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1. Introduction

Natural language learning constitutes one of the most typical human learning abilities. It is
also one of the most difficult challenge for researchers in Computational learning theory.
In both reference models used in Learning theory, namely Gold’s identification in the limit
model (Gold, 1967) and Valiant’s probably approximatively correct model (Valiant, 1984),
results are not satisfactory, even for one of the simplest class of formal languages: the class
REG of regular languages. Either REG is not learnable (as in PAC model modulo some
usual cryptographic assumption (Kearns and Valiant, 1994)) or REG is learnable with the
help of a trivial algorithm which has no cognitive relevance (as in Gold’s model (Gold,
1967)). See Pitt (1989), and Sakakibara (1997) for a survey of the field.

Things are even getting worse when we try to take a natural constraint into account:
natural language learning is based on sentences which are syntactically correct. Therefore,
formal theories must explain how it is possible to learn from positive data only. Gold proves
in 1967 that, as soon as a class of languages contains all of the finite languages and at least
one infinite language, it is not identifiable in the limit from positive data. As a corollary,
the class REG is not learnable from positive data in Gold’s model. The problem is that
no positive example can refute a too general hypothesis. Therefore, it seems impossible to
avoid overgeneralization, except in the simplest cases.

Angluin has given a characterization of indexed families of recursive languages which
are identifiable in the limit from positive examples (Angluin, 1980). She gave a gen-
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eral heuristic in order to avoid overgeneralization: at each steip the current posi-

tive sample isS, a hypothesih may be output if it is consistent witl$ and if some
computable finite sample, $ of h is included in SThe setsS,, can be interpreted as
characteristicsamples forh that must be present i must be output. In other words,

a too general hypothesis will be refuted if its characteristic sample is not present in the
current sample. Angluin (1982) has introduced subclasses of REG, ¢atekrsible
languages, and shown the existence of polynomially computable characteristic samples
sufficient for identification from positive data. See also Sakakibara (1992), Yokomori
(1995), de Jongh and Kanazawa (1996), Kanazawa (1996), Koshiba (1997), and Head et al.
(1998).

Due to the free distribution and polynomial running time requirements, results are still
weaker in PAC learning framework (Natarajan, 1991b; Shvayster, 1990; Yokomori, 1995;
Denis, 1998).

Many very valuable heuristics and learning algorithms from positive examples alone have
been proposed yet and many of them have been used quite successfully in some practical
situations such as speech recognition, and natural language learning. For example, see
Carrasco and Oncina (1994) for an approach based on Probabilistic finite state automata
(PFSA) and Stolcke and Omohundro (1994), Rabiner and Juang (1986) for a Hidden Markov
Model (HMM) approach. But, to our knowledge, no general result is available for PFSA
nor for HMMs. Our goal in this paper is to study under what conditions general classes of
languages can be learned efficiently from positive examples.

Gold suggests that one reason why natural language learning is possible is that the
learner is not provided witlarbitrary examples (Gold, 1967). There are several ways to
give substance to this idea:

— The learner may asgueries Angluin proved in 1987 that REG is exactly learnable
within polynomial time using membership and equivalence queries, i.e. using a Minimally
Adequate Teacher (MAT). We think that such queries are not meaningful in a positive
learning framework. Yet, it is often remarked that children get feedback about what they
say. For example, parents commonly repeat what their children say with corrections. But,
against these arguments, it can be said that natural language learning mainly develops
before children are systematically corrected by their parents. And completely incorrect
utterances are rarely observed. We think that membership queries should be restricted in
some way in order to be used in a positive learning framework.

— We may impose teaching seto be presentin every current sample (Gold, 1978; Angluin,
1987; Goldman & Mathias, 1996). We mainly study here the learning model of Goldman
and Mathias. If the teaching set may contain negative examples, the class REG is effi-
ciently exactly learnable in this model (Goldman & Mathias, 1996; Oncina & Garcia,
1992). But if the teaching set must be composed of positive examples only, it is easy to
show that REG is not learnable.

— In PAC framework, the class of allowed distributions can be restricted (Li &rWit"

1991; Denis, D’Halluin & Gilleron 1996; Denis & Gilleron, 1997a; D'Halluin, 1998).
The starting point in Li and Vahyi (1991) is to suppose thatmple examples must
be given more importance in the learning process. Kolmogorov Compl&xi) is
used to measure the complexity of an examphlnd it is supposed that in the learning
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process, the examples are drawn according to the Solomonoff-Levin distribuiehere

m(x) ~ 2-K®), This model has been generalized in Denis et al. (1996) in order to take
the complexity of (a representation of) the targeinto account: it is supposed that
the examples are drawn according to teaditional Solomonoff-Levin distributionm,
(wherem¢(x) ~ 2-KXI9), Simple examples (i.e. of low conditional complexityx | c))

are more probable unden.. A class of concepts is said to bearnable from simple
examplesor PACS learnable in short, if it is PAC learnable provided the examples are
drawn according tonc. It has been proved in Parekh and Honavar (1997) that the class
REG is PACS learnable.

