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Abstract. Learning from positive data constitutes an important topic in Grammatical Inference since it is believed
that the acquisition of grammar by children only needs syntactically correct (i.e. positive) instances. However,
classical learning models provide no way to avoid the problem of overgeneralization. In order to overcome this
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exactly learnable from simple positive examples.

Keywords: grammatical inference, PAC learning, Kolmogorov complexity, regular languages, deterministic
finite automata

1. Introduction

Natural language learning constitutes one of the most typical human learning abilities. It is
also one of the most difficult challenge for researchers in Computational learning theory.
In both reference models used in Learning theory, namely Gold’s identification in the limit
model (Gold, 1967) and Valiant’s probably approximatively correct model (Valiant, 1984),
results are not satisfactory, even for one of the simplest class of formal languages: the class
REG of regular languages. Either REG is not learnable (as in PAC model modulo some
usual cryptographic assumption (Kearns and Valiant, 1994)) or REG is learnable with the
help of a trivial algorithm which has no cognitive relevance (as in Gold’s model (Gold,
1967)). See Pitt (1989), and Sakakibara (1997) for a survey of the field.

Things are even getting worse when we try to take a natural constraint into account:
natural language learning is based on sentences which are syntactically correct. Therefore,
formal theories must explain how it is possible to learn from positive data only. Gold proves
in 1967 that, as soon as a class of languages contains all of the finite languages and at least
one infinite language, it is not identifiable in the limit from positive data. As a corollary,
the class REG is not learnable from positive data in Gold’s model. The problem is that
no positive example can refute a too general hypothesis. Therefore, it seems impossible to
avoid overgeneralization, except in the simplest cases.

Angluin has given a characterization of indexed families of recursive languages which
are identifiable in the limit from positive examples (Angluin, 1980). She gave a gen-
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eral heuristic in order to avoid overgeneralization: at each stepn, if the current posi-
tive sample isS, a hypothesish may be output if it is consistent withS and if some
computable finite sample Sh,n of h is included in S. The setsSh,n can be interpreted as
characteristicsamples forh that must be present ifh must be output. In other words,
a too general hypothesis will be refuted if its characteristic sample is not present in the
current sample. Angluin (1982) has introduced subclasses of REG, calledk-reversible
languages, and shown the existence of polynomially computable characteristic samples
sufficient for identification from positive data. See also Sakakibara (1992), Yokomori
(1995), de Jongh and Kanazawa (1996), Kanazawa (1996), Koshiba (1997), and Head et al.
(1998).

Due to the free distribution and polynomial running time requirements, results are still
weaker in PAC learning framework (Natarajan, 1991b; Shvayster, 1990; Yokomori, 1995;
Denis, 1998).

Many very valuable heuristics and learning algorithms from positive examples alone have
been proposed yet and many of them have been used quite successfully in some practical
situations such as speech recognition, and natural language learning. For example, see
Carrasco and Oncina (1994) for an approach based on Probabilistic finite state automata
(PFSA) and Stolcke and Omohundro (1994), Rabiner and Juang (1986) for a Hidden Markov
Model (HMM) approach. But, to our knowledge, no general result is available for PFSA
nor for HMMs. Our goal in this paper is to study under what conditions general classes of
languages can be learned efficiently from positive examples.

Gold suggests that one reason why natural language learning is possible is that the
learner is not provided witharbitrary examples (Gold, 1967). There are several ways to
give substance to this idea:

– The learner may askqueries. Angluin proved in 1987 that REG is exactly learnable
within polynomial time using membership and equivalence queries, i.e. using a Minimally
Adequate Teacher (MAT). We think that such queries are not meaningful in a positive
learning framework. Yet, it is often remarked that children get feedback about what they
say. For example, parents commonly repeat what their children say with corrections. But,
against these arguments, it can be said that natural language learning mainly develops
before children are systematically corrected by their parents. And completely incorrect
utterances are rarely observed. We think that membership queries should be restricted in
some way in order to be used in a positive learning framework.

– We may impose ateaching setto be present in every current sample (Gold, 1978; Angluin,
1987; Goldman & Mathias, 1996). We mainly study here the learning model of Goldman
and Mathias. If the teaching set may contain negative examples, the class REG is effi-
ciently exactly learnable in this model (Goldman & Mathias, 1996; Oncina & Garcia,
1992). But if the teaching set must be composed of positive examples only, it is easy to
show that REG is not learnable.

– In PAC framework, the class of allowed distributions can be restricted (Li & Vit´anyi,
1991; Denis, D’Halluin & Gilleron 1996; Denis & Gilleron, 1997a; D’Halluin, 1998).
The starting point in Li and Vit´anyi (1991) is to suppose thatsimpleexamples must
be given more importance in the learning process. Kolmogorov ComplexityK (x) is
used to measure the complexity of an examplex and it is supposed that in the learning
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process, the examples are drawn according to the Solomonoff-Levin distributionm (where
m(x) ' 2−K (x)). This model has been generalized in Denis et al. (1996) in order to take
the complexity of (a representation of) the targetc into account: it is supposed that
the examples are drawn according to theconditionalSolomonoff-Levin distributionmc

(wheremc(x) ' 2−K (x|c)). Simple examples (i.e. of low conditional complexityK (x | c))
are more probable undermc. A class of concepts is said to belearnable from simple
examples, or PACS learnable in short, if it is PAC learnable provided the examples are
drawn according tomc. It has been proved in Parekh and Honavar (1997) that the class
REG is PACS learnable.

Learning models with teaching sets raise a problem when a representation of the target
concept can be encoded by means of examples. We show that in this case, every learning
algorithm can be rendered trivial: indeed, nothing prevents the teacher to put an encoding
of the target concept into the teaching set and nothing prevents the learner from using it.
Unfortunately, the class of regular languages is concerned with such acollusion phenomenon
between the teacher and the learner, since it is possible to encode efficiently a DFA by a not
too large string. As the string which encodes the minimal DFA that recognizes a languageL
has a low Kolmogorov complexity knowing a representation ofL, it is a simple example for
L. Therefore, the learning model from simple examples is also concerned with this problem.
This means that these models are not strong enough to avoid collusion phenomena and that
if we still want to use them, we must verify in each case that such a global information on
the target cannot be directly provided to the learner.

Despite the problems pointed out above, we are mainly interested in the learning model
from simple examples. There are several reasons for that:

1. The theory of Kolmogorov complexity provides a rigorous way to define the amount of
information shared between an example and a target language. If we say that an example
is characteristicof a languageL when it has a small Kolmogorov complexity relatively
to a representation ofL, we give a rigorous definition that captures important features
of this intuitive notion.

2. It seems that there is no way to efficiently encode a regular language by means of positive
examples.

3. Supposing that simple examples have a higher weight in the learning process suggests
to use the following heuristic to avoid overgeneralization: ifh is a hypothesis consistent
with the current sampleS, compute fromh some new positive examplesx1, . . . , xq or
more generally, some positive eventsA1, . . . , Aq, i.e. composed of positive examples;
they are “characteristic” ofh since they have a low Kolmogorov complexity relatively
to h; draw some more examples from the target concept; if one of thexi ’s is not drawn
or if one of theAi is not true, rejecth.

We think that the previous heuristic is relevant from a cognitive point of view. Why from
a2,a8,a12,a6, . . . don’t we infera∗? Doubtless because if the target wasa∗, we would
expect to see at least one odd exponent! That is, the reason why we reject the hypothesis
h = a∗ is that the simple (characteristic) expected event “having an odd exponent” is not
true.
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In this paper, we study learning from simple positive examples and we show that learning
algorithms can be based on this heuristic. Our main result is thatthe class of regular
languages is probably exactly learnable from simple positive examples.

Our model is defined in Section 3; we define in Section 4 the notion ofpositive teaching
setfrom which it is possible to reconstruct a given DFA; we show the existence ofsimple
teaching sets in Section 5; eventually, we prove our main result in Section 6.

As a corollary, we show that the class ofsimple regular languagesis learnable in the
model of Li and Vitányi. This result generalizes the simple PAC learnability of simple
k-reversible languages stated in Li and Vit´anyi (1991).

