a given target concept are of the
same length. Example strings of DFAs can be of different lengths. Thus, in the context of
DFA learning,D is restricted to a probability distribution on strings of6∗ of length at mostm
in order to prevent inordinately long strings from being drawn. Note that for any distribution
D over6∗ and for an arbitrarily smallγ > 0, there exists a lengthmsuch that the probability
of any string of length greater thanm is at mostγ . Thus, there is a distribution̂D assigning
zero probability to all strings of length greater thanm such thatD̂ approximatesD within
γ (Pitt, 1989). In theL∗ algorithm for learning DFA (Angluin, 1987), the longest example
seen by the learner is typically the longest counter-example presented by the teacher. If we
assume a scenario wherein the teacher always presents the learner with the shortest possible
counter-example then it can be shown that counter-examples of length no more than 2N−1
are needed to correctly learn the target DFA ofN states. Thus, in practice we will assume
thatm≥ 2N− 1.

Definition 2. DFAs areprobably exactly learnable iffthere exists a (possibly randomized)
algorithmA such that for any given value of the input parameterδ, for any DFAM of size
N, for any numberm, and for any probability distributionD on strings of6∗ of length
at mostm, if A obtains labeled examples ofM generated according to the distributionD,
thenA produces a DFAM ′ such that with probability at least 1− δ, M ′ is equivalent to
M i.e., PrD({α | α ∈ L(M)⊕ L(M ′)} = 0). The run time ofA (and hence the number of
randomly generated examples obtained byA) is required to be polynomial inN, m, 1/δ,
and|6|.

2.3. Kolmogorov complexity

Note that the definition of PAC learning requires that the concept class (in this case the
class of DFA) must be learnable under any arbitrary (but fixed) probability distribution.
This requirement is often considered too stringent in practical learning scenarios where it
is not unreasonable to assume that a learner is first provided withsimpleandrepresentative
examples of the target concept. Intuitively, when we teach a child the rules ofmultiplication
we are more likely to first give simple examples like 3× 4 than examples like 1377× 428.
A representative setof examples is one that would enable the learner to identify the target
concept exactly. For example, the characteristic set of a DFA would constitute a suitable
representative set. The question now is whether we can formalize what simple examples
mean.Kolmogorov complexityprovides a machine independent notion ofsimplicity of
objects. Intuitively, the Kolmogorov complexity of an object represented by a binary string
α is the length of the shortest binary program that computesα. Objects that have regularity in
their structure (i.e., objects that can be easily compressed) have low Kolmogorov complexity.
For example, consider the strings1 = 010101. . .01 = (01)500. On a particular machine
M , a program to compute this string would be “Print 01 500 times”. On the other hand
consider a totally random strings2 = 110011010. . . 00111. Unlikes1, it is not possible to
compress the strings2 which means that a program to computes2 on M would be “Print
1100111010000. . .00111”, i.e., the program would have to explicitly specify the strings2.
The length of the program that computess1 is shorter than that of the program that computes

16 R. PAREKH AND V. HONAVAR

s2. Thus, we could argue thats1 has lower Kolmogorov complexity thans2 with respect to
the machineM .

We will consider theprefixversion of the Kolmogorov complexity that is measured with
respect to prefix Turing machines and denoted byK . A Turing machineM is a prefix
Turing machineif the set of inputsP for which M halts is aprefix code, i.e., no element
of P is a prefix of any other element ofP. Consider a prefix Turing machine that imple-
ments the partial recursive functionφ : {0, 1}∗ partial−→ {0, 1}∗. For any stringα ∈ {0, 1}∗, the
Kolmogorov complexity ofα relative toφ is defined asKφ(α) = min{|π | | φ(π) = α}
whereπ ∈ {0, 1}∗ is a program input to the Turing machine. Prefix Turing machines can be
effectively enumerated and there exists aUniversal Turing Machine(U) capable of simu-
lating every prefix Turing machine. Assume that the universal Turing machine implements
the partial functionψ . The Optimality Theoremfor Kolmogorov complexity guarantees
that for any prefix Turing machineφ there exists a constantcφ such that for any stringα,
Kψ(α) ≤ Kφ(α)+ cφ . Note that we use the name of the Turing Machine (sayM) and the
partial function it implements (sayφ) interchangeably i.e.,Kφ(α) = KM(α). Further, by
the Invariance Theoremit can be shown that for any two universal machinesψ1 andψ2

there is a constantη ∈ N (whereN is the set of natural numbers) such that for all stringsα,
|Kψ1(α)− Kψ2(α)| ≤ η. Thus, we can fix a single universal Turing machineU and denote
K (α) = KU (α). Note that there exists a Turing machine that computes the identity function
χ : {0, 1}∗ → {0, 1}∗ where∀α, χ(α) = α. Thus, it can be shown that the Kolmogorov
complexity of an object is bounded by its length, i.e.,K (α) ≤ |α| + K (|α|)+ η whereη is
a constant independent ofα.

Suppose that some additional information in the form of a stringβ is available to the
Turing machineφ. The conditional Kolmogorov complexity of any objectα given β is
defined asKφ(α |β) = min{|π | | φ(〈π, β〉) = α} whereπ ∈ {0, 1}∗ is a program and
〈x, y〉 is a standard pairing function1. Note that the definition of conditional Kolmogorov
complexity does not charge for the extra informationβ that is available toφ along with
the programπ . Fixing a single universal Turing machineU we denote the conditional
Kolmogorov complexity ofα by K (α | β) = KU (α |β). It can be shown thatK (α |β) ≤
K (α)+ η whereη is a constant independent ofα.

2.4. Universal distribution

The Solomonoff Levin universal distributionm is auniversal enumerable probability dis-
tribution in that it multiplicatively dominates all enumerable probability distributions. For-
mally, ∀i ∈ N+ ∃c > 0 ∀x ∈ N [cm(x) ≥ Pi (x)] whereP1, P2, . . . is an enumeration of
all enumerable probability distributions andN is the set of natural numbers. It can be shown
thatm(x) = 2−K (x)+O(1). Thus, underm, simple objects (or objects with low Kolmogorov
complexity) have a high probability, and complex or random objects have a low proba-
bility. Given a stringr ∈ 6∗, the universal distribution conditional on the knowledge ofr ,
mr , is defined asmr (α) = 2−K (α | r)+O(1) (Denis et al., 1996). Further,∀r ∈ 6∗ ∑α mr (α)

< 1.
The interested reader is referred to Li and Vit´anyi (1997) for a thorough treatment of

Kolmogorov complexity, universal distribution, and related topics.

LEARNING DFA FROM SIMPLE EXAMPLES 17

3. The RPNI algorithm

The regular positive and negative inference(RPNI) algorithm (Oncina & Garc´ıa, 1992)
is a polynomial time algorithm for identification of a DFA consistent with a given set
S= S+ ∪ S−. If the sample is a characteristic set for the target DFA then the algorithm is
guaranteed to return a canonical representation of the target DFA. Our description of the
RPNI algorithm is based on the explanation given in Dupont (1996).