Learning models with teaching sets raise a problem when a representation of the target
concept can be encoded by means of examples. We show that in this case, every learning
algorithm can be rendered trivial: indeed, nothing prevents the teacher to put an encoding
of the target concept into the teaching set and nothing prevents the learner from using it.
Unfortunately, the class of regular languages is concerned with fitluaion phenomenon
between the teacher and the learner, since it is possible to encode efficiently a DFA by a not
too large string. As the string which encodes the minimal DFA that recognizes a lariguage
has a low Kolmogorov complexity knowing a representatioh gf is a simple example for
L. Therefore, the learning model from simple examples is also concerned with this problem.
This means that these models are not strong enough to avoid collusion phenomena and that
if we still want to use them, we must verify in each case that such a global information on
the target cannot be directly provided to the learner.

Despite the problems pointed out above, we are mainly interested in the learning model
from simple examples. There are several reasons for that:

1. The theory of Kolmogorov complexity provides a rigorous way to define the amount of
information shared between an example and a target language. If we say that an example
is characteristicof a languagd. when it has a small Kolmogorov complexity relatively
to a representation df, we give a rigorous definition that captures important features
of this intuitive notion.

2. Itseemsthatthere is no way to efficiently encode a regular language by means of positive
examples.

3. Supposing that simple examples have a higher weight in the learning process suggests
to use the following heuristic to avoid overgeneralizatiot ii§ a hypothesis consistent
with the current sampl&, compute fromh some new positive examples, . . ., Xq Or
more generally, some positive eveig, ..., Aq, i.e. composed of positive examples;
they are “characteristic” df since they have a low Kolmogorov complexity relatively
to h; draw some more examples from the target concept; if one of;thés not drawn
or if one of theA is not true, rejech.

We think that the previous heuristic is relevant from a cognitive point of view. Why from
a?, a8 al? ab, ... don't we infera*? Doubtless because if the target ves we would
expect to see at least one odd exponent! That is, the reason why we reject the hypothesis
h = a* is that the simple (characteristic) expected event “having an odd exponent” is not
true.
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In this paper, we study learning from simple positive examples and we show that learning
algorithms can be based on this heuristic. Our main result istbeatlass of regular
languages is probably exactly learnable from simple positive examples

Our model is defined in Section 3; we define in Section 4 the notigositive teaching
setfrom which it is possible to reconstruct a given DFA; we show the existensaryile
teaching sets in Section 5; eventually, we prove our main result in Section 6.

As a corollary, we show that the class sifmple regular languagess learnable in the
model of Li and Viginyi. This result generalizes the simple PAC learnability of simple
k-reversible languages stated in Li andaviyi (1991).

2. Preliminaries
2.1. Deterministic finite automata

Let = be afinite alphabet ard* be the set of strings ovér. For simplicity, we suppose here
thatX = {0, 1} but all our results can be extended to the general case in a straightforward
way. We writerr; (resp.m») for the function which maps each element(&*)? on its first
(resp. second) component (i.e4(X, Y) = X andm2(X, y) = y). We denote the null string
by A and the length of the string by |u|. The size of a finite subs& of ¥* is defined
as||S|| = ) ,cslul. We consider the ordering oB* such thatu < v iff [ |u] < |v| or
(lul = |v| andu is smaller tharv in the lexicographical ordering)]. For every integer
™M (respectivelyz=") is the set of strings of lengtim (respectively of length at most).
A languageis a subset o&*. A languagel is prefixif for all stringsu andv, u € L and
uv € L implies thaty = A. For every integem, we letL™ = LNEZMandL=""= LN X=".
For every strings, we letu™ L = {v € ¥* | uv € L}. If L; andL, are two languages, we
letLiALy, = (LU L)\ (L1 N Ly).

A deterministic finite automatofDFA) is a quintupleA = (2, Q, qo, T, §) whereQ is
a finite set of stategyy € Q is the initial state,l < Q is the set of accepting states, and
3:Qx X — Qisthe transition partial function. We still denote bthe extended transition
partial function defined ove x X*. We denote the language accepteddlyy L (A), i.e.
L(A) = {u e Z*|8(to, u) € T}. For every statg € Q, we letLqy ={u e £* | 8(q,u) €
T}. Thus,Lg, = L(A). Alanguage isegularif it is recognized by a DFA. We write REG
for the class of regular languages.

An automaton is said to kemmedif every state is accessible from the initial state and
if for every stateg, there is a final state which is accessible frgqnGiven a DFAA, there
is an efficient procedure to find a minimal DFA (in the number of stated) {@). We will
say that a non empty regular language hasates to mean that the trimmed minimal DFA
which recognizes it has states.

Note that a DFA withn states can be encoded as a strin@dof lengthO(nlogn). An
encoding functiorior DFA is a functionc: DFA — X* such that

— For everyA € DFA, |c(A)| is bounded byO(nlogn) andc runs in time polynomial in
n, wheren = card(Q).
— For all automatah, A’ € DFA, Aand A’ are isomorphic ifit(A) = c(A).
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— There exists a polynomial-time deterministic algorithm which takes as input a string
and outputs an automatagksuch that(A) =r if r € c(DFA) anderror otherwise.

— For convenience, we will also suppose that the length(8§ is at least equal to the
number of states o, i.e.|c(A)| > card(Q).

For example, ifA = (2, Q, qo, T, §), we can take(A) to be the smallest string of the
form

1card(Q)0q01card(6)0 1_[ qqulcard(T)o 1_[ q
(@.x,q1)€8 qeT

whereq is a code for the staig whose length isnax(1, [logcard(Q)1).