2. Preliminaries

2.1. Deterministic finite automata

Let6 be a finite alphabet and6∗ be the set of strings over6. For simplicity, we suppose here
that6 = {0, 1} but all our results can be extended to the general case in a straightforward
way. We writeπ1 (resp.π2) for the function which maps each element of(6∗)2 on its first
(resp. second) component (i.e.,π1(x, y) = x andπ2(x, y) = y). We denote the null string
by λ and the length of the stringu by |u|. The size of a finite subsetS of 6∗ is defined
as‖S‖ = ∑

u∈S |u|. We consider the ordering on6∗ such thatu ≺ v iff [ |u| < |v| or
(|u| = |v| andu is smaller thanv in the lexicographical ordering)]. For every integerm,
6m (respectively6≤m) is the set of strings of lengthm (respectively of length at mostm).
A languageis a subset of6∗. A languageL is prefix if for all stringsu andv, u ∈ L and
uv ∈ L implies thatv = λ. For every integerm, we letLm = L ∩6m andL≤m = L ∩6≤m.
For every stringu, we letu−1L = {v ∈ 6∗ | uv ∈ L}. If L1 andL2 are two languages, we
let L11L2 = (L1 ∪ L2)\(L1 ∩ L2).

A deterministic finite automaton(DFA) is a quintupleA = (6, Q,q0, T, δ) whereQ is
a finite set of states,q0∈ Q is the initial state,T ⊆ Q is the set of accepting states, and
δ : Q×6→ Q is the transition partial function. We still denote byδ the extended transition
partial function defined overQ×6∗. We denote the language accepted byA by L(A), i.e.
L(A) = {u ∈ 6∗ | δ(q0, u) ∈ T}. For every stateq ∈ Q, we letLq = {u ∈ 6∗ | δ(q, u) ∈
T}. Thus,Lq0 = L(A). A language isregular if it is recognized by a DFA. We write REG
for the class of regular languages.

An automaton is said to betrimmedif every state is accessible from the initial state and
if for every stateq, there is a final state which is accessible fromq. Given a DFAA, there
is an efficient procedure to find a minimal DFA (in the number of states) forL(A). We will
say that a non empty regular language hasn states to mean that the trimmed minimal DFA
which recognizes it hasn states.

Note that a DFA withn states can be encoded as a string of6∗ of lengthO(n logn). An
encoding functionfor DFA is a functionc : DFA→ 6∗ such that

– For everyA ∈ DFA, |c(A)| is bounded byO(n logn) andc runs in time polynomial in
n, wheren = card(Q).

– For all automataA, A′ ∈ DFA, A andA′ are isomorphic iffc(A) = c(A′).
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– There exists a polynomial-time deterministic algorithm which takes as input a stringr
and outputs an automatonA such thatc(A) = r if r ∈ c(DFA) anderror otherwise.

– For convenience, we will also suppose that the length ofc(A) is at least equal to the
number of states ofA, i.e. |c(A)| ≥ card(Q).

For example, ifA = (6, Q,q0, T, δ), we can takec(A) to be the smallest string of the
form

1card(Q)0q̄01card(δ)0
∏

(q,x,q1)∈δ
q̄xq̄11card(T)0

∏
q∈T

q̄

whereq̄ is a code for the stateq whose length ismax(1, dlogcard(Q)e).

Example 1. Let A be the minimal deterministic automaton which recognizes6∗1

With the previous scheme, 110011110000011100111101 is a code forA.

We fix such an encoding, sayc.

2.2. Kolmogorov complexity and Solomonoff-Levin distribution

Complete definitions, results and proofs can be found in Li and Vit´anyi (1993).
Let x, y ∈ 6∗. We let x̄ = 1|x|0x theself-delimitingversion ofx. We let 〈x, y〉= ȳx.

For n ≥ 3, we let〈x1, . . . , xn〉= 〈〈x1, . . . , xn−1〉, xn〉.
Let T be a Turing machine andp, y ∈ 6∗. We writeT(〈p, y〉) = x to mean thatT with

programp and extra informationy terminates with outputx. Let us defineKT (x | y) =
min{|p| s.t. T(〈p, y〉) = x}, or∞ if such p does not exist andKT (x) = KT (x | λ). There-
fore, KT (x | y) is the minimal length of a program that computesx from y.

We consider the prefix variantK of Kolmogorov complexity: aprefix Turing machineis
a Turing machine for which the set of terminating programs is a prefix set. Note that for
every stringy and every prefix Turing machineT , the set of programsp such thatT(〈p, y〉)
halts is also a prefix set.

The Invariance Theorem states that there exists anadditively optimalprefix Turing ma-
chineU , i.e. such that for any prefix Turing machineT , there is a constantcT such that
for all stringsx, y, KU (x | y) ≤ KT (x | y) + cT . Therefore, for each pair of additively
optimal prefix Turing machinesU andU ′, there is a constantcU,U ′ , such that for all strings
x, y, |KU (x | y)− KU ′(x | y)| ≤ cU,U ′ . Note that all the current programming languages are
additively optimal prefix Turing machines.
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We fix such a machine, sayU , and call it the reference prefix Turing machine. We define
K (x) = KU (x), andK (x | y) = KU (x | y).

It can be proved that for every stringsx andr ,

K (x | r ) ≤ |x| + 2 log|x| + O(1).

Each elementx of a finite set of stringsA can be identified by a program that computes
A and its index inA. That is, ifCard(A) = n,

K (x | r ) ≤ K (A | r )+ logn+ 2 log logn+ O(1).

We will often use the following inequalities: for all stringsx andy,

K (x) ≤ K (〈x, y〉)+ O(1) ≤ K (x)+ K (y | x)+ O(1) ≤ K (x)+ K (y)+ O(1)

One of the most interesting property of the prefix Kolmogorov complexity is that for
every stringr ,∑

x∈6∗
2−K (x | r ) < 1

Let r ∈ 6∗, we define

mr (x) = αr 2
−K (x | r )

whereαr = (
∑

x∈6∗ 2−K (x | r ))−1, and

m(x) = mλ(x)

For each stringr , mr is a probability distribution on6∗.
The functionm is called the Solomonoff-Levin distribution. It can be shown thatm

dominates every enumerable semi-distribution and that it is not computable.

2.3. Learning models

We will restrict here the classical definitions to the classes of languages.
LetL be a class of languages. Arepresentation scheme Rfor L associates a set of names

R(L) with any languageL ∈ L. More formally, a representation scheme is a function
R :L→ 26

∗
such that

– For everyL ∈ L, R(L) 6= ∅
– For allL , L ′ ∈ L, if L 6= L ′ thenR(L) ∩ R(L ′) = ∅
– There exists a polynomial-time deterministic algorithm which takes as input a pair of

stringsu andr and outputs 0 (resp. 1) ifr ∈ R(L) for someL andu 6∈ L (resp.u ∈ L),
anderror otherwise.
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We will use arepresentation schemefor the class of regular languages based on deter-
ministic finite automata: forL ∈ REG, R(L) = {c(A) | A∈DFA andL(A) = L} wherec
is the encoding function for the DFA chosen above. For every non empty regular language
L, we denote byr L the encodingc(A) of a minimal trimmed DFAA that recognizesL.
Since we have supposed that isomorphic DFAs have the same code,r L is correctly defined.
As usual, the size of a regular languageL is defined assize(L) = minr∈R(L)|r |.

An exampleof a languageL is a pair(u, e), whereu ∈ 6∗ ande = 1 if u ∈ L and
0 otherwise. An example(u, e) is positiveif u ∈ L andnegativeotherwise. We denote
by EX(L) (respectivelyPOS(L)) the set of all examples (respectively positive examples)
of a languageL. A sample(resp. apositive sample) of L is a finite subset ofEX(L)
(resp.POS(L)). A multisampleof L is a multiset of examples ofL.

2.3.1. The learning model of Goldman and Mathias.The first learning model we consider
is the model with teacher of Goldman and Mathias (1996). There are several reasons for
considering it. First, regular languages are learnable in this model. Second, there are close
connections between this model and the PACS model of learning that we mainly consider
in this paper. Specifically, the learnability of REG in this model implies its learnability in
PACS model. Third, the class of regular languages is not learnable from positive examples
in this model while we prove it is in the PACS model.