A labeled sampleS= S+ ∪ S− is provided as input to the algorithm. It constructs a prefix
tree automatonPTA(S+) and numbers its states in the standard order. Then it performs an
ordered search in the space of partitions of the set of states ofPTA(S+) under the control
of the set of negative examplesS−. The partition,π0, corresponding to the automaton
PTA (S+) itself is {{0}, {1}, . . . , {N̄ − 1}} where N̄ is the number of states of the PTA.
Mπ0 = PTA(S+) is consistent with all the training examples and is treated as the initial
hypothesis. The current hypothesis is denoted byMπ and the corresponding partition is
denoted byπ . The algorithm is outlined in figure 4. The nestedfor loop refines the partition
π by merging the states ofPTA(S+) in order. At each step, a partitioñπ is obtained from
the partitionπ by merging the two blocks that contain the statesi and j respectively.

Figure 4. The RPNI algorithm.

18 R. PAREKH AND V. HONAVAR

The functionderiveobtains the quotient automatonMπ̃ , corresponding to the partitioñπ .
Mπ̃ might be a NFA in which case the functiondeterministicmergeconverts the NFA
to a DFA by recursively merging the states that cause non-determinism. For example, if
qi , qj , andqk are states ofMπ̃ such that for somea ∈ 6, δ(qi ,a) = {qj ,qk} then the
statesqj andqk are merged together. This recursive merging of states can go on for at
most N̄ − 1 steps and the resulting automatonMπ̂ is guaranteed to be a DFA (Dupont,
1996). Note that ifMπ̃ is a NFA then the resulting DFA obtainedMπ̂ obtained by invoking
deterministicmergeis not necessarily equivalent toMπ̃ . However, sincẽπ ¿ π̂ we know
by the grammar covers relation thatL(Mπ̃) ⊆ L(Mπ̃) and thus, ifMπ̃ accepts a negative
example inS− then so wouldMπ̂ . The function,consistent(Mπ̂ , S−) returnsTrue if Mπ̂

is consistent with all examples inS− andFalseotherwise. If a partition̂π is found such
that the corresponding DFAMπ̂ is consistent withS− thenMπ̂ replacesMπ as the current
hypothesis.

Let‖S+‖ and‖S−‖ denote the sums of the lengths of examples inS+ andS− respectively.
PTA (S+) hasO(‖S+‖) states. The nestedfor loop of the algorithm performsO(‖S+‖2)
state merges. Further, each time two blocks of the partitionπ are merged, the routine
deterministicmergein the worst case would causeO(‖S+‖) state mergings and the function
consistentthat checks for the consistency of the derived DFA with the negative examples
would incur a cost ofO(‖S−‖). Hence the time complexity of the RPNI algorithm is
O((‖S+‖ + ‖S−‖) · ‖S+‖2).

Example. We demonstrate the execution of the RPNI algorithm on the task of learning
the DFA in figure 1. Note that for convenience we have shown the target DFA in figure 5
without the dead stated0 and its associated transitions. Assume that a sampleS= S+ ∪ S−

whereS+ = {b,aa,aaaa} andS− = {λ,a,aaa, baa}. It can be easily verified thatS is a
characteristic sample for the target DFA. The DFAM =PTA(S+) is depicted in figure 2
where the states are numbered in the standard order. The initial partition isπ = π0 =
{{0}, {1}, {2}, {3}, {4}, {5}}.

The algorithm attempts to merge the blocks containing states 1 and 0 of the partitionπ .
The quotient FSAMπ̃ and the DFAMπ̂ obtained after invokingdeterministicmergeare

Figure 5. Target DFAA.

LEARNING DFA FROM SIMPLE EXAMPLES 19

Figure 6. Mπ̃ obtained by fusing blocks containing the states 1 and 0 ofπ and the correspondingMπ̂ .

Figure 7. Mπ̃ (same asMπ̂) obtained by fusing blocks containing the states 2 and 0 ofπ .

shown in figure 6. The DFAMπ̂ accepts the negative exampleλ ∈ S−. Thus, the current
partitionπ remains unchanged.

Next the algorithm merges the blocks containing states 2 and 0 of the partitionπ . The quo-
tient FSAMπ̃ is depicted in figure 7. SinceMπ̃ is a DFA, the proceduredeterministicmerge
returns the same automaton i.e.,Mπ̂ = Mπ̃ . Mπ̂ accepts the negative exampleλ ∈ S− and
hence the partitionπ remains unchanged.

Table 1 lists the different partitions̃π obtained by fusing the blocks ofπ0, the partitions
π̂ obtained bydeterministicmergeof π̃ , and the negative example (belonging toS−), if
any, that is accepted by the quotient FSAMπ̂ . The partitions marked∗ denote the partition
π for which Mπ is consistent with all examples inS− and hence is the current hypothesis.
It is easy to see that the DFA corresponding to the partitionπ = {{0}, {1, 4}, {2}, {3, 5}} is
exactly the target DFA we are trying to learn (figure 1).

4. Learning logarithmic Kolmogorov complexity DFA under the simple PAC model

Li and Vitányi (1991) have proposed a simple PAC learning model where the class of
probability distributions is restricted tosimpledistributions. A distribution is simple if it is
multiplicatively dominated by some enumerable distribution. Simple distributions properly
include all computable distributions. Distributions that we commonly use in statistics such
as theuniform distribution, normal distribution, geometric distribution, andPoisson distri-
butionare simple if restricted to finite precision parameters. Further, thesimple distribution
independent learning theoremsays that a concept class is learnable under the universal
distributionm iff it is learnable under the entire class ofsimple distributionsprovided the
examples are drawn according to the universal distribution (Li & Vit´anyi, 1991). Thus, the
simple PAC learning model is sufficiently general. Concept classes such as logn-term DNF

20 R. PAREKH AND V. HONAVAR

Table 1. Execution of the RPNI algorithm.