Example 1 Let A be the minimal deterministic automaton which recognizés

0 1
1

é-‘
0
With the previous scheme, 110011110000011100111101 is a code for

We fix such an encoding, say

2.2. Kolmogorov complexity and Solomonoff-Levin distribution

Complete definitions, results and proofs can be found in Li anahyit(1993).

Letx,y € £*. We letx = 1X0x the self-delimitingversion ofx. We let (x, y) = yx.
Forn > 3,welet(Xy, ..., Xn) = {{X1, ..., Xn—1), Xn).

Let T be a Turing machine ang, y € X*. We write T ({p, ¥)) = x to mean thaf with
programp and extra informatiory terminates with outpux. Let us defineK+(x|y) =
min{| p| s.t. T({p, Y¥)) = X}, oroo if such p does not exist an#t(x) = Ky (x| ). There-
fore, Kt (x| y) is the minimal length of a program that computefsom y.

We consider the prefix variamt of Kolmogorov complexity: grefix Turing machinés
a Turing machine for which the set of terminating programs is a prefix set. Note that for
every stringy and every prefix Turing machirig, the set of programp such thafl ({p, y))
halts is also a prefix set.

The Invariance Theorem states that there existdalitively optimalprefix Turing ma-
chineU, i.e. such that for any prefix Turing machifie there is a constart; such that
for all stringsx, y, Ky(x|y) < Kg(x|y) + cr. Therefore, for each pair of additively
optimal prefix Turing machined andU’, there is a constat, -, such that for all strings
X, ¥, |[Ku(X|y) — Ky (X|y)| <cy.u. Note that all the current programming languages are
additively optimal prefix Turing machines.
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We fix such a machine, s&y, and call it the reference prefix Turing machine. We define
K () = Ky(x), andK(x|y) = Ky(X|y).
It can be proved that for every stringsandr,

Kx|r) < |x| +2log|x| + O(1).

Each element of a finite set of string®\ can be identified by a program that computes
A and its index inA. That is, ifCard(A) = n,

Kx|r) < K(A|r) + logn+ 2log logn + O(1).
We will often use the following inequalities: for all stringsandy,
KX = KX, ¥) + O(1) < K(X) + K(y[x) + O(1) < K(X) + K(y) + O(1)

One of the most interesting property of the prefix Kolmogorov complexity is that for
every string,

> Kxin g

Xex*
Letr € =*, we define

m, (X) = a; 27 K&IN

wherea, = (3, 5. 27K*1M)~1 and
m(x) = m; (X)

For each string, m, is a probability distribution orE*.
The functionm is called the Solomonoff-Levin distribution. It can be shown timat
dominates every enumerable semi-distribution and that it is not computable.

2.3. Learning models

We will restrict here the classical definitions to the classes of languages.

Let £ be a class of languages.répresentation schemefBr £ associates a set of names
R(L) with any languagd. € L. More formally, a representation scheme is a function
R: L — 2% such that

— ForeveryL € £, R(L) # 0

— ForallL,L” e £,if L # L"thenR(L)N R(L") =@

— There exists a polynomial-time deterministic algorithm which takes as input a pair of
stringsu andr and outputs O (resp. 1)ife R(L) for someL andu ¢ L (resp.u € L),
anderror otherwise.
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We will use arepresentation schenfer the class of regular languages based on deter-
ministic finite automata: fot. € REG R(L) = {c(A)| Ae DFAandL(A) = L} wherec
is the encoding function for the DFA chosen above. For every non empty regular language
L, we denote by, the encoding(A) of a minimal timmed DFAA that recognize4 .
Since we have supposed that isomorphic DFAs have the samercasleprrectly defined.
As usual, the size of a regular langudgeés defined asizgL) = min cgr,)|r|.

An exampleof a languagd. is a pair(u, €), whereu € ¥* ande = 1if u € L and
0 otherwise. An exampléu, e) is positiveif u € L andnegativeotherwise. We denote
by EX(L) (respectivelyPOSL)) the set of all examples (respectively positive examples)
of a languagel.. A sample(resp. apositive sampleof L is a finite subset oEX(L)
(resp.POSL)). A multisampleof L is a multiset of examples df.

2.3.1. The learning model of Goldman and MathiasThe first learning model we consider

is the model with teacher of Goldman and Mathias (1996). There are several reasons for
considering it. First, regular languages are learnable in this model. Second, there are close
connections between this model and the PACS model of learning that we mainly consider
in this paper. Specifically, the learnability of REG in this model implies its learnability in
PACS model. Third, the class of regular languages is not learnable from positive examples
in this model while we prove it is in the PACS model.

Definition 1(Goldman & Mathias, 1996). A class of languafiés learnable in the model
of Goldman and Mathias (GM learnable, in short) if there exist two algoritheashand
Learnsuch that:

— Teach takes as input a (representation of a) languaged outputs a teaching sample
S € EX(L)

— Learntakes asinputany sam@suchthaS. C SC E X(L) and outputs a representation
of L. In Goldman and Mathias (1996), the task of constituifgom S is entrusted to
an Adversary whose goal is to prevent the learning.

If Learnruns in time polynomial in siz&) and|| S|}, the classC is semi-poly GM learnable
Moreover, if Teachruns in time polynomial in siz&(), the classC is polynomially GM
learnable

Itis proved in Goldman and Mathias (1996) that any clddearnable in deterministic
polynomial time using example-based queries is semi-poly GM learnable. As itis proved in
Angluin (1987) that REG is learnable from membership and equivalence queries, the class
of regular languages is therefore semi-poly GM learnable. Moreover, it is not difficult to
provide a polynomial teacher. A number of algorithms can be used to teach and learn DFAs
in their model (Gold, 1978; Oncina & Garcia, 1992; Higuera, 1997).