Definition 1(Goldman & Mathias, 1996). A class of languageL is learnable in the model
of Goldman and Mathias (GM learnable, in short) if there exist two algorithmsTeachand
Learnsuch that:

– Teach takes as input a (representation of a) languageL and outputs a teaching sample
SL ⊆ E X(L)

– Learn takes as input any sampleSsuch thatSL ⊆ S⊆ E X(L) and outputs a representation
of L. In Goldman and Mathias (1996), the task of constitutingS from SL is entrusted to
an Adversary whose goal is to prevent the learning.

If Learnruns in time polynomial in size(L) and‖S‖, the classL issemi-poly GM learnable.
Moreover, if Teachruns in time polynomial in size(L), the classL is polynomially GM
learnable.

It is proved in Goldman and Mathias (1996) that any classL learnable in deterministic
polynomial time using example-based queries is semi-poly GM learnable. As it is proved in
Angluin (1987) that REG is learnable from membership and equivalence queries, the class
of regular languages is therefore semi-poly GM learnable. Moreover, it is not difficult to
provide a polynomial teacher. A number of algorithms can be used to teach and learn DFAs
in their model (Gold, 1978; Oncina & Garcia, 1992; Higuera, 1997).

For example, if we try to build an automaton incrementally from the initial state, we need
to know whether a transition must arrive in a new state or come back in an already defined
state. Therefore, a teaching algorithm can be based on this idea: for all statesq andq′ of the
current automaton, and for every letterx, the teacher provides the learner with strings that
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can differentiateδ(q, x) andq′ if they must be. Then, the learning algorithm must merge
any two states that cannot be distinguished.

Example 2. Let A be the minimal deterministic automaton which recognizesL = 6∗1
(see Example 1).

We must differentiateq0 from q1 = δ(q0, 1), q0 from δ(q1, 1) andq1 from δ(q1, 0).
Let T(L) = {(λ,−), (1,+), (11,+), (10,−)}. Obeying the order: “do not create a new

state if it is not absolutely necessary”, it is possible to reconstructL incrementally from any
set of examples that containsT(L).

One problem with the learning model of Goldman and Mathias is that it is not sufficiently
constrained to avoid collusion between the learner and the teacher. Nothing forbids the
teacher to add the encoding of the target automaton (with the appropriate but useless label)
to the teaching set. And nothing prevents the learner from using this information.

Let T be a polynomial teaching algorithm used to learn the class of regular languages in
the GM model and letT ′ be a new “teacher” defined by:

T ′(L) = T(L) ∪ {(r L , eL)}

wherer L is the code for a minimal trimmed automaton that recognizesL andeL = 1 if
r L ∈ L and 0 otherwise.

Now consider the following algorithm

Input: a sampleSwhich is a superset of the teaching setT ′(L)
For every u ∈ Sdo

If u is the code of an automatonA then
Let L ′ = L(A)
Compute T(L ′)
If L ′ is consistent withSand if T(L ′) ⊆ S then

halt
Output: a representation ofL ′

Since there exists a learning algorithm that computes any regular languageL from any
sampleS containingT(L), there only can be one regular languageL consistent with a
sampleS that containsT(L). Hence,L ′ is equal toL. Therefore, every learning algorithm
for REG can be rendered trivial. This does not mean that all learning algorithms in the GM
model are collusive but that, if there exist polynomial teaching and learning algorithms and
if target concepts can be encoded by examples, then there must also exist collusive learning
algorithms.

2.3.2. PAC learning. We assume familiarity with the basic facts about PAC learning theory,
see for example Kearns and Vazirani (1994), Natarajan (1991a), and Valiant (1984).

Let L be a class of language, letL ∈ L be a target language and letµ be any fixed
probability distribution over6∗. Let EX(L , µ) be a procedure that runs in unit time and
that at each call returns an example(u, e)of L, whereu is drawn randomly and independently
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according toµ. If L ′ is any concept inL, we defineerror(L ′) (with respect toL andµ) to
be the probability thatL ′ is inconsistent with an example ofL drawn randomly according
toµ (i.e.error(L ′) = µ(L1L ′)).

Definition 2. LetL be a class of language and letR be a representation scheme forL.

– An algorithmA is a PAClearning algorithmfor L in R if A takes as inputε ∈ (0, 1],
δ ∈ (0, 1], an integerl , and for any languageL in Lwith size(L) ≤ l and any probability
distributionµ,A is given access toEX(L , µ) andA outputs the representation of some
L ′ in L, such that with probability at least 1− δ, error(L ′) ≤ ε.

– L is PAC learnableif there is a PAC learning algorithmA for L which runs in time
polynomial in 1/ε, 1/δ, l , and the size of the longest example that has been drawn.

The parameterl can be omitted from the input parameters and guessed by the learning
algorithm since the learner can test whether a hypothesis is good enough for the learning
task (Haussler et al., 1991).

Previous definition can be relaxed in the following way: the output of the learning algo-
rithm can belong to a larger hypothesis class. We say that a class of language ispredictable
if it is PAC learnable insomepolynomially evaluatable hypothesis class.

The main result concerning the PAC learnability of the class of regular language is
negative: assuming some cryptographic assumptions, REG is not predictable.

Theorem 1(Kearns & Valiant, 1994; Kearns & Vazirani, 1994). Under the discrete root
assumption, the representation class of DFA is inherently unpredictable.

This result is not isolated. It has turned out that many learning problems are intractable
under standard PAC model. What is the reason of this fact? In the PAC learning model, the
algorithm must learn underall distributions. This is called thedistribution free requirement.
But can we hope to learn a language if it shares no relation with the distribution that
provides examples? It has been proved that limiting the allowed distributions could improve
drastically the expressivity of the model. But how to limit the allowed distribution in a not
too restrictive and unnatural way? The simple PAC learning models we present in the next
section make the hypothesis that examples with low Kolmogorov complexity have a higher
weight in the learning process.

2.3.3. Simple PAC learning models.A variant of the PAC learning model in which the
class of probability distributions is restricted to the universal Solomonoff-Levin distribution
m has been defined in Li and Vit´anyi (1991).

“The remarkable property of this distribution is that in a polynomial sample with over-
whelming probability all examples of logarithmic complexity (the simple examples)
will be represented. Hence, a learning algorithm simply needs to reconstruct a concept
approximatively when all simple examples are given.” (Li & Vit´anyi, 1993)
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In Denis et al. (1996), we have defined another simple PAC learning model. See Denis and
Gilleron (1997a) for a study of the connections between these two models. The underlying
idea is to suppose that the oracle knows a representation of the target concept and gives a
higher weight to the examples which aresimple according to this representation.

The definition we give here is slightly more general than in Denis et al. (1996). We define
for each languageL a set of admissible distributionDL and we suppose that the distribution
used to draw the examples is admissible.

Definition 3. Let L be a class of languages and letR be a representation scheme forL.
For every languageL ∈ L, we define the set of admissible distributions according toR as

DL ={mr | r ∈ R(L)}

Loosely speaking, an examplex of L is simple according to the representationr ∈ R(L)
if K (x | r ) = O(logsize(L)). A polynomial sample will contain all simple examples with
probability almost 1. Moreover, if each language has a canonical representationr L , i.e.
if there exists an algorithm that computesr L from any representationr ∈ R(L) for any
languageL, a polynomial sample drawn according to any admissible distributionmr will
almost certainly contain all the simple examples according tor L . Indeed,K (r L | r )=O(1)
since there exists a program that computesr L from r and every simple example according
to r L is also simple according tor since

K (x | r ) ≤ K (x | r L)+ K (r L | r )+ O(1) ≤ K (x | r L)+ O(1)

Definition 4. LetL be a class of languages and letR be a representation scheme forL.

– An algorithmA is a simple PAC learning algorithm forL in R if A takes as input
ε ∈ (0, 1], δ ∈ (0, 1], an integerl , and for any languageL in L with size(L) ≤ l
and any admissible distributionµ, A is given access toE X(L , µ) andA outputs the
representation of someL ′ in L, such that with probability at least 1− δ, error(L ′) ≤ ε.

– L is PAC learnable from simple examplesin R (PACS learnable, in short) if there is a
simple PAC learning algorithmA for L in R which runs in time polynomial in 1/ε, 1/δ
andl .