Partitionπ̃ Partitionπ̂ Negative example

{{0, 1}, {2}, {3}, {4}, {5}} {{0, 1, 3, 4, 5}, {2}} a

{{0, 2}, {1}, {3}, {4}, {5}} {{0, 2}, {1}, {3}, {4}, {5}} λ

{{0}, {1, 2}, {3}, {4}, {5}} {{0}, {1, 2}, {3}, {4}, {5}} a

{{0, 3}, {1}, {2}, {4}, {5}} {{0, 3}, {1, 4}, {2}, {5}} λ

{{0}, {1, 3}, {2}, {4}, {5}} {{0}, {1, 3, 4, 5}, {2}} a

{{0}, {1}, {2, 3}, {4}, {5}} {{0}, {1}, {2, 3}, {4}, {5}} baa

{{0, 4}, {1}, {2}, {3}, {5}} {{0, 4}, {1, 5}, {2}, {3}} a

{{0}, {1, 4}, {2}, {3}, {5}} {{0}, {1, 4}, {2}, {3, 5}}∗ —

{{0, 3, 5}, {1, 4}, {2}} {{0, 3, 5}, {1, 4}, {2}} λ

{{0}, {1, 3, 4, 5}, {2}} {{0}, {1, 3, 4, 5}, {2}} a

{{0}, {1, 4}, {2, 3, 5}} {{0}, {1, 4}, {2, 3, 5}} baa

{{0}, {1, 4}, {2}, {3, 5}} {{0}, {1, 4}, {2}, {3, 5}}∗ —

{{0}, {1, 3, 4, 5}, {2}} {{0}, {1, 3, 4, 5}, {2}} a

andsimple k-reversible DFAare learnable under the simple PAC model whereas their PAC
learnability in the standard sense is unknown (Li & Vit´anyi, 1991). We show that the class
of DFA whose Kolmogorov complexity isO(lg N) are polynomially learnable under the
simple PAC learning model2. We saw in Section 2.3 that a natural learning scenario would
typically involve learning from asimpleandrepresentativeset of examples for the target
concept. We adopt Kolmogorov complexity as a measure of simplicity and define simple
examples as those with low Kolmogorov complexity, i.e., with Kolmogorov complexity
O(lg N). Further, a characteristic set for the DFAA can be treated as its representative set.

We demonstrate that for every DFA with Kolmogorov complexityO(lg N) there exists
a characteristic set of simple examplesSc.

Lemma 1. For any N state DFA with Kolmogorov complexity O(lg N) there exists a
characteristic set of simple examples Sc such that the length of each string in this set is at
most2N − 1.

Proof: Consider the following enumeration of a characteristic set of examples for a DFA
A = (Q, δ,6,q0, F) with N states3.

1. Fix an enumeration of the shortest paths (in standard order) from the stateq0 to each
state inQ except the dead state. This is the set of short prefixes ofA. There are at most
N such paths and each path is of length at mostN − 1.

2. Fix an enumeration of paths that includes each path identified above and its extension by
each letter of the alphabet6. From the paths just enumerated retain only those that do
not terminate in the dead state ofA. This represents the kernel ofA. There are at most
N(|6| + 1) such paths and each path is of length at mostN.

LEARNING DFA FROM SIMPLE EXAMPLES 21

3. Let the characteristic set be denoted bySc = S+c ∪ S−c .

(A) For each stringα identified in step 2 above, determine the first suffixβ in the
standard enumeration of strings such thatαβ ∈ L(A). Since|α| ≤ N, andβ is the
shortest suffix in the standard order it is clear that|αβ| ≤ 2N − 1. Each suchαβ is
a member ofS+c .

(B) For each pair of strings (α, β) in order whereα is a string identified in step 1,β is a
string identified in step 2, andα andβ lead to different states ofA determine the first
suffixγ in the standard enumeration of strings such thatαγ ∈ L(A) andβγ 6∈ L(A)
or viceversa. Since|α| ≤ N− 1, |β| ≤ N, andγ is the shortest distinguishing suffix
for the states represented byα andβ it is clear that|αγ |, |βγ | ≤2N − 1. The
accepted string from amongαγ andβγ is a member ofS+c and the rejected string
is a member ofS−c .

Trivial upper bounds on the sizes ofS+c and S−c are |S+c | ≤ N2(|6| + 1) + N(|6|),
|S−c | ≤ N2(|6| + 1) − N. Thus,|Sc| = O(N2). Further, the length of each string inSc is
less than 2N − 1.

The strings inSc can be ordered such that individual strings can be identified by an
index of lengthO(lg N) bits. There exists a Turing machineM that implements the above
algorithm for constructing the setSc. M takes as input an encoding of the DFA of length
O(lg N) bits and an index of lengthO(lg N) bits and outputs the corresponding stringα
belonging toSc. Thus,∀α ∈ Sc, K (α) = O(lg N). This proves the lemma. 2

Lemma 2. Suppose a sample S is drawn according tom. For 0 < δ ≤ 1, there exist
constants k1 > 0 and k2 > 0 such that if|S| ≥ Nk1(ln(1

δ
) + ln(k2) + ln(N2)) then with

probability greater than1− δ, Sc ⊆ S.

Proof: From Lemma 1 we know that∀α ∈ Sc, K (α) = O(lg N). Further,|Sc| = O(N2).
By definition,m(α) ≥ 2−K (α). Thus,m(α) ≥ 2−k1 lg N or equivalentlym(α) ≥ N−k1 where
k1 is a positive constant.

Pr(α ∈ Sc is not sampled in one random draw) ≤ (1− N−k1)

Pr(α ∈ Sc is not sampled in|S| random draws) ≤ (1− N−k1)|S|

Pr(someα ∈ Sc is not sampled in|S| random draws) ≤ |Sc|(1− N−k1)|S|

≤ k2N2(1− N−k1)|S|

since|Sc| = O(N2)

Pr(Sc 6⊆ S) ≤ k2N2(1− N−k1)|S|

We want this probability to be less thanδ.

k2N2(1− N−k1)|S| ≤ δ
k2N2(e−N−k1

)|S| ≤ δ since 1− x ≤ e−x if x ≥ 0

22 R. PAREKH AND V. HONAVAR

ln(k2)+ ln(N2)− N−k1|S| ≤ ln(δ)

|S| ≥ Nk1

(
ln

(
1

δ

)
+ ln(k2)+ ln(N2)

)
Thus, Pr(Sc ⊆ S) ≥ 1− δ. 2

We now prove that the class of DFA withO(lg N) complexity is polynomially learnable
underm.

Theorem 1. For all N , the classC≤N of DFA having at most N states and Kolmogorov
complexity O(lg N) is probably exactly learnable under the simple PAC model.

Proof: Let A be a DFA with at mostN states andK (A) = O(lg N). Let Sc be a charac-
teristic sample ofA enumerated as described in Lemma 1 above. Recall that the examples
in Sc are simple (i.e., each example has Kolmogorov complexityO(lg N)). Now consider
the algorithmA1 in figure 8 that draws a sampleSwith the following properties.

1. S = S+ ∪ S− is a set of positive and negative examples corresponding to the target
DFA A.

2. The examples inSare drawn at random according to the distributionm.
3. |S| is at leastNk1(ln(1

δ
)+ ln(k2)+ ln(N2)) wherek1 andk2 are positive constants.