For example, if we try to build an automaton incrementally from the initial state, we need
to know whether a transition must arrive in a new state or come back in an already defined
state. Therefore, a teaching algorithm can be based on this idea: for alsteneg’ of the
current automaton, and for every letterthe teacher provides the learner with strings that
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can differentiatéd (g, x) andq’ if they must be. Then, the learning algorithm must merge
any two states that cannot be distinguished.

Example 2 Let A be the minimal deterministic automaton which recognizes >*1
(see Example 1).
We must differentiate|, from q; = 8(qo, 1), go from §(qs, 1) andq; from §(q, 0).
LetT(L) = {(», —), (1, +), (11, 4), (10, —)}. Obeying the order: “do not create a new
state if it is not absolutely necessary”, it is possible to reconstriletrementally from any
set of examples that contaifigL).

One problem with the learning model of Goldman and Mathias is that it is not sufficiently
constrained to avoid collusion between the learner and the teacher. Nothing forbids the
teacher to add the encoding of the target automaton (with the appropriate but useless label)
to the teaching set. And nothing prevents the learner from using this information.

Let T be a polynomial teaching algorithm used to learn the class of regular languages in
the GM model and leT’ be a new “teacher” defined by:

T (L) =TL)U{(r, e}

wherer_ is the code for a minimal trimmed automaton that recognlzesde, = 1 if
r_ € L and 0 otherwise.
Now consider the following algorithm

Input: a sampleSwhich is a superset of the teaching $é(L)
For everyu € Sdo
If uisthe code of an automatahthen

Let L' = L(A)

Compute T (L")

If L’ is consistentwittSand if T(L") € Sthen

halt

Output: a representation df’

Since there exists a learning algorithm that computes any regular language any
sampleS containingT (L), there only can be one regular langudgeonsistent with a
sampleSthat containsl (L). Hence L’ is equal toL. Therefore, every learning algorithm
for REG can be rendered trivial. This does not mean that all learning algorithms in the GM
model are collusive but that, if there exist polynomial teaching and learning algorithms and
if target concepts can be encoded by examples, then there must also exist collusive learning
algorithms.

2.3.2. PAClearning. We assume familiarity with the basic facts about PAC learning theory,
see for example Kearns and Vazirani (1994), Natarajan (1991a), and Valiant (1984).

Let £ be a class of language, let € £ be a target language and letbe any fixed
probability distribution over=*. Let EX(L, 1) be a procedure that runs in unit time and
thatateach callreturns an examflee) of L, whereuis drawn randomly and independently
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according tau. If L" is any concept irC, we defineerror(L’) (with respect td. andu) to
be the probability that’ is inconsistent with an example afdrawn randomly according
tou (i.e.error(L’) = u(LAL").

Definition 2 Let £ be a class of language and Rte a representation scheme far

— An algorithm A is a PAClearning algorithmfor £ in R if A takes as inpu¢ € (0, 1],
8 € (0, 1], an integef, and for any languagk in £ with sizg(lL) < | and any probability
distributionpu, A is given access tBX(L, 1) and.A outputs the representation of some
L"in £, such that with probability at least-1 §, erronL’) < e.

— L is PAC learnableif there is a PAC learning algorithmd for £ which runs in time
polynomial in J¢, 1/8, |, and the size of the longest example that has been drawn.

The parameter can be omitted from the input parameters and guessed by the learning
algorithm since the learner can test whether a hypothesis is good enough for the learning
task (Haussler et al., 1991).

Previous definition can be relaxed in the following way: the output of the learning algo-
rithm can belong to a larger hypothesis class. We say that a class of langpeggiétable
if it is PAC learnable irsomepolynomially evaluatable hypothesis class.

The main result concerning the PAC learnability of the class of regular language is
negative: assuming some cryptographic assumptions, REG is not predictable.

Theorem 1(Kearns & Valiant, 1994; Kearns & Vazirani, 1994)Under the discrete root
assumption, the representation class of DFA is inherently unpredictable.

This result is not isolated. It has turned out that many learning problems are intractable
under standard PAC model. What is the reason of this fact? In the PAC learning model, the
algorithm must learn undaifl distributions. This is called thaistribution free requirement
But can we hope to learn a language if it shares no relation with the distribution that
provides examples? It has been proved that limiting the allowed distributions could improve
drastically the expressivity of the model. But how to limit the allowed distribution in a not
too restrictive and unnatural way? The simple PAC learning models we present in the next
section make the hypothesis that examples with low Kolmogorov complexity have a higher
weight in the learning process.

2.3.3. Simple PAC learning models.A variant of the PAC learning model in which the
class of probability distributions is restricted to the universal Solomonoff-Levin distribution
m has been defined in Li and ¥ibyi (1991).

“The remarkable property of this distribution is that in a polynomial sample with over-
whelming probability all examples of logarithmic complexity (the simple examples)
will be represented. Hence, a learning algorithm simply needs to reconstruct a concept
approximatively when all simple examples are given.” (Li &afji, 1993)
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In Denis etal. (1996), we have defined another simple PAC learning model. See Denis and
Gilleron (1997a) for a study of the connections between these two models. The underlying
idea is to suppose that the oracle knows a representation of the target concept and gives a
higher weight to the examples which aienple according to this representation

The definition we give here is slightly more general than in Denis et al. (1996). We define
for each languagk a set of admissible distributidb, and we suppose that the distribution
used to draw the examples is admissible.