Note that since there are arbitrarily long simple examples (such as 02.
.2
|r |

), the size of
the longest example seen cannot appear among the parameters kept for measuring the time
complexity of a learning algorithm. Otherwise, retaining the examples seen would always be
a sufficient learning strategy! But note also that the hypothesis testing procedure designed in
Haussler et al. (1991) cannot be used anymore since too long examples cannot be handled.
Therefore, it seems impossible to omit the input parameterl .

The Kolmogorov complexity of a string depends on the reference Turing machine that
has been chosen. It is not known whether the set of PACS learnable classes depends too on
the reference Turing machine. But the independence can be easily verified for all the classes
which have been proved learnable in this model: it is sufficient to verify that no particular
property of the reference machine is used.
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In the general case, it is not conceivable to require a standard PAC algorithm to output
exactly the target language. Indeed, if most of the examples have a zero weight under the
underlying distribution, there is no way to identify exactly the target. But as the Solomonoff-
Levin distribution puts a positive weight on any example, we will say that a learning
algorithm isprobably exactly correctif it outputs a representation of the target with high
confidence.

Definition 5. LetL be a class of languages and letR be a representation scheme forL.

– An algorithmA is a simple PEC learning algorithm forL in R if A takes as input
δ ∈ (0, 1], an integerl , and for any languageL in L with size(L) ≤ l and any admissible
distributionµ,A is given access toE X(L , µ) andA outputs the representation of some
L ′ in L, such that with probability at least 1− δ, L = L ′.

– L isPEC learnable from simple examplesin R if there is a simple PEC learning algorithm
A for L in R which runs in time polynomial in 1/δ andl .

Connections between GM learnability and PEC learnability have been studied in Denis
and Gilleron (1997b). Castro and Guijarro have studied connections between this model
and exact learning with queries (Castro & Guijarro, 1998). DFA have been proved PACS
learnable in Parekh and Honavar (1997).

Proposition 1. If a class of languageL is polynomially GM learnable, then it is PEC
learnable from simple examples.

Proof: Sketch. LetT be a teaching algorithm. SinceT runs in polynomial time, there
exists a integerk such that for every languageL ∈L, Card(T(L))≤ (size(L))k. Let r be
a representation ofL. SinceT(L) is computable fromr , any element inT(L) can be
computed fromr by a program whose length isO(logsize(L)). Hence, for allx ∈ T(L),
we haveK (x | r ) ≤ O(logsize(L)), i.e. every example inT(L) is simple, according to
a representation of the target language. Therefore, a polynomial sample drawn with an
admissible distribution will contain the whole teaching setT(L) with high probability. 2

Corollary 1. The class of DFA is PEC learnable from simple examples.

The PACS model and the GM model share the same defect: if it is possible to encode
directly the target by means of examples, learning can be rendered trivial. That is, the model
is not strong enough to avoid collusion between learner and teacher. We must verify in each
case that such a cheating cannot be employed!

2.4. Learning from positive examples

The importance of learning from positive data in natural learning is well recognized. Namely,
as it is reported in Gold seminal paper (Gold, 1967), the acquisition of one’s mother tongue
is based on sentences which are syntactically correct. Against this assertion, it is sometimes
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argued that an incorrect sentence uttered by a child which has no effect in return could play
the role of a negative example. But this only means that the learner is able tosimulatesome
negative data in comparing provided and expected information.

What is it possible to do in grammatical inference on the basis of positive examples?
Gold proved in 1967 that a class of languages that contains all of the finite languages
and at least one infinite language cannot be identified in the limit from positive exam-
ples. As a corollary, regular languages are not learnable in Gold’s model. As natural lan-
guages are certainly more complex than regular languages, the non learnability of REG
raises a problem. Gold suggests several ways to solve this contradiction. We will con-
sider one of them in this paper: examples are not provided to the learner in an arbitrary
way.

Why is learning from positive data so difficult? The main reason is that a too general
hypothesis will never be refuted from a new positive example. A learning algorithm has
classically to preventoverspecialization. A learning algorithm which has to learn from
positive data has to prevent both overspecialization andovergeneralization.

Note the result of Angluin (1980) thatcharacterizesthe indexed families of recursive
languages which are identifiable in the limit from positive examples. Loosely speaking, we
can give the following interpretation of her result: in order to learn from positive data, it
is necessary to associate a (computable or enumerable) characteristic sampleSL to each
hypothesisL. A current hypothesisL, consistent with the current positive sampleS will
nevertheless be refuted ifSL 6⊆ S. This provides a general way to prevent overgener-
alization. The heuristic we will use in our learning algorithm is based on this general
principle.

As every GM learnable class is identifiable in the limit, the class REG is not learnable
from positive examples in the learning model of Goldman and Mathias. There is a very easy
direct proof: suppose that REG is GM learnable from positive examples. LetTeachand
Learnbe the teaching and learning algorithms. LetL be an infinite regular language and let
L ′ = Teach(L). The languageL ′ is regular itself. We haveTeach(L ′) ⊆ L ′ =Teach(L) ⊂ L.
We must haveLearn(Teach(L)) = L andLearn(Teach(L)) = L ′, which is contradictory.

Unfortunately, the situation is even getting worse in the PAC learning model. It can be
easily shown that if a class is PAC learnable from positive data (as the class ofk-CNF), the
output hypothesis must be included in the target concept. But as it is impossible from positive
data to differentiate a negative example from an absent positive one, even very simple classes
cannot be PAC learnable from positive data. See Natarajan (1991b), Shvayster (1990), and
Denis (1998) for a detailed study.

See also Sakakibara (1992) for results on grammatical inference about learning from
structured positive examples(Kanazawa, 1996) foridentification in the limit of cate-
gorial grammarsand (Tellier, 1998) forsyntactico-semantic searning of categorical
grammars.

3. Learning from simple positive examples

There area priori reasons to think that even complex classes can be learned from positive
simpleexamples.
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Suppose that from some correct, simple, frequent sentences such as

“Humphrey runs.”
“Humphrey meets Lauren”
“He runs.”
“He meets Lauren”

a learner infers that the words “Humphrey” and “he” belong to the same syntactical category.
If correct sentences such as

“Lauren meets Humphrey”
“Lauren talks to Humphrey”

are sufficiently frequent, the absence of sentences of the form

“*Lauren meets he”
“*Lauren talks to he”

might be sufficient to make the learner give up his hypothesis. They are so simple that if
they were correct, they would have be produced.

In the PACS learning model, a characteristic example of the target is an example which
can be computed by a small program, the target being known. If the learner can efficiently
compute characteristic examples of his current hypothesis and if these examples do not
appear within reasonable time in the current sample, he has good reasons to discard his
hypothesis, since a characteristic example must be frequent too. In other words, the fact that
simple examples have a higher weight under the underlying distribution might provide a
heuristic to prevent overgeneralization. The goal of this paper is to show that this heuristic
can really be used to learn regular languages.

First, we must adjust the Definition 4.

Definition 6. Let L be a class of languages and letR be a representation scheme forL.
For every non empty languageL ∈ L, we define the set ofpositive admissible distributions
according toR as

D+L ={µr | r ∈ R(L)}
where

µr (x)=


0 if x 6∈ L ,
mr (x)

mr (L)
if x ∈ L

wheremr (L) =
∑

x∈L mr (x).
That is,µr is the positive restriction of an admissible distribution for the target language

L. Note that for everyx ∈ L, µr (x)≥mr (x).

Definition 7. LetL be a class of languages and letR be a representation scheme forL.
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– An algorithmA is a probably exactly correct(PEC) learning algorithm from simple
positive examples forL in R if A takes as inputδ ∈ (0, 1], an integerl , and for any non
empty languageL in L with size(L) ≤ l and any positive admissible distributionµ, A
is given access toEX(L , µ) andA outputs the representation of someL ′ in L, such that
with probability at least 1− δ, L = L ′.

– L isPEC learnable from simple positive examplesin R if there is a PEC learning algorithm
from simple positive examplesA for L in R which runs in time polynomial in 1/δ andl .

Roughly speaking, asimple positive example of a language Lis a positive example of
low Kolmogorov complexity according to the representationr L of the minimal trimmed
automaton which recognizesL. Before to get to the heart of the matter, we show below that
a polynomial sized (sufficiently large) sample drawn according toanypositive admissible
distribution will almost certainly contain the simple positive examples ofL. The proof is
based on several technical lemmas.