Lemma 1 showed that for every DFAAwith K (A) = O(lg N) there exists a characteristic
set of simple examplesSc where each example is of length at most 2N−1. Lemma 2 showed
that if a labeled sampleS of size at leastNk1(ln(1

δ
) + ln(k2) + ln(N2)) (wherek1 andk2

are positive constants) is randomly drawn according tom then with probability greater than
1− δ, Sc ⊆ S. The RPNI algorithm is guaranteed to return a canonical representation of the
target DFAA if the set of examplesSprovided is a superset of a characteristic setSc. Since
the size ofS is polynomial inN and 1/δ and the length of each string inS is restricted to
2N − 1, the RPNI algorithm, and thus the algorithmA1 can be implemented to run in time
polynomial in N and 1/δ. Thus, with probability greater than 1− δ, A1 is guaranteed to
return a canonical representation of the target DFAA. This proves the result. 2

Figure 8. A probably exact algorithm for learning simple DFA.

LEARNING DFA FROM SIMPLE EXAMPLES 23

5. Learning DFA under the PACS model

In Section 4 we proved that the class ofO(lg N) Kolmogorov complexity DFA is learnable
under the simple PAC model where the underlying distribution is restricted to the universal
distributionm. Denis et al. (1996) proposed a model of learning (called the PACS model)
where examples are drawn at random according to the universal distribution conditional
on the knowledge of the target concept. Under this model, examples with low conditional
Kolmogorov complexity given a representationr of the target concept are called simple
examples. Specifically, for a concept with representationr , the setSr

sim = {α | K (α | r) ≤
µlg(|r |)} (whereµ is a constant) is the set of simple examples for that concept. Further,
Sr

sim,rep is used to denote a set of simple and representative examples ofr . The PACS model
restricts the underlying distribution tomr (wheremr (α) = 2−K (α|r)+O(1)). Representative
examples for the target concept are those that enable the learner to exactly learn the target.
As explained earlier, the characteristic set corresponding to a DFA can be treated as a
representative set for the DFA. The Occam’s Razor theorem proved by Denis et al. (1996)
states that if there exists a representative set of simple examples for each concept in a
concept class then the concept class is PACS learnable.

We now demonstrate that the class of DFA is efficiently learnable under the PACS model4.
Lemma 3 proves that for any DFAA with standard encodingr there exists a characteristic
set of simple examplesSr

sim,rep.

Lemma 3. For any N state DFA with standard encoding r (|r | = O(N lg N)), there exists
a characteristic set of simple examples(denoted by Srsim,rep) such that each string of this
set is of length at most2N − 1.

Proof: Given a DFAA = (Q, δ,6,q0, F), it is possible to enumerate a characteristic set
of examplesSc for A as described in lemma 1 such that|Sc| = O(N2) and each example
of Sc is of length at most 2N − 1. Individual strings inSc can be identified by specifying
an index of lengthO(lg N). There exists a Turing machineM that implements the above
algorithm for constructing the setSc. Given the knowledge of the target conceptr , M can
take as input an index of lengthO(lg N) bits and output the corresponding string belonging
to Sc. Thus,∀α ∈ Sc, K (α | r) = O(lg N) ≤ µ lg(|r |) whereµ is a constant . We define the
setSc to be the characteristic set of simple examplesSr

sim,rep for the DFAA. This proves the
lemma. 2

Lemma 4 (Due to Denis et al. (1996)). Suppose that a sample S is drawn according to
mr . For an integer l≥ |r | , and0 < δ ≤ 1, if | S| ≥ lµ (ln(2) + ln(lµ) + ln(1/δ)) then
with probability greater than1− δ, Sr

sim ⊆ S.

Proof:

Claim 4.1: ∀α ∈ Sr
sim, mr (α) ≥ l−µ

mr (α) ≥ 2−K (α|r)

≥ 2−µlg|r |

24 R. PAREKH AND V. HONAVAR

≥ |r |−µ
≥ l−µ

Claim 4.2: |Sr
sim| ≤ 2lµ

|Sr
sim| ≤ |{α ∈ {0, 1}∗ | K (α | r) ≤ µlg(|r |)}|
≤ |{α ∈ {0, 1}∗ | K (α | r) ≤ µlg(l)}|
≤ |{β ∈ {0, 1}∗ | |β| ≤ µlg(l)}|
≤ 2µlg(l)+1

≤ 2lµ

Claim 4.3: |S| ≥ lµ (ln(2)+ ln(lµ)+ ln(1/δ)) then Pr(Sr
sim ⊆ S) ≥ 1− δ

Pr
(
α ∈ Sr

sim is not sampled in one random draw
) ≤ (1− l−µ)

(claim 4.1)

Pr
(
α ∈ Sr

sim is not sampled in|S| random draws
) ≤ (1− l−µ)|S|

Pr
(
someα ∈ Sr

sim is not sampled in|S| random draws
) ≤ 2lµ(1− l−µ)|S|

(claim 4.2)

Pr
(
Sr

sim 6⊆ S
) ≤ 2lµ(1− l−µ)|S|

We would like this probability to be less thanδ.

2lµ(1− l−µ)|S| ≤ δ
2lµ(e−l−µ)|S| ≤ δ, since 1− x ≤ e−x if x ≥ 0

ln(2)+ ln(lµ)− |S|l−µ ≤ ln(δ)

|S| ≥ lµ (ln(2)+ ln(lµ)+ ln(1/δ))

Thus, Pr(Sr
sim ⊆ S) ≥ 1− δ 2

Corollary 1. Suppose that a sample S is drawn according tomr . For an integer l≥ |r |,
and0 < δ ≤ 1, if |S| ≥ lµ (ln(2) + ln(lµ) + ln(1/δ)) then with probability greater than
1− δ, Sr

sim,rep ⊆ S.

Proof: Follows immediately from Lemma 4 sinceSr
sim,rep ⊆ Sr

sim. 2

We now prove that the class of DFA is polynomially learnable undermr .

Theorem 2. For all N , the classC≤N of DFA whose canonical representations have at
most N states is probably exactly learnable under the PACS model.

Proof: Let A be a canonical DFA with at mostN states andr be its standard encoding.
We define the simple representative sampleSr

sim,rep to be the characteristic sample ofA

LEARNING DFA FROM SIMPLE EXAMPLES 25

Figure 9. A probably exact algorithm for learning DFA.

enumerated as described in Lemma 3. Recall that the length of each example inSr
sim,rep is

at most 2N − 1. Now consider the algorithmA2 (see figure 9) that draws a sampleSwith
the following properties.