Definition 3 Let £ be a class of languages and Rbe a representation scheme for
For every language € L, we define the set of admissible distributions according s

DL={m |r € R(L)}

Loosely speaking, an exampteof L is simple according to the representatioa R(L)
if K(x|r) = O(logsizgL)). A polynomial sample will contain all simple examples with
probability almost 1. Moreover, if each language has a canonical represemiatioe.
if there exists an algorithm that computas from any representatione R(L) for any
languagel, a polynomial sample drawn according to any admissible distributiowvill
almost certainly contain all the simple examples according ttndeed K (r |[r) = O(1)
since there exists a program that computefom r and every simple example according
tor_ is also simple according tosince

KXx[r) = Kx|r) + Ko+ 0@ = Kx[ry) + 0()
Definition 4 Let £ be a class of languages and Rbe a representation scheme for

— An algorithm A is a simple PAC learning algorithm fo£ in R if A takes as input
€ € (0,1], § € (0,1], an integed, and for any languagé in £ with sizeL) < |
and any admissible distribution, A is given access t& X(L, ©) and A outputs the
representation of some in £, such that with probability at least-1 §, error(L’) < e.

— L is PAC learnable from simple examplesR (PACS learnable, in short) if there is a
simple PAC learning algorithma for £ in R which runs in time polynomial in %, 1/§
andl.

2lrl

Note that since there are arbitrarily long simple examples (such as)0Othe size of
the longest example seen cannot appear among the parameters kept for measuring the time
complexity of a learning algorithm. Otherwise, retaining the examples seen would always be
a sufficient learning strategy! But note also that the hypothesis testing procedure designed in
Haussler et al. (1991) cannot be used anymore since too long examples cannot be handled.
Therefore, it seems impossible to omit the input paramnieter

The Kolmogorov complexity of a string depends on the reference Turing machine that
has been chosen. Itis not known whether the set of PACS learnable classes depends too on
the reference Turing machine. But the independence can be easily verified for all the classes
which have been proved learnable in this model: it is sufficient to verify that no particular
property of the reference machine is used.
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In the general case, it is not conceivable to require a standard PAC algorithm to output
exactly the target language. Indeed, if most of the examples have a zero weight under the
underlying distribution, there is no way to identify exactly the target. But as the Solomonoff-
Levin distribution puts a positive weight on any example, we will say that a learning
algorithm isprobably exactly correcif it outputs a representation of the target with high
confidence.

Definition 5 Let £ be a class of languages and Rbe a representation scheme for

— An algorithm A is a simple PEC learning algorithm fo£ in R if .4 takes as input
8 € (0, 1], an integetl, and for any languagk in £ with sizg L) < | and any admissible
distributionyu, A is given access t& X(L, u) and.A outputs the representation of some
L"in £, such that with probability at least1§, L = L’.

— LisPEC learnable from simple examplesR if there is a simple PEC learning algorithm
A for £ in Rwhich runs in time polynomial in 45 andl.

Connections between GM learnability and PEC learnability have been studied in Denis
and Gilleron (1997b). Castro and Guijarro have studied connections between this model
and exact learning with queries (Castro & Guijarro, 1998). DFA have been proved PACS
learnable in Parekh and Honavar (1997).

Proposition 1. If a class of language® is polynomially GM learnablethen it is PEC
learnable from simple examples.

Proof: Sketch. LetT be a teaching algorithm. Since runs in polynomial time, there
exists a integek such that for every languadee £, Card(T (L)) < (siz&L))X. Letr be

a representation of . SinceT (L) is computable fronr, any element inT (L) can be
computed fronr by a program whose length 9(logsiz&L)). Hence, for allx € T (L),

we haveK (x|r) < O(logsizgl)), i.e. every example id (L) is simple, according to

a representation of the target language. Therefore, a polynomial sample drawn with an
admissible distribution will contain the whole teaching €L ) with high probability. O

Corollary 1. The class of DFA is PEC learnable from simple examples.

The PACS model and the GM model share the same defect: if it is possible to encode
directly the target by means of examples, learning can be rendered trivial. Thatis, the model
is not strong enough to avoid collusion between learner and teacher. We must verify in each
case that such a cheating cannot be employed!

2.4. Learning from positive examples

Theimportance of learning from positive data in natural learning is well recognized. Namely,
asitis reported in Gold seminal paper (Gold, 1967), the acquisition of one’s mother tongue
is based on sentences which are syntactically correct. Against this assertion, it is sometimes
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argued that an incorrect sentence uttered by a child which has no effect in return could play
the role of a negative example. But this only means that the learner is adifeutatesome
negative data in comparing provided and expected information.

What is it possible to do in grammatical inference on the basis of positive examples?
Gold proved in 1967 that a class of languages that contains all of the finite languages
and at least one infinite language cannot be identified in the limit from positive exam-
ples. As a corollary, regular languages are not learnable in Gold’s model. As natural lan-
guages are certainly more complex than regular languages, the non learnability of REG
raises a problem. Gold suggests several ways to solve this contradiction. We will con-
sider one of them in this paper: examples are not provided to the learner in an arbitrary
way.