Lemma 1. Recall that for any strings r and x, mr (x) is defined asαr 2−K (x | r ). There
exists a constant c0 such that for every string r,

1< αr ≤ c0

Proof: Since for every stringr ,
∑

x∈6∗ 2−K (x | r ) < 1, we get 1< αr .
There exists a constantβ such that for every stringr , K (r | r ) ≤ β. Then,

1≥ mr (r ) = αr 2
−K (r | r ) ≥ αr 2

−β

i.e.αr ≤ 2β . Takec0 = 2β . 2

The following lemma shows that ifL is a non empty regular language and ifr is a
representation forL thenmr (L) has a non null lower bound.

Lemma 2. LetL be a class of languages and let R be a representation scheme forL. There
exists a constant c1 such that for every non empty language L inL, and every representation
r ∈ R(L), we have

mr (L) ≥ c1

So, for every x∈ L, we get

2−K (x | r ) < mr (x) ≤ µr (x) ≤ c−1
1 mr (x) ≤ c0c−1

1 2−K (x | r )

Proof: Let us writefirst(L) for the first string inL (in the≺ ordering). There exists a
program which takes as input any representationr of any non empty languageL ∈ L, and
outputsfirst(L). Then,

∃β ∀L ∈ L, ∀r ∈ R(L), K (first(L) | r ) ≤ β
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Therefore,

mr (L) ≥ mr ( first(L)) > 2−K (first(L) | r ) ≥ 2−β

Let c1 = 2−β : we get the result. 2

Constantsc0 andc1 will be used throughout this paper.
We show in the two next lemmas that ifr L is the encoding of a minimal DFA that recog-

nizesL, the distributionsmr L andµr L are kinds of minimal elements (up to a multiplicative
constant) in the sets of admissible (respectively positive admissible) distributions forL.

Lemma 3. There exists a constant c such that for every non empty regular language L,
for every representation r∈ R(L) and for every string x,

mr (x)≥ cmr L (x) andµr (x)≥ cµr L (x)

Proof: There exists a program which takes as input the representationr of a regular
languageL, computes the corresponding automatonA, minimizes it and outputs the repre-
sentationr L in R of the equivalent minimal DFA.

That is, there exists a constantγ such that for every non empty regular languageL, for
every representationr ∈ R(L) and for every stringx, K (x | r ) ≤ K (x | r L)+ γ .

We have

mr (x) > 2−K (x | r ) ≥ 2−K (x | r L )−γ

and then

mr (x) ≥ 2−γmr L (x)
(
αr L

)−1 ≥ 2−γmr L (x)c
−1
0

From previous lemma, we get

µr (x) ≥ mr (x) ≥ 2−γmr L (x)c
−1
0 ≥ 2−γ c−1

0 c1µr L (x)

Let c = 2−γ c−1
0 c1: we get the result. 2

Proposition 2. For all integers k, l , for everyδ > 0, for any non empty regular language L
such that size(L) ≤ l and for every r∈ R(L), it is sufficient to draw O(klk ln(l/δ))examples
according toµr to get all the elements x of L such that K(x | r L) ≤ k log(size(L)) with a
confidence greater that1− δ.

Proof: Since the number of programs of size≤ h is less than 2h+1, the number of elements
x such thatK (x | r L) ≤ k log(size(L)) is less than 2(size(L))k ≤ 2l k.

Applying previous results, it is easy to show that there exists a constantc such that for
all x in L, we have

µr (x) ≥ c2−K (x | r L )
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i.e. if K (x | r L) ≤ k log(size(L)) ≤ k log l

µr (x) ≥ cl−k

The probability that one such element ofL is not drawn afterN independent draws is
less than

(1− cl−k)N

The probability that there exists one such element ofL that is not drawn afterN inde-
pendent draws is less than

2l k(1− cl−k)N

As for x ≤ 1 we have(1− x)N ≤ e−N x, verify that if

N ≥ l k

c
ln

2l k

δ

we have

2l k(1− cl−k)N ≤ δ 2

4. Learning regular languages from positive teaching sets

We define below the notion ofpositive teaching setfor a languageL. These sets are designed
to satisfy an essential property: a non empty regular languageL is polynomially identifiable
from a positive teaching set forL.

Definition 8. Let L be a non empty regular language and letA = (6, Q,q0, T, δ) be a
trimmed minimal DFA which recognizesL. A finite setS⊂ (6∗)2 is a positive teaching
setfor L if

1. S= {(u, v) ∈ π1(S)× π2(S) | uv ∈ L},
2. λ ∈ π1(S) andλ ∈ π2(S),
3. For every stateq ∈ Q, there existsu ∈ π1(S) such thatδ(q0, u) = q,
4. For every pair of distinct statesq,q′ ∈ Q, there existsv ∈ π2(S) ∩ (Lq1Lq′),
5. For every stateq ∈ Q and every letterx ∈ 6, if q′ = δ(q, x) is defined then there exists

u ∈ π1(S) such thatδ(q0, u) = q andux ∈ π1(S),

Note that this notion is not very robust since a superset of a positive teaching set forL is
not necessarily a positive teaching set. However, we have:

Lemma 4. If S′ is a superset of a positive teaching set S for L and if S′ satisfies item 1
above, then S′ is a positive teaching set for L.



LEARNING REGULAR LANGUAGES FROM SIMPLE POSITIVE EXAMPLES 53

Proof: Straightforward sinceπ1(S) ⊆ π1(S′) andπ2(S) ⊆ π2(S′) 2

Example 3. Let A be the trimmed minimal DFA which recognizes6∗1 (see Example 1).
The setS={(λ,1), (λ,01), (0,1), (0,01), (1,λ), (1,1), (1,01), (10,1), (10,01), (11,λ),

(11, 1), (11, 01)} is a positive teaching set forL.

We show below how to build a particular positive teaching set. But first, we need the
following lemma:

Lemma 5. Let L be a non empty regular language and let A= (6, Q,q0, T, δ) be
the trimmed minimal DFA which recognizes L. For every non empty R⊆ Q, there exists
VR ⊂ 6∗ and a one-to-one mappingσR : VR→ R such that

– card(VR) < card(R),
– For every pair of distinct states q,q′ ∈ R, there existsv ∈ VR such thatv ∈ Lq1Lq′ ,
– For all v ∈ VR, we haveδ(σR(v), v) ∈ T .

Proof: We prove this lemma by induction oncard(R). The result is clear forcard(R)= 1.
Suppose thatcard(R) ≥ 2.

Let v0 be the first string in6∗ such that there exist two distinct statesq,q′ ∈ R such that
v0 ∈ Lq1Lq′ .

Let R′ = {q ∈ R | v0 ∈ Lq} and letR′′ = {q ∈ R | v0 6∈ Lq}. As R′ andR′′ are strictly
included in R, we can apply the induction hypothesis. LetVR′ , VR′′ , σR′ andσR′′ be the
corresponding sets and mappings.

Define VR = VR′ ∪ VR′′ ∪ {v0}. We havecard(VR) ≤ card(VR′)+ card(VR′′) + 1
< card(R). Verify that for any distinct statesq,q′ ∈ R, there existsv ∈ VR such that
v ∈ Lq1Lq′ .

Now, let q′ be the first state inR′\σR′(VR′) (i.e. such that∃uδ(q0, u) = q′ and∀u′ 6=
u, δ(q0, u′) ∈ R′\σR′(VR′)⇒ u ≺ u′). For everyv ∈ VR, define

σR(v) =


σR′(v) if v ∈VR′ ,

σR′′(v) if v ∈VR′′ \VR′ ,

q′ if v = v0 andv 6∈ VR′ ∪ VR′′

σR is clearly one-to-one and∀v ∈ VR, δ(σR(v), v) ∈ T . 2

Definition 9. Let L be a non empty regular language, letA = (6, Q,q0, T, δ) be the
trimmed minimal DFA which recognizesL and letn = card(Q). For every stateq ∈ Q, let
us writeuq for the first string (in the≺ ordering) such thatδ(q0, uq) = q. Let UA = {uq |
q ∈ Q} ∪ {uqx | q ∈ Q, x ∈ 6 andδ(q, x) is defined}. Now, letVQ andσQ as defined in
the previous lemma. For everyq ∈ Q, let

vq =
{
v if σQ(v) = q

the first string inLq otherwise

Now let VA = {vq |q ∈ Q} andSA = {(u, v) ∈ UA × VA | uv ∈ L}.
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Lemma 6.
1. UA has at most2n + 1 elements, uq0 = λ and the length of every element in UA is at

most n;
2. VA has at most n elements, λ ∈ VA and the length of every element in VA is at most

n− 1.