1. S = S+ ∪ S− is a set of positive and negative examples corresponding to the target
DFA A.

2. The examples inSare drawn at random according to the distributionmr .
3. |S| is at leastlµ (ln(2)+ ln(lµ)+ ln(1/δ)).

Lemma 3 showed that for every DFAA there exists a characteristic set of simple examples
Sr

sim,rep. Corollary 1 showed that if a labeled sampleS of size |S| is at leastlµ (ln(2) +
ln(lµ) + ln(1/δ)) is randomly drawn according tomr then with probability greater than
1− δ, Sr

sim,rep ⊆ S. The RPNI algorithm is guaranteed to return a canonical representation
of the target DFAA if the set of examplesS is a superset of a characteristic set forA. Since
the size ofS is polynomial inN and 1/δ and the length of each string inS is restricted to
2N − 1, the RPNI algorithm, and thus the algorithmA2 can be implemented to run in time
polynomial in N and 1/δ. Thus, with probability greater than 1− δ, A2 is guaranteed to
return a canonical DFA equivalent to the targetA. This proves that the classC≤N of DFA
whose canonical representations have at mostN states is exactly learnable with probability
greater than 1− δ. 2

Since the number of states of the target DFA (N) might not be known in advance we
present a PAC learning algorithmA3 that iterates over successively larger guesses ofN.
At each step the algorithm draws a random sample according tomr , applies the RPNI
algorithm to construct a DFA, and tests the DFA using a randomly drawn test sample. If
the DFA is consistent with the test sample then the algorithm outputs the DFA and halts.
Otherwise the algorithm continues with the next guess forN. This technique of estimating
the unknown number of states is called thedoubling technique(Angluin, 1987).

Theorem 3. The concept classC of DFA is learnable in polynomial time under the PACS
model.

Proof: Figure 10 shows a PAC learning algorithm for DFA.

26 R. PAREKH AND V. HONAVAR

Figure 10. A PAC algorithm for learning DFA.

In algorithmA3 the polynomialp is defined such that a sampleS of size p(N, 1
δ
)

contains the characteristic set of simple examplesSr
sim,rep with probability greater than

1− δ. Corollary 1 gives us a bound on the size ofp(N, 1
δ
) that would satisfy this constraint.

The polynomialq is defined asq(i, 1
ε
, 1
δ
) = 1

ε
[2 ln(i + 1)+ ln(1

δ
)].

Consider the execution of the algorithmA3. At any stepi wherei ≥ N, the setS will
include the characteristic set of simple examplesSr

sim,rep with probability greater than 1− δ
(as proved in Lemma 4 and Corollary 1). In this case the RPNI algorithm will return a DFA
M that is equivalent to the targetA and henceM will be consistent with the test sampleT .
Thus, with probability at least 1− δ, the algorithm will correctly output the target DFA and
halt.

Consider the probability that at some stepi the algorithm returns a DFAM with an error
greater thanε and halts.

Pr(M andA are consistent on someα) ≤ 1− ε
Pr(M andA are consistent on allα ∈ T) ≤ (1− ε)|T |

≤ (1− ε) 1
ε [2 ln(i+1)+ln(1

δ)]

≤ e−[2 ln(i+1)+ln(1
δ)]

since 1− x ≤ e−x if x ≥ 0

≤ δ

(i + 1)2

The probability that the algorithm returns a DFA with error greater thanε at some stepi
and halts is less than

∑∞
i=1

δ
(i+1)2 which is in turn strictly less thanδ. Thus, we have shown

that with probability greater than 1− δ the algorithm returns a DFA with error at mostε.
Further, the run time of the algorithm is polynomial inN, |6|, 1

ε
, 1
δ
, andm (wherem is

LEARNING DFA FROM SIMPLE EXAMPLES 27

the length of the longest test example seen by the algorithm). Thus, the class of DFA is
efficiently PAC learnable under the PACS model. 2

6. Relationship of the PACS model to other learning models

In this section we study the relationship of the PACS model to learning models such as
Gold’s model (1978) ofpolynomial identifiability from characteristic samples, Goldman
and Mathias’polynomial teachabilitymodel (1993), and the model of learning fromexample
based queries(Angluin, 1988). We explain how the PACS learning model naturally extends
these models to a probabilistic framework. In the following discussion we will letX be the
instance space,C be the concept class, andRbe the set of representations of the concepts inC.

6.1. Polynomial identifiability from characteristic samples

Gold’s model for polynomial identifiability of concept classes from characteristic samples
is based on the availability of a polynomial sized characteristic sample for any concept in
the concept class and an algorithm which when given a superset of a characteristic set is
guaranteed to return, in polynomial time, a representation of the target concept.

Definition 3 ([due to de la Higuera (1996)]).C is polynomially identifiable from char-
acteristic samples iff there exist two polynomialsp1() and p2() and an algorithmA such
that

1. Given any sampleS= S+∪S− of labeled examples,A returns in timep1(‖S+‖+‖S−‖)
a representationr ∈ R of a conceptc ∈ C such thatc is consistent withS.

2. For every conceptc ∈ C with corresponding representationr ∈ R there exists a charac-
teristic sampleSc = S+c ∪S−c such that‖S+c ‖+‖S−c ‖ = p2(|r |) and ifA is provided with
a sampleS= S+ ∪ S− whereS+c ⊆ S+ andS−c ⊆ S− thenA returns a representation
r ′ of a conceptc′ that is equivalent toc.

Using the above definition Gold’s result can be restated as follows.

Theorem 4 (due to Gold (1978)). The class of DFA is polynomially identifiable from
characteristic samples.

The problem of identifying a minimum state DFA that is consistent with an arbitrary
labeled sampleS= S+ ∪ S− is known to be NP-complete (Gold, 1978). This result does
not contradict the one in Theorem 4 because a characteristic set is not any arbitrary set of
examples but a special set that enables the learning algorithm to correctly infer the target
concept in polynomial time (see the RPNI algorithm in Section 3).

6.2. Polynomial teachability of concept classes

Goldman and Mathias (1993) developed a teaching model for efficient learning of target
concepts. Their model takes into account the quantity of information that a good teacher

28 R. PAREKH AND V. HONAVAR

must provide to the learner. An additional player called theadversaryis introduced in this
model to ensure that there is no collusion whereby the teacher gives the learner an encoding
of the target concept. A typical teaching session proceeds as follows:

1. The adversary selects a target concept and gives it to the teacher.
2. The teacher computes a set of examples called theteaching set.
3. The adversary adds correctly labeled examples to the teaching set with the goal of

complicating the learner’s task.
4. The learner computes a hypothesis from the augmented teaching set.

Under this model, a concept class for which the computations of both the teacher and
the learner takes polynomial time and the learner always learns the target concept is called
polynomially T/L teachable. Without the restrictive assumption that the teacher’s computa-
tions be performed in polynomial time, the concept class is said to besemi-polynomially T/L
teachable. When this model is adapted to the framework of learning DFA the length of the
examples seen by the learner must be included as a parameter in the model. In the context of
learning DFA the number of examples is infinite (it includes the entire set6∗) and further
the lengths of these examples grow unboundedly. A scenario in which the teacher constructs
a very small teaching set whose examples are unreasonably long is clearly undesirable and
must be avoided. This is explained more formally in the following definition.