Why is learning from positive data so difficult? The main reason is that a too general
hypothesis will never be refuted from a new positive example. A learning algorithm has
classically to prevenbverspecializationA learning algorithm which has to learn from
positive data has to prevent both overspecializationaugggeneralization

Note the result of Angluin (1980) thaharacterizeghe indexed families of recursive
languages which are identifiable in the limit from positive examples. Loosely speaking, we
can give the following interpretation of her result: in order to learn from positive data, it
is necessary to associate a (computable or enumerable) characteristic Sartgpkeach
hypothesisL. A current hypothesi&, consistent with the current positive sam3evill
nevertheless be refuted 8§ ¢ S. This provides a general way to prevent overgener-
alization. The heuristic we will use in our learning algorithm is based on this general
principle.

As every GM learnable class is identifiable in the limit, the class REG is not learnable
from positive examples in the learning model of Goldman and Mathias. There is a very easy
direct proof: suppose that REG is GM learnable from positive examplesldasthand
Learnbe the teaching and learning algorithms. Ldie an infinite regular language and let
L’ = TeacKL). Thelanguageé’isregularitself. We havéeachL’) € L’'=TeachL) C L.

We must havé.earn(TeachL)) = L andLearn(TeachL)) = L', which is contradictory.

Unfortunately, the situation is even getting worse in the PAC learning model. It can be
easily shown that if a class is PAC learnable from positive data (as the clesSNF), the
output hypothesis must be included in the target concept. Butasitis impossible from positive
datato differentiate a negative example from an absent positive one, even very simple classes
cannot be PAC learnable from positive data. See Natarajan (1991b), Shvayster (1990), and
Denis (1998) for a detailed study.

See also Sakakibara (1992) for results on grammatical inference about learning from
structured positive examplg&anazawa, 1996) fordentification in the limit of cate-
gorial grammarsand (Tellier, 1998) forsyntactico-semantic searning of categorical
grammars

3. Learning from simple positive examples

There area priori reasons to think that even complex classes can be learned from positive
simpleexamples.
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Suppose that from some correct, simple, frequent sentences such as

“Humphrey runs.”
“Humphrey meets Lauren”
“He runs.”

“He meets Lauren”

alearnerinfers that the words “Humphrey” and “he” belong to the same syntactical category.
If correct sentences such as

“Lauren meets Humphrey”
“Lauren talks to Humphrey”

are sufficiently frequent, the absence of sentences of the form

“*Lauren meets he”
“*Lauren talks to he”

might be sufficient to make the learner give up his hypothesis. They are so simple that if
they were correct, they would have be produced.

In the PACS learning model, a characteristic example of the target is an example which
can be computed by a small program, the target being known. If the learner can efficiently
compute characteristic examples of his current hypothesis and if these examples do not
appear within reasonable time in the current sample, he has good reasons to discard his
hypothesis, since a characteristic example must be frequent too. In other words, the fact that
simple examples have a higher weight under the underlying distribution might provide a
heuristic to prevent overgeneralization. The goal of this paper is to show that this heuristic
can really be used to learn regular languages.

First, we must adjust the Definition 4.

Definition & Let £ be a class of languages and Rbe a representation scheme for
For every non empty languadee £, we define the set gfositive admissible distributions
according toR as

D/ ={ur IT € R(L)}

where
0 ifxeL,
mr(X) =3 my(x) ifx e L
mr (L)

wherem, (L) = )", ., M (X).
That is,u, is the positive restriction of an admissible distribution for the target language
L. Note that for everx € L, pr (X) > m; (X).

Definition 7 Let £ be a class of languages and Rbe a representation scheme for
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— An algorithm A is a probably exactly correc{PEQ) learning algorithm from simple
positive examples fof in R if .4 takes as input € (0, 1], an integet, and for any non
empty languagé in £ with sizgL) < | and any positive admissible distributipn A
is given access tBX(L, u) and.A outputs the representation of soinen £, such that
with probability at least - 6, L = L'.

— LisPEC learnable from simple positive exampteR if there is a PEC learning algorithm
from simple positive exampled for £ in R which runs in time polynomial in &5 andl.

Roughly speaking, aimple positive example of a languagdsLa positive example of
low Kolmogorov complexity according to the representatiprof the minimal trimmed
automaton which recognizés Before to get to the heart of the matter, we show below that
a polynomial sized (sufficiently large) sample drawn accordingnyppositive admissible
distribution will almost certainly contain the simple positive examplek oThe proof is
based on several technical lemmas.

Lemma 1. Recall that for any strings r and,xm; (x) is defined asy, 2-K*I", There
exists a constantycsuch that for every string,r

l<ar <0

Proof:  Since for every string, ", 5. 27K*I" < 1, we get 1< ;.
There exists a constagitsuch that for every string, K(r |r) < 8. Then,

1>m () =02 KD > g 27F
i.e.ar < 2P Takecy = 28, O

The following lemma shows that if is a non empty regular language and ifs a
representation fot thenm, (L) has a non null lower bound.