Proof:

1. Associateuqx to each transition(q, x,q′) ∈ δ; if uqx = uq1x1 thenx = x1, q = q1

andδ(q, x) = δ(q1, x1); as each element inUA exceptλ corresponds to one transition,
card(UA) ≤ 2n+ 1. The two other points are straightforward.

2. It is clear thatcard(VA) ≤ n; as the length of the least string that distinguishes two states
is at mostn− 1, the length of each element inVA is at mostn− 1. Now, let us prove
thatλ ∈ VA: if all states inQ are terminal states, for everyq ∈ Q\VQ, vq = λ; and if
not all states are terminal, the first element inVQ is λ.

2

As a corollary, we get:

Proposition 3. Let L be a non empty regular language and let A= (6, Q,q0, T, δ) be
the trimmed minimal DFA which recognizes L. SA is a positive teaching set for L that we
will designate as the canonical positive teaching set for L.

Example 4. Let A be the trimmed minimal DFA which recognizes6∗1. We have
UA={λ, 0, 1, 10, 11}, VQ={λ}, VA={λ, 1}, SA={(λ, 1), (0, 1), (1, λ), (1, 1), (10, 1),
(11, λ), (11, 1)}.

Proposition 4. There exists a polynomial algorithmA such that for any non empty regular
language L and any positive teaching set S for L, if A takes S as input thenA outputs a
trimmed minimal DFA for L.

Proof: Let L be a non empty regular language, letA = (6, Q,q0, T, δ) be a minimal
trimmed automaton which recognizesL and letSbe a positive teaching set forL.

Let∼S be the relation defined overπ1(S) by

u ∼S v iff ∀ w ∈ 6∗ (u, w) ∈ S⇔ (v,w) ∈ S

1. The relation∼S is an equivalence relation. Let us writeū the class of the stringu and
let Q′ be the quotient set ofπ1(S) modulo to∼S.

2. For allu andv in π1(S), δ(q0, u) = δ(q0, v)⇔ ū = v̄.
3. Letφ : Q′ → Q defined byφ(ū) = q such thatδ(q0, u) = q. Previous item ensures

that this definition is correct. Verify that

– φ is one-to-one ontoQ,
– φ(λ̄) = q0,
– φ(ū) ∈ T iff (u, λ) ∈ S,
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– If δ(q, x) is defined, there existsu ∈ π1(S) such thatux∈π1(S), φ(u) = q and
φ(ux) = δ(q, x).

Now, it is easy to check that the following algorithm is well defined, that it runs in polynomial
time and that the output automaton is a DFA isomorphic toA.

Algorithm A
Input: S, a positive teaching set for some regular languageL
Defining the set of statesQ′

Q′ ← ∅
For everyu ∈ π1(S) do

if there existq ∈ Q′ and u′ ∈ q such thatu ∼S u′

then
q← q ∪ {u}

else
Q′ ← Q′ ∪ {{u}}

Defining the initial state q′0
there exists a unique elementq′0 ∈ Q′ such thatλ ∈ q′0

Defining the set of final statesT ′

T ′ ← {q ∈ Q′ | ∃u ∈ q and(u, λ) ∈ S}
Defining the transition function δ′

For all q ∈ Q′ and for all x ∈ 6
if there existu and q′ ∈ Q′ such thatu ∈ q andux ∈ q′

then
δ′(q, x) = q′

Let A′ = (6, Q′,q′0, T
′, δ′) andr = c(A′)

Output: r 2

It is not very surprising that we could rebuild a regular language from a positive teaching
set: this notion has been designed for this purpose. We show in the next section that there
are natural ways to find such sets.

5. Simple positive teaching sets

It is not too difficult to build a positive teaching set whose elements have simple components.
It is more interesting to remark that a set of the form{(u, v) | uv ∈ L} is a positive teaching
set as soon as its elements have (sufficiently) simple components.

Lemma 7. There exists a constant c2 such that for every non empty regular language L
with n states, for every r ∈ R(L), for every pair(u, v) ∈ SA (where SA is the canonical
positive teaching set for L), we have

K (u | r ) ≤ logn+ 2 log logn+ c2 and K(v | r ) ≤ logn+ 2 log logn+ c2

We will use such a constant c2 throughout this paper.
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Proof: There exists a program that builds fromr the corresponding trimmed minimal
DFA A which recognizesL. Therefore, there exists a program that computesUA from r
(see Definition 9). Each element ofUA can be be identified fromr by its index inUA. As
UA has at most 2n+ 1 elements, each of its element can be identified fromr by a program
whose length is at most logn+ 2 log logn+ O(1) (see Section 2.2).

The second inequality is proved in a similar way. 2

Lemma 8. There exists a constant c3 such that for every non empty regular language L,
for every r∈ R(L) and for every string u∈ 6∗ such that K(u | r ) ≤ logn+2 log logn+c2,
we have

if u6∗ ∩ L≤2n−1 6= ∅ thenµr (u6
∗ ∩ L≤2n−1) ≥ c3

n(logn)2

and

if 6∗u ∩ L ≤ 2n− 1 6= ∅ thenµr (6
∗u ∩ L≤2n−1)≥ c3

n( logn)2

We will use such a constant c3 throughout this paper.

Proof: Suppose thatu6∗ ∩ L≤2n−1 6= ∅. There exists a program that, with inputsr and
u finds the first stringw such thatuw ∈ L≤2n−1. Then, there exists a constantγ1 such that

K (uw | r ) ≤ K (u | r )+ γ1

We have

µr (u6
∗ ∩ L≤2n−1)≥µr (uw)≥ 2−K (uw | r )≥ 2−K (u | r )−γ1 ≥ 2−γ1−c2

n(logn)2

In a similar way we prove that there exists a constantγ2 such that

if 6∗u ∩ L≤2n−1 6= ∅ thenµr (6
∗u ∩ L≤2n−1) ≥ 2−γ2−c2

n(logn)2

Let c3 = min(2−γ1−c2, 2−γ2−c2); we get the result. 2

Definition 10. Let L be a non empty regular language withn states. Leta> 0 and let
r ∈ R(L). We let

Ua
r =

{
u ∈ 6 ≤ n, µr (u6

∗ ∩ L ≤ 2n− 1)≥ a
}

Va
r = {v ∈ 6≤n−1, µr (6

∗v ∩ L ≤ 2n− 1) ≥ a}
Sa

r =
{
(u, v) ∈ Ua

r ×Va
r

∣∣ uv ∈ L
}
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Lemma 9. We have

Card
(
Ua

r

) ≤ n+ 1

a

Card
(
Va

r

) ≤ n

a

Card
(
Sa

r

) ≤ n(n+ 1)

a2

Proof: Let us writefr(Ua
r ) for the set of strings ofUa

r which are not prefix of another
string inUa

r . That is

fr
(
Ua

r

)= {u ∈ Ua
r

∣∣ ∀u′ ∈ Ua
r , u

′ ∈ u6∗ ⇒ u= u′
}

fr(Ua
r ) is a prefix set. Therefore, ifu, u′ ∈ fr(Ua

r ), u 6= u′ ⇒ u6∗ ∩ u′6∗ = ∅. We have:

1 ≥ µ r
( ∪ {u6∗ | u∈ fr

(
Ua

r

)})=6{µ r (u6
∗)
∣∣ u∈ fr

(
Ua

r

)}
≥ a×Card

(
fr
(
Ua

r

))
ThereforeCard( fr(Ua

r ))≤ 1/a
In the other hand, every string of lengthn has at mostn+ 1 prefixes. Then

Card
(
Ua

r

) ≤ n+ 1

a

We prove in a similar way thatCard(Va
r ) ≤ n/a.