Definition 4(due to de la Higuera (1996)). A concept classC is semi-polynomially T/L
teachable iff there exist polynomialsp1(), p2(), and p3(), a teacherT , and a learnerL,
such that for any adversaryADV and any conceptc with representationr that is selected
by ADV, after the following teaching session the learner returns the representationr ′ of a
conceptc′ that is equivalent toc.

1. ADV givesr to T .
2. T computes a teaching setSof size at mostp1(|r |) such that each example in the teaching

set has length at mostp2(|r |).
3. ADV adds correctly labeled examples to this set, with the goal of complicating the

learner’s task.
4. The learner uses the augmented setS to compute a hypothesisr ′ in time p3(‖S‖).

Note that from Gold’s result (Theorem 4) it follows that DFA are semi-polynomially
T/L teachable. Further, we demonstrated in lemma 1 that for any DFA there exists a
procedure to enumerate a characteristic set corresponding to that DFA. This procedure
can be implemented in polynomial time thereby proving a stronger result that DFA are
polynomially T/L teachable. It was proved that the model for polynomial identification
from characteristic samples and the model for polynomial teachability are equivalent to
each other (i.e., by identifying the characteristic set with the teaching sample it was shown
that a concept class is polynomially identifiable from characteristic samplesiff it is semi-
polynomially T/L teachable) (de la Higuera, 1996).

LEARNING DFA FROM SIMPLE EXAMPLES 29

Lemma 5. Let c ∈ C be a concept with corresponding representation r∈ R. If there
exists a characteristic sample Sc for c and a polynomial p1() such that Sc can be com-
puted from r and‖Sc‖ = p1(|r |) then each example in Sc is simple in the sense that
∀α ∈ Sc, K (α | r) ≤ µ lg(|r |) whereµ is a constant.

Proof: Fix an ordering of the elements ofSc and define an index to identify the individ-
ual elements. Since‖Sc‖ = p1(|r |) an index that isO(lg(|r |)) bits long is sufficient to
uniquely identify each element ofSc

5. SinceSc can be computed fromr we can construct
a Turing machine that givenr reads as input an index of lengthO(lg(|r |)) and outputs the
corresponding string ofSc. Thus,∀α ∈ Sc, K (α | r) ≤ µ lg(|r |) whereµ is a constant
independent ofα. 2

Let us designate the characteristic set of simple examplesSc identified above to be the
set of simple representative examplesSr

sim,rep for the conceptc represented byr . Lemma 4
and Corollary 1 together show that for an integerl ≥ |r | and 0< δ < 1 if a sufficiently
large sampleS (of size polynomial inl and 1/δ) is drawn at random according tomr then
with probability greater than 1− δ, Sr

sim,rep ⊆ S.

Theorem 5. Any concept class that is polynomially identifiable from characteristic sam-
ples or equivalently semi-polynomially T/L teachable is probably exactly learnable under
the PACS model.

Proof: The proof follows directly from the results of Lemma 5, Lemma 4, and Corollary 1.
2

6.3. Learning from example based queries

A variety of concept classes are known to be learnable in deterministic polynomial time
when the learner is allowed access to a teacher (or an oracle) that answersexample based
queries(Angluin, 1988). Example based queries includeequivalence, membership, subset,
superset, disjointedness, exhaustive, justifying assignment, andpartial equivalencequeries.

Definition 5((due to Goldman and Mathias (1993)). An example based query is any query
of the form

∀(x1, x2, . . . , xk) ∈ X k doesφr (x1, x2, . . . , xk) = 1?

wherer is the target concept andk is a constant.

φmay use the instances (x1, . . . , xk) to compute additional instances on which to perform
membership queries. The teacher’s response to example based queries is eitheryesor a
counter example consisting of(x1, x2, . . . , xk) ∈ X k (along with the correct classification
corresponding to each of thexi ’s) for whichφr (x1, x2, . . . , xk) = 0 and the labeled examples
for which membership queries were made in order to evaluateφr .

30 R. PAREKH AND V. HONAVAR

Theorem 6 (due to Goldman and Mathias (1993)). Any concept class that is learnable
in deterministic polynomial time using example based queries is semi-polynomially T/L
teachable.

The above theorem enables us to connect learning from example based queries to PACS
learning as follows.

Theorem 7. Any concept class that is learnable in deterministic polynomial time using
example based queries is probably exactly learnable under the PACS model.

Proof: Follows directly from Theorems 5 and 6. 2

Recently Castro and Guijarro (1998) have independently shown that any concept class
that is learnable using membership and equivalence queries is also learnable under the PACS
model. Further, they have intuitively demonstrated how this result can be extended to all
example based queries. Theorem 7 above is an alternate proof of the relationship between
query learning and PACS learning.

7. Collusion and PACS learning

Learning models that involve interaction between a knowledgeable teacher and a learner can
admit collusionwherein the teacher directly passes information about the representation
of the target function as part of the training set (Jackson & Tomkins, 1992; Goldman
& Mathias, 1996). Consider for simplicity that the instance space is{0, 1}n (i.e., the
training examples aren bits long). The teacher and learner cana-priori agree on some
suitable binary encoding of concepts. The teacher can then break the representation of
the target conceptr in to groups ofn bits and use the training set to pass these groups
as appropriately labeled examples to the learner. The learner could quickly discover the
target concept without even considering the labels of the training examples. Theteach-
ing modeldue to Jackson and Tomkins (1992) prevents this coding of the target concept
by requiring that the learner must still succeed if the teacher is replaced by an adversary
(who does not code the target concept as the teacher above). Further, they argue that in
their model the learner can stop only when it is convinced that there is only one con-
cept consistent with the information received from the teacher i.e., the teacher does not
tell the learner when to stop. Otherwise learning would be trivialized in that the teacher
passes groups ofn bits to the learner (as training examples) and when sufficient number of
bits have been passed to the learner so as to reconstruct the representationr of the target
concept, the teacher tells the learner to stop. Goldman and Mathias’ work (1996) on
polynomial teachabilityshows that anadversarywhose task is to embed the training
set (also calledteaching set) provided by the teacher into a larger set of correctly labeled
examples is sufficient to prevent the type of collusion discussed above. An interesting
quirk of the PACS learning model is the fact that the standard encoding of the target
conceptr is itself a simple example because by definitionK (r |r) is low. Thus,r has a
high probability under the universal distributionmr . The PACS learning scenario wherein

LEARNING DFA FROM SIMPLE EXAMPLES 31

examples are drawn at random according to the universal distributionmr is similar to
the teaching framework in the above teaching models where a knowledgeable teacher
draws a helpful set of examples that would enable the learner to learn the target con-
cept efficiently. The representation of the target conceptr (that is drawn with high prob-
ability according tomr) could be broken into groups ofn bits and passed to the learner
as appropriately labeled training examples. This form of collusion wherein the teacher
directly passes an encoding of the target concept would not succeed in the presence of
an adversary who embeds the training set provided by the teacher into a larger set of
correctly labeled examples because in this case the learner who is operating by accumu-
lating bits would not know precisely when it has sufficient information to reconstruct the
target.