Lemma?2. LetLbeaclassoflanguagesandlet R be arepresentation schermieTboere
exists a constansuch that for every non empty language LZirand every representation
r € R(L), we have

m, (L) > ¢,
Sq for every xe L, we get

27K < mye (x) < e (X) < et (X) < oy T2 KD
Proof: Let us writefirst(L) for the first string inL (in the < ordering). There exists a
program which takes as input any representatiohany non empty languade € £, and
outputsfirst(L). Then,

ABVL € L,Vr € R(L), K(first(L) [r) < 8
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Therefore,
m, (L) > m, (first(L)) > 2-K@ArstLIn > o>-F
Letc, = 27#: we get the result. o

Constantg, andc; will be used throughout this paper.

We show in the two next lemmas that if is the encoding of a minimal DFA that recog-
nizesL, the distributionsn,, andu,, are kinds of minimal elements (up to a multiplicative
constant) in the sets of admissible (respectively positive admissible) distributiobs for

Lemma 3. There exists a constant ¢ such that for every non empty regular language L
for every representation € R(L) and for every string x

mr (X) > cmy (X) and pr (X) > Cpar, (X)

Proof: There exists a program which takes as input the representatadra regular
languagd., computes the corresponding automagminimizes it and outputs the repre-
sentatiorr_ in R of the equivalent minimal DFA.

That is, there exists a constagntsuch that for every non empty regular languagéor
every representatiane R(L) and for every stringk, K(x|r) < K(x|rp) + y.

We have

m, (x) > 2-K&IN > o-Kxlr)-y
and then
m, (x) > 2’erL(x)(oc,L)_l > 27"my (X)Gy
From previous lemma, we get
e () = M (X) = 27me (061 = 277 ¢y eager, (X)
Letc = 277 ¢yt cy: we get the result. O
Proposition 2. Forallintegersk I, for everys > 0,for any non empty regular language L
suchthatsizel) < landforeveryre R(L),itis sufficientto draw @kl In(1 /8)) examples

according tou, to get all the elements x of L such that(»® r_ ) < klog(sizgL)) with a
confidence greater thdt— §.

Proof:  Since the number of programs of sizen is less than 21, the number of elements
x such thatk (x | r.) < klog(sizgL)) is less than &izgL))* < 21,

Applying previous results, it is easy to show that there exists a constanth that for
all x in L, we have

pr (X) = c2 I
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i.e.if K(x|rp) < klog(size€L)) < klogl
e (X) > ¢l

The probability that one such elementlofis not drawn afteN independent draws is
less than

(L—cl N

The probability that there exists one such elemerit dfiat is not drawn afteN inde-
pendent draws is less than

2% — cl7N
As forx < 1 we have(l — x)N < e NX, verify that if

[k 2k
N>—In—
(o] )

we have

A¥@—cl N <5 O

4. Learning regular languages from positive teaching sets

We define below the notion gbsitive teaching sébr alanguagé. . These sets are designed
to satisfy an essential property: a non empty regular languagpolynomially identifiable
from a positive teaching set fdr.

Definition 8 LetL be a non empty regular language andAet (X, Q, 0o, T, §) be a
trimmed minimal DFA which recognizés. A finite setS c (£*)? is a positive teaching
setfor L if

1. S={(u,v) € 11(S) x m2(S) |uv € L},

2. ) € m1(S) andx € m2(S),

3. For every statq € Q, there existal € 71(S) such that (go, u) = g,

4. For every pair of distinct stateg q' € Q, there exist® € m2(S) N (LqALg),

5. Forevery statq € Q and every lettek € X, if ' = §(q, x) is defined then there exists
u € m1(S) such that (qo, u) = g andux € 71(S),

Note that this notion is not very robust since a superset of a positive teaching kesfor
not necessarily a positive teaching set. However, we have:

Lemma 4. If S is a superset of a positive teaching set S for L and geisfies item 1
above then Sis a positive teaching set for L.
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Proof:  Straightforward since1(S) C 71(S) andm,(S) C 72(S) O

Example 3 Let A be the trimmed minimal DFA which recogniz&s'1 (see Example 1).
TheseS={(»,1), (1,01, (0,1), (0,01, (1,2), (1,1), (1,01), (10,1), (10,01), (11, 1),
(11, 1), (11, 01)} is a positive teaching set fdr.

We show below how to build a particular positive teaching set. But first, we need the
following lemma:

Lemma 5. Let L be a non empty regular language and let=A (X, Q, go, T, 8) be
the trimmed minimal DFA which recognizes L. For every non empty R, there exists
VR C £* and a one-to-one mappintgk : VrR — R such that

— card(VR) < card(R),
— For every pair of distinct states ' € R, there exist® € Vg such thatv € LqALy,
— Forall v € Vg, we haveS (or(v),v) € T.

Proof: We prove this lemma by induction @ard(R). The resultis clear forard(R) = 1.
Suppose thatard(R) > 2.

Let vg be the first string irk* such that there exist two distinct stateg]’ € R such that
vo € LgALy.

LetR ={g € Rlw € Lg} and letR” = {q € R| vy & Lq}. As R andR” are strictly
included inR, we can apply the induction hypothesis. \&}, Vr/, or andog- be the
corresponding sets and mappings.

Define VR = Vr U Vr U {vg}. We havecard(Vg) < card(Vr)+card(Vr) + 1
< card(R). Verify that for any distinct stateg, ' € R, there existay € Vg such that
vE LgALy.