Lastly,

Card
(
Sa

r

) ≤ Card
(
Ua

r

)× Card
(
Va

r

) ≤ n(n+ 1)

a2 2

Proposition 5. Let L be a non empty regular language with n states. Let r∈ R(L) and
let a be such that0 < a ≤ c3/n(logn)2 (where c3 is defined in Lemma8). Then, Sa

r is a
positive teaching set and its size is polynomial in n and1/a.

Proof: Applying Lemmas 7 and 8, we see thatSa
r is a superset ofSA. From Lemma 4,Sa

r
is a positive teaching set. From Lemma 9, the cardinal ofSa

r is polynomial inn and 1/a.
2

Corollary 2. Let L be a non empty regular language with n states, and let a be such that
0< a ≤ c3/n(logn)2. We can compute from Sa

r a minimal DFA which recognizes L in time
polynomial in n and1/a.

Proof: Apply Propositions 4 and 5. 2

We have proved that every regular language has simple positive teaching sets. It remains
to show that it is possible to find such a teaching set from simple positive examples.
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6. Learning regular languages from simple positive examples

Lemma 8 shows that if a worduv ∈ L has simple componentsu andv, then the events
u6∗ ∩ L≤2n−1 and6∗v∩ L≤2n−1 have not too small a weight under any positive admissible
distribution.

We show below a kind of converse: ifu is a frequent prefix inL, if v is a frequent suffix
in L and ifuv is in L, thenuv must be frequent.

Lemma 10. There exists a constantβ such that for every non negative integer n, for all
strings u∈ 6 ≤ n and r∈6∗, we have

K (u | r )≤ logn+ 2 log logn− logmr (u6
∗)+β

and

K (u | r )≤ logn+ 2 log logn− logmr (6
∗u)+β

Proof: Let u∈6 ≤ n andr ∈6∗.
We have

mr (u6
∗) = αr

∑
v∈6∗

2−K (uv | r )≤ c0

∑
v∈6∗

2−K (uv | r )

wherec0 has been defined in Lemma 1.
There exists a constantβ1 such that for all stringsu, v, r we have

K (〈u, v〉 | r )≤ K (uv| r )+ logn+ 2 log logn+β1

where |u| ≤ n. Indeed, we only need to know the length ofu to compute the pair〈u, v〉
from the stringuv, and we need a program whose length is at most logn+ 2 log logn (up
to an additive constant) to compute|u| .

A fundamental theorem in Kolmogorov complexity theory (see Symmetry of Algorithmic
Information in Li & Vit ányi, 1993) says that there exists a constantβ2 such that for all strings
u, v, r we have

K (〈u, v〉 | r ) ≥ K (u | r )+ K (v | u, K (u), r )−β2

Therefore,

K (uv | r )≥ K (u | r )+ K (v | u, K (u), r )− logn− 2 log logn−β1−β2

Then

mr (u6
∗)≤ c0n( logn)22β1+β22−K (u | r ) ∑

v∈6∗
2−K (v | u,K (u),r )

As ∑
v∈6∗

2−K (v | u,K (u),r ) < 1
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we have,

mr (u6
∗) < c0n(logn)22β1+β22−K (u | r )

and

K (u | r )≤ logn+ 2 log logn− logmr (u6
∗)+β1+β2+ logc0

Let β =β1+β2+ logc0: we get the result.
The second inequality is showed in a similar way. 2

Corollary 3. There exists a constant c4 such that for every non negative integer n, for
every non empty regular language L with n states, for every r∈ R(L) and a> 0, and for
every pair(u, v) ∈ Sa

r , we have

µ r (uv)≥ c4

(
a

n(logn)2

)2

Proof: First, there exists a constantγ such that

µ r (uv)≥mr (uv)≥ 2−K (uv | r )≥ 2−K (u | r )−K (v | r )− γ

From previous lemma and Lemma 2, we have

2−K (u | r ) ≥ 2−βmr (u6∗)
n( logn)2

≥ 2−βmr (u6∗ ∩ L ≤ 2n− 1)

n(logn)2

≥ 2−βµr (u6∗ ∩ L≤2n−1)

n( logn)2
mr (L)

≥ c12−β
a

n(logn)2

and in a similar way,

2−K (v | r )≥ c12−β
a

n(logn)2

Therefore

µr (uv)≥ (c1)
22−2β−γ

(
a

n(logn)2

)2

Let c4 = (c1)
22−2β−γ : we get the result. 2

Now, we are going to show that if we draw a sufficiently large sample according to a
positive admissible distribution it is possible to computeexactlya positive teaching set for
the target.

We recall some classical results based on the Hoeffding bounds:
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Lemma 11. Let X1, . . . , XN be a sequence of m independent Bernoulli trials, each with
probability of success p. Let S= X1+···+XN

N be a random variable estimating the parameter
p (i.e.E[S] = p). Then for0≤ ε ≤ 1 the following inequality holds

Pr [|S− p| > ε] ≤ 2e−2Nε2

Therefore, if we want to estimate the weight ofm eventsA1, . . . , Am under a probability
distributionµwith accuracyε and confidenceδ, it is sufficient to drawN elements according
toµ whereN satisfies 2me−2Nε2 ≤ δ. Verify that N = ln 2m−ln δ

2ε2 is suitable.
Now, consider the following algorithm:

Algorithm: T
Input: δ, n
Let a = c3

n(logn)2 wherec3 is defined in Lemma 8

Let N1 = d9(n+4) ln 2−ln δ
2a2 e

suppose that the target language L has at most n states
and that the underlying distributionµr is a positive
admissible distribution according to L
Draw N1 examples according to the oracleEX(L , µr )

Discard the examples whose length is greater than 2n− 1
Build a multisampleE with the remaining examples,
i.e. letw ∈ 6∗ andnw a positive integer
(w, nw) ∈ E iff |w| ≤ 2n− 1 andw has been drawn exactlynw times
Let Ŝr = {(u, v) ∈ 6≤n ×6≤n−1 | ∃k > 0 (uv, k) ∈ E}
Let Ûr = π1(Ŝr ) andV̂r = π2(Ŝr )

we have a sufficiently large sample to estimate the following weights
with good accuracy and confidence
For all u ∈ Ûr compute

µ̂r (u6∗ ∩ L≤2n−1) = 6{nw | (w, nw) ∈ E andw ∈ u6∗}/N1

For all v ∈ V̂r compute
µ̂r (6

∗v ∩ L≤2n−1) = 6{nw | (w, nw) ∈ E andw ∈ 6∗v}/N1

Let Û2a/3
r = {u ∈ Ûr | µ̂r (u6∗ ∩ L≤2n−1) ≥ 2a/3} and

V̂2a/3
r = {v ∈ V̂r | µ̂r (6

∗v ∩ L≤2n−1) ≥ 2a/3}
Let N2 = d 1

c4
(

3n(logn)2

a )2 ln 18n(n+1)
a2δ
e

Draw N2 examples according toEX(L , µr )

Discard the examples whose length is greater than 2n− 1
Build a sampleE′ with the remaining examples
Ŝ2a/3

r ← {(u, v) ∈ Û2a/3
r × V̂2a/3

r | uv∈ E′}
We will prove thatŜ2a/3

r is a positive teaching set with high confidence
Output: Ŝ2a/3

r

Proposition 6. For every non empty regular language L with n states, for every represen-
tation r ∈ R(L) and for every positive admissible distributionµr , the running time of the
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algorithmT is polynomial in n and1/δ. With a probability greater than1− δ, T outputs
a positive teaching set for L.