Another (perhaps more subtle) form of collusion comes to light when considering the
problem of learning DFA under the PACS model. In DFA learning individual examples
of the teaching set can be of different lengths. As discussed above, the canonical encod-
ing of the target DFAA (a stringr of length O(N lg N)) appears with high probability
when the examples are drawn at random according tomr . The fact that DFA learning
does not require fixed length examples means thatr would itself appear with high prob-
ability as part of a polynomial sized training set. Of course, the learner cannot directly
identify which example string in the training set represents the target DFA. However, as-
suming that the teacher and the learner haveapriori agreed on an encoding scheme for
the DFA, the learner can decode each labeled example and determine whether it repre-
sents a valid DFA. For each example that represents a valid DFA, the learner can test
whether the DFA obtained by decoding the example is consistent with the training set and
output (say) the first DFA in lexicographic order that is consistent with the training set.
With high probability the learner would output the target DFA. This constitutes a PACS
algorithm for learning DFA that is computationally more efficient than the RPNI based
PACS algorithm presented in this paper. In this form of collusion the learner is provided
with an encoding of the target concept but must perform some additional computation
to decode the examples and check that the extracted DFA is consistent with the training
set.

It is clear that the PACS learning framework admits collusion. Any learnability results
within models that admit collusion can be criticized on the grounds that the learning algo-
rithm might be collusive. One method of avoiding collusive learning is to tighten the learning
framework suitably. Collusion cannot take place if the representation of the target concept
cannot be directly encoded as part of the training set or if the learner cannot efficiently
decode the training examples and identify the one that is consistent with the training set. In
the event that the learning framework cannot be suitably tightened to avoid collusion, one
might provide a learning algorithm that does not rely on collusion between the teacher and
the learner. The RPNI based algorithm for learning DFA under the PACS model presented
in this paper is an example of a non-collusive algorithm in a learning framework that admits
collusion. Obtaining a general answer to the question of collusion in learning would require
the development of much more precise definitions of collusion and collusion-free learning
than are currently available. A detailed exploration of these issues is beyond the scope of
this paper.

32 R. PAREKH AND V. HONAVAR

8. Discussion

The problem of exact learning of the target DFA from an arbitrary set of labeled examples and
the problem of approximating the target DFA from labeled examples under Valiant’s PAC
learning framework are both known to be hard problems. Thus, the question as to whether
DFA are efficiently learnable under some restricted yet fairly general and practically useful
classes of distributions is clearly of interest. In this paper, we have provided a framework
for efficient PAC learning of DFA from simple examples.

We have demonstrated that the class of logarithmic Kolmogorov complexity DFA is
polynomially learnable under the universal distributionm (the simple PAC learning model)
and the entire class of DFA is shown to be learnable under the universal distributionmr (the
PACS learning model). When an upper bound on the number of states of the target DFA is
unknown, the algorithm for learning DFA undermr can be used iteratively to efficiently PAC
learn the concept class of DFAs for any desired error and confidence parameters6. These
results have an interesting implication on the framework for incremental learning of the
target DFA. In the RPNI2 incremental algorithm for learning DFA, the learner maintains
a hypothesis that is consistent with all labeled examples seen thus far and modifies it
whenever a new inconsistent example is observed (Dupont, 1996). The convergence of this
algorithm relies on the fact that sooner or later, the set of labeled examples seen by the
learner will include a characteristic set. If in fact the stream of examples provided to the
learner is drawn according to a simple distribution, our results show that in an incremental
setting the characteristic set would be made available relatively early (during learning)
with a sufficiently high probability and hence the algorithm will converge quickly to the
desired target. Finally, we have shown the applicability of the PACS learning model in a
more general setting by proving that all concept classes that are polynomially identifiable
from characteristic samples according to Gold’s model, semi-polynomially T/L teachable
according to Goldman and Mathias’ model, and learnable in deterministic polynomial time
from example based queries are also probably exactly learnable under the PACS model.

Li and Vitányi (1991) have shown that the class ofsimplek-reversible DFA is learnable
under the simple PAC model. A k-reversible DFA issimpleif each state of the DFA lies
on a path (from the initial state to an accepting state) of Kolmogorov complexityO(lg N).
They have shown that the class ofsimplek-reversible DFA includes k-reversible DFA whose
canonical representations have Kolmogorov complexityO(lg N)and also some k-reversible
DFA whose canonical representations have a higher Kolmogorov complexity, for example,
O(lg2 N). We have shown that the class of logarithmic Kolmogorov complexity DFA is
learnable under the simple PAC model. It is of interest to explore whether classes of DFA of
higher Kolmogorov complexity (such asO(lgk N) wherek > 1) are efficiently learnable
under the simple PAC model.

The class of simple distributions includes a large variety of probability distributions (in-
cluding all computable distributions). It has been shown that a concept class is efficiently
learnable under the universal distribution if and only if it is efficiently learnable under each
simple distribution provided that sampling is done according to the universal distribution (Li
& Vit ányi, 1991). This raises the possibility of using sampling under the universal distribu-
tion to learn under all computable distributions. However, the universal distribution is not

LEARNING DFA FROM SIMPLE EXAMPLES 33

computable. Whether one can instead get by with a polynomially computable approxima-
tion of the universal distribution remains an open question. It is known that the universal
distribution for the class of polynomially-time bounded simple distributions is computable
in exponential time (Li & Vitányi, 1991). This opens up a number of interesting possibilities
for learning under simple distributions. Denis and Gilleron (1997) have proposed a model
of learning underhelpful distributions. A helpful distribution is one in which examples
belonging to the characteristic set for the concept (if there exists one) are assigned non-zero
probability. A systematic characterization of the class of helpful distributions would perhaps
give us a more practical framework for learning from simple examples.

A related question of interest has to do with the nature of environments that can be
modeled by simple distributions. In particular, if Kolmogorov complexity is an appropriate
measure of the intrinsic complexity of objects in nature and if nature (or the teacher) has
a propensity for simplicity, then it stands to reason that the examples presented to the
learner by the environment are likely to be generated by a simple distribution. Against
this background, empirical evaluation of the performance of the proposed algorithms using
examples that come from natural domains is clearly of interest.

Acknowledgments

The authors wish to thank Jack Lutz for introducing them to Kolmogorov complexity, Giora
Slutzki for several helpful discussions on automata theory, Pierre Dupont for a careful review
of an earlier draft of this paper and several helpful suggestions, Colin de la Higuera and
François Denis for discussions which helped clarify some of the issues related to collusion,
and several anonymous referees for their insightful comments that have helped us to improve
the paper significantly. Vasant Honavar is grateful to the National Science Foundation for
the research grants IRI-9409580 and IRI-9643299 that partially supported this work.

Notes

1. Define〈x, y〉 = bd(x)01y wherebd is the bit doubling function defined asbd(0) = 00, bd(1) = 11, and
bd(ax) = aabd(x),a ∈ {0, 1}.

2. The results of this section were presented earlier in Parekh and Honavar (1999).
3. This enumeration strategy applies to any DFA and is not restricted to simple DFA alone.
4. The results of this section were presented earlier in Parekh and Honavar (1997).
5. Note that if the sum of the lengths of the examples belonging to a set isk then the number of examples in that

set is at mostk+ 1.
6. Recently it has been shown that if a concept class is learnable under the PACS model using an algorithm

that satisfies certain properties then logarithmic Kolmogorov complexity concepts of that concept class are
learnable under the simple PAC learning model (Castro & Guijarro, 1998).

References

Angluin, D. (1981). A note on the number of queries needed to identify regular languages.Information and
Control, 51, 76–87.

Angluin, D. (1987). Learning regular sets from queries and counterexamples.Information and Computation, 75,
87–106.

34 R. PAREKH AND V. HONAVAR

Angluin, D. (1988). Queries and concept learning.Machine Learning, 2:4, 319–342.
Castro, J., & Guijarro, D. (1998). Query, pacs and simple-pac learning. Technical Report LSI-98-2-R, Universitat

Polytéctica de Catalunya, Spain.
Chomsky, N. (1956). Three models for the description of language.PGIT, 2:3, 113–124.
Denis, F., D’Halluin, C., & Gilleron, R. (1996). Pac learning with simple examples.STACS’96—Proceedings of

the13th Annual Symposium on the Theoretical Aspects of Computer Science(pp. 231–242).
Denis, F., & Gilleron, R. (1997). Pac learning under helpful distributions. InProceedings of the Eighth International

Workshop on Algorithmic Learning Theory (ALT’97), Lecture Notes in Artificial Intelligence 1316(pp. 132–
145), Sendai, Japan.

Dupont, P. (1996). Incremental regular inference. In L. Miclet, & C. Higuera, (Eds.),Proceedings of the Third
ICGI-96, Lecture Notes in Artificial Intelligence 1147(pp. 222–237), Montpellier, France, Springer.

Dupont, P. (1996).Utilisation et apprentissage de modèles de language pour la reconnaissance de la parole
continue. PhD thesis, Ecole Normale Sup´erieure des T´elécommunications, Paris, France.

Dupont, P., Miclet, L., & Vidal, E. (1994). What is the search space of the regular inference? InProceedings of
the Second International Colloquium on Grammatical Inference (ICGI’94)(pp. 25–37). Alicante, Spain.

Gold, E. (1978). Complexity of automaton identification from given data.Information and Control, 37:3, 302–320.
Goldman, S., & Mathias, H. (1993). Teaching a smarter learner. InProceedings of the Workshop on Computational

Learning Theory (COLT’93)(pp. 67–76). ACM Press.
Goldman, S., & Mathias, H (1996). Teaching a smarter learner.Journal of Computer and System Sciences, 52,

255–267.
Colin de la Higuera (1996). Characteristic sets for polynomial grammatical inference. In L. Miclet, & C. Higuera,

(Eds.),Proceedings of the Third ICGI-96, Lecture Notes in Artificial Intelligence 1147(pp. 59–71). Montpellier,
France, Springer.

Hopcroft, J., & Ullman, J. (1979).Introduction to automata theory, languages, and computation. Reading, MA:
Addison Wesley.

Jackson, J., & Tomkins, A. (1992). A computational model of teaching. InProceedings of the Workshop on
Computational Learning Theory (COLT’92)(pp. 319–326). ACM Press.

Kearns, M., & Valiant, L. G. (1989). Cryptographic limitations on learning boolean formulae and finite automata.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing(pp. 433–444). New York: ACM.

Lang, K. (1992). Random DFAs can be approximately learned from sparse uniform sample. InProceedings of the
5th ACM workshop on Computational Learning Theory(pp. 45–52).

Li, M., & Vit´anyi, P. (1991). Learning simple concepts under simple distributions.SIAM Journal of Computing,
20:5, 911–935.

Li, M., & Vit´anyi, P. (1997).An introduction to Kolmogorov complexity and its applications, (2nd ed.) New York:
Springer Verlag.

Oncina, J., & Garcia, P. (1992). Inferring regular languages in polynomial update time. In N. P´erez et al. (eds.),
Pattern recognition and image analysis(pp. 49–61). Singapore: World Scientific.

Pao, T., & Carr, J. (1978). A solution of the syntactic induction-inference problem for regular languages.Computer
Languages, 3, 53–64.

Parekh, R., & Honavar, V. (1993). Efficient learning of regular languages using teacher supplied positive examples
and learner generated queries.In Proceedings of the Fifth UNB Conference on AI(pp. 195–203). Fredricton,
Canada.

Parekh, R., & Honavar, V. (1997). Learning DFA from simple examples. InProceedings of the Eighth International
Workshop on Algorithmic Learning Theory (ALT’97), Lecture Notes in Artificial Intelligence 1316(pp. 116–
131). Sendai, Japan, Springer. Also presented at theWorkshop on Grammar Inference, Automata Induction, and
Language Acquisition(ICML’97), Nashville, TN, July 12, 1997.

Parekh, R & Honavar, V. (1999). Simple DFA are polynomially probably exactly learnable from simple examples.
In Proceedings of the Sixteenth International Conference on Machine Learning (ICML’99)(pp. 298–306). Bled,
Slovenia.

Pitt, L. (1989). Inductive inference, DFAs and computational complexity. InAnalogical and Inductive Inference,
Lecture Notes in Artificial Intelligence, 397(pp. 18–44). Springer-Verlag.

Pitt, L., & Warmuth, M. K. (1988). Reductions among prediction problems: on the difficulty of predicting automata.
In Proceedings of the 3rd IEEE Conference on Structure in Complexity Theory(pp. 60–69).

LEARNING DFA FROM SIMPLE EXAMPLES 35

Pitt, L., & Warmuth, M. K. (1989). The minimum consistency DFA problem cannot be approximated within any
polynomial. InProceedings of the 21st ACM Symposium on the Theory of Computing(pp. 421–432). ACM.

Rivest, R. L. & Schapire, R. E. (1993). Inference of finite automata using homing sequences.Information and
Computation, 103:2, 299–347.

Trakhtenbrot, B., & Barzdin, Ya. (1973).Finite Automata: Behavior and Synthesis. Amsterdam, North Holland.
Valiant, L. (1984). A theory of the learnable.Communications of the ACM, 27, 1134–1142.

Received December 12, 1998
Revised February 22, 2000
Accepted March 30, 2000
Final Manuscript April 24, 2000