Proof: There are less than 2n+ 2 sets of the formu6∗ ∩ L≤2n−1 and6∗v ∩ L≤2n−1 where
u, v ∈ 6≤n. Then, from Lemma 11, with a confidence greater than 1− δ/2, we have for all
u ∈ Ûr∣∣µ̂r (u6

∗ ∩ L≤2n−1)− µr (u6
∗ ∩ L≤2n−1)

∣∣ ≤ a

3

and for allv ∈ V̂r∣∣µ̂r (6
∗v ∩ L≤2n−1)− µr (6

∗v ∩ L≤2n−1)
∣∣ ≤ a

3

Therefore, with a probability greater than 1− δ/2, we have:

Ua
r ⊆ Û2a/3

r ⊆ Ua/3
r and Va

r ⊆ V̂2a/3
r ⊆ Va/3

r

hence,

Sa
r ⊆ S= {(u, v) ∈ Û2a/3

r × V̂2a/3
r

∣∣ uv∈ L
} ⊆ Sa/3

r

Suppose now that these inequalities are satisfied. We will prove thatŜ2a/3
r = S with a

probability greater than 1− δ/2.
Let (u, v) ∈ S. From Corollary 3, we haveµr (uv) ≥ c4(

a
3n(logn)2 )

2. From Lemma 9, we
havecard(S) ≤ 9n(n+ 1)/a2.

The numberN2 has been chosen in such a way that,

9n(n+ 1)

a2

(
1− c4

(
a

3n( logn)2

)2
)N2

≤ 9n(n+ 1)

a2
e
−N2c4

(
a

3n( logn)2

)2

≤ δ/2

i.e., with a probability greater than 1− δ/2, all strings of{uv | (u, v)∈ S} will be drawn
and the algorithm will outputS. As from Lemma 4,S is a positive teaching set, we get the
result.

The algorithm is clearly polynomial inn and 1/δ. More precisely, verify that for ev-
ery α >0, the number of examples drawn isO(n4+α ln(1/δ)) and the running time is
O(n5+α ln(1/δ)). 2

Theorem 2. The class of regular languages is probably exactly learnable from simple
positive examples.

Proof: Consider the following algorithm:
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Learning Algorithm:
Input: δ, l
Let us take l as an upper bound for the number of states of the target
Run algorithmT with inputsδ, l
Let Sbe the output
Run algorithmA with input S
Let r ′ be the output
Output: r ′

Propositions 6 and 4 show that, for every regular languageL such thatsize(L) ≤ l , and
every representationr ∈ R(L), the previous algorithmA(T (l , δ)) outputs a representation
of L with probability greater than 1− δ, when it is feeded with the oracleEX(L , µr ). 2

Algorithm T runs in time O(l 5+α ln(1/δ)) for every α >0. As S⊆ Sa/3
r and from

Lemma 9,Card(π1(S)) andCard(π2(S)) are in O(l/a) i.e. in O(l 2+α) for everyα >0.
The length of the longest element inπ1(S) andπ2(S) is ≤ l . AlgorithmA can be imple-
mented in timeO(Card(π1(S))Card(π2(S))Max{|u|/u ∈ π1(S) ∪ π2(S)}) that isO(l 5+α)
for every α > 0. Consequently, the total running time of the learning algorithm is in
O(l 5+α ln (1/δ)) for everyα > 0.

6.1. Miscellaneous remarks

– It is important to note that our result is independent on the reference Turing machine
which has been chosen to define the Kolmogorov complexity. Indeed, the choice of a
particular Turing machineU has never been mentioned or used.

– We still don’t have any rigorous definition of what collusion is. Therefore, we cannot
prove that no collusion phenomenon can occur in learning regular languages from simple
positive examples. But whatever a precise definition would be, if the target language
could be encoded by positive examples and if the learner could use this information, it
is likely that the class of regular language would be learnable in the model of Goldman
and Mathias. That is, the fact that REG is not GM learnable from positive examples is
maybe a sufficient reason to think that all danger of collusion is avoided.

– Lastly, note that our algorithm uses the general heuristic principle stated in Section 3:
each pair(u, v) ∈ Û2a/3

r × V̂2a/3
r constitutes a (micro) current hypothesis which predicts

that the stringuv is a simple positive string. Ifuv does not appear in a reasonably large
new sample, the learning algorithm discards this hypothesis.

– It would have been nice to get rid ofl as it is possible in classical PAC framework
(Haussler et al., 1991). Unfortunately, that seems impossible. Suppose, for example, that
we want to differenciate6∗ and6≤N where N is greater than the available running
time allowed to learn6∗. No efficient strategy seems available. And as there exist very
long strings with pretty small complexity, turning the exact learning requirement into an
approximative one does not help. Maybe, it should have been fairer to say that for every
integerl , the classREGl is probably exactly learnable.
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To conclude, let us study how the previous result can be adapted to the simple PAC model
of Li and Vitányi (1991).

As they do in Li and Vitányi (1991) withk-reversible languages, we define a notion of
simple regular language.

Definition 11. Let L be a non empty regular language and letA = (6, Q,q0, T, δ) be a
trimmed minimal automaton which recognizesL. Let c be an integer andn = Card(Q).
We say thatL is c-simple if for every stateq ∈ Q,

K (uq | r L) ≤ c logn and K (vq | r L) ≤ c logn

Proposition 7. The class of c-simple regular languages is learnable from positive simple
examples provided that the examples are drawn according to the(positive restriction of)
Solomonoff-Levin distributionm.

Proof: The only place where we used the fact that the examples are drawn according
to µr where r is a representation of the target languageis Lemma 7. But, if the target is
c-simple, we get a similar conclusion when we use non conditional complexity (K (·) rather
that K (· | r )). All the following lemmas can be adapted to this case in a straightforward
way. 2

A regular languageL is 0-reversible if the mirror automaton of the minimal trimmed
DFA A that recognizesL is deterministic. A 0-reversible language is simple if for every
stateq, the least stringu such thatδ(q0, u) = q and the least stringv such thatδ(q, v) ∈ T
are simple. Li and Vitanyi have proved in Li and Vit´anyi (1991) that simple 0-reversible
languages are PAC learnable fromm.

But, if L is 0-reversible, we have

u1v ∈ L and u2v ∈ L ⇒ δ(q0, u1) = δ(q0, u2)

Hence, for every stateq,vq is the least string such thatδ(q, vq)∈ T . We see that the notion of
simple regular languagegeneralizes the notion ofsimple0-reversible language. A similar
remark can be made aboutk-reversible languages. Therefore, the Proposition 7 generalizes
the results of Li and Vit´anyi (1991) mentioned above.

7. Conclusion

Learning from positive data is an important topic in Computational Learning Theory, and
specially in the domain of Grammatical Inference since it is believed that it is possible to
learn the syntax of a natural language solely from positive instances. However, classical
models provide no tools to overcome the main difficulty in this kind of learning, i.e. to
avoid overgeneralization. This is specially true when we want the learning to be efficient,
i.e. polynomial in the size of the target representation. In the field of learning DFAs, most of
the positive results rely on an extra-hypothesis concerning the distribution of the examples
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to the learner: they must contain a “teaching set” as for the class ofk-reversible languages
(Angluin, 1982) or they must be structured (Sakakibara, 1992).

Here, we use a generalization of the learning model of Li and Vit´anyi (Li & Vit ányi,
1991; Denis, D’Halluin & Gilleron, 1996) that makes the hypothesis that simple examples
are more frequent than complex ones, using the notion of Kolmogorov complexity to define
what is a simple example.

We proved that the class of regular languages is probably exactly learnable in this model.
Beyond the technical aspects of this result, we would like to emphasize the fact that the

hypothesis made by the model and the heuristic used by the learning algorithm have some
relevance from a cognitive point of view.

– The simplicity of an example or the fact that it is characteristic of a concept is often used,
without being defined. Kolmogorov complexity allows to give a rigorous definition of
this intuitive notion,

– Supposing that simple examples are more frequent is a plausible hypothesis in numerous
natural learning contexts,

– Supposing that a current hypothesis may be ruled out if some simple expected events do
not occur seems to be a plausible heuristic too,

– Lastly, the sole property of the model that we use to show the learnability of the class
of regular languages is the following: there exists a subsetSof the language, composed
of frequent words, containing sufficiently rich information to allow the reconstruction of
the language and such that if a correct word has components appearing inS, then it must
be in S too. Again, we think that this hypothesis is plausible from a linguistic point of
view.

As a future work, we would like to develop this result in both theoretical and experimental
directions. The class of regular languages is too poor to describe significant fragments of
natural language—context free languages are needed at least. What complexity levels are
reachable by the model and the techniques developed here?

The Solomonoff-Levin distribution is not computable and it would be interesting to isolate
which properties are needed in order to keep this result. This would allow to design more
practicable families of admissible distributions. We would like too to collect real data from
natural language corpuses and study to what extent it is possible to suppose they have been
generated by such admissible distributions.
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