Now, letq’ be the first state irR'\or (Vr) (i.€. such thaBud(go, u) = q’ andvu’ #
u, 8(do, U') € R\or(Vr) = u < U'). For everyv € Vg, define

or(w) ifveVr,
GR(U) = UR”(U) if ve VR”\VRH
q/ if UV =19 andv ¢ VR/ U VR”

oR is clearly one-to-one andv € VR, §(or(v),v) € T. O

Definition 9@ Let L be a non empty regular language, kt= (X, Q, do, T, 8) be the
trimmed minimal DFA which recognizdsand letn = card(Q). For every statg € Q, let

us writeuq for the first string (in the< ordering) such thai(qo, ug) = g. LetUa = {uq |

ge QlU{ugx | g € Q,x € X andé(q, x) is defined. Now, letVg andoq as defined in
the previous lemma. For evegye Q, let

_ v if O'Q(U) =q
47 | thefirst string inLq  otherwise

Now letVa = {vq |q € Q} andSa = {(u,v) e Ua x Va|Uv € L}.
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Lemma 6.

1. U, has at mosen + 1 elementsug, = A and the length of every element in s at
most n

2. Va has at most n elements € Va and the length of every element in 16 at most
n—1

Proof:

1. Associateugx to each transitiorfg, X, q') € §; if UgX = Ug, X3 thenx = X1, g = o
andé(q, X) = 8(qy, X1); as each element id, excepti corresponds to one transition,
card(Up) < 2n + 1. The two other points are straightforward.

2. ltisclearthatard(Va) < n; as the length of the least string that distinguishes two states
is at mostn — 1, the length of each elementify is at mosin — 1. Now, let us prove
thati € Va: if all states inQ are terminal states, for evegye Q\Vg, vq = A; and if
not all states are terminal, the first elemenVigis A.

O
As a corollary, we get:

Proposition 3. Let L be a non empty regular language and leEA(XZ, Q, do, T, 8) be
the trimmed minimal DFA which recognizes La iS a positive teaching set for L that we
will designate as the canonical positive teaching set for L.

Example 4 Let A be the trimmed minimal DFA which recognizes*1. We have
Ua=1{%,0,1,10,11, Vo={A}, Va={A, 1}, Sa={(*,1), (0, 1), (1,4), (1,1),(10, 1),
(11, 2), 11 D}

Proposition 4. There exists a polynomial algorithi such that for any non empty regular
language L and any positive teaching set S foifLA takes S as input thed outputs a
trimmed minimal DFA for L.

Proof: Let L be a non empty regular language, kt= (=, Q, qo, T, §) be a minimal
trimmed automaton which recognizesand letS be a positive teaching set far.
Let ~g be the relation defined over (S) by

U~gviff Ywe ¥*(u,w) e S& (v,w) €S

1. The relation~s is an equivalence relation. Let us wriighe class of the string and
let Q' be the quotient set of;(S) modulo to~s.

2. Foralluandv in 71(S), §(qo, U) = 8(qo, v) < U = v.

3. Let¢: Q' — Q defined byy (0) = g such thats(qo, u) = q. Previous item ensures
that this definition is correct. Verify that

— ¢ is one-to-one ont®,
- ¢(A) = o,
— @) eTiff (u,A) €S
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— If §(q, x) is defined, there exists € 71(S) such thatux e 71(S), ¢ (U) = g and
¢ (UX) = §(Q, X).

Now, itis easy to check that the following algorithm is well defined, that it runs in polynomial
time and that the output automaton is a DFA isomorphiéto

Algorithm A
Input: S, a positive teaching set for some regular langulage
Defining the set of stateg)’
Q<9
For everyu € 71(S) do
if there exisg € Q" and u’ € g such thau ~g U’
then
q < qu{u}
else
Q « QU{{uy
Defining the initial state g
there exists a unique elemegite Q' such that € q;
Defining the set of final statesT’
T < {qge Q|3ueqgand(u,r) €S}
Defining the transition function &’
Forallge Q andforall x e X
if there exisu andq’ € Q' such thau € g andux € g’

then
8@, x) =0
Let A = (2, Q,qp T',8) andr = c(A)
Output: r 0

Itis not very surprising that we could rebuild a regular language from a positive teaching
set: this notion has been designed for this purpose. We show in the next section that there
are natural ways to find such sets.

5. Simple positive teaching sets

Itis not too difficult to build a positive teaching set whose elements have simple components.
Itis more interesting to remark that a set of the fdin, v) | uv € L} is a positive teaching
set as soon as its elements have (sufficiently) simple components.

Lemma 7. There exists a constant such that for every non empty regular language L
with n statesfor every r e R(L), for every pair(u, v) € Sa (Where S is the canonical
positive teaching set for)l.we have

K(u|r) < logn+ 2log logn + c;and K(v |r) < logn + 2log logn + ¢,

We will use such a constan throughout this paper.
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Proof: There exists a program that builds franthe corresponding trimmed minimal
DFA A which recognized.. Therefore, there exists a program that compltgsrom r
(see Definition 9). Each element 0fs can be be identified from by its index inU,. As
Ua has at most2+ 1 elements, each of its element can be identified frdm a program
whose length is at most lag+ 2 log logn + O(1) (see Section 2.2).

The second inequality is proved in a similar way. O

Lemma 8. There exists a constant such that for every non empty regular language L
foreveryre R(L) and for every string Lle * suchthat Ku |r) < logn+2log logn+c,,
we have

. _ _ C3
fuz*NL=""1 £ gthenu, (UE*NL="1) > ——
mu #* e (U ) = ndogn)?
and
. _ _ C3
fS*unL=2""1£gtheny (Z*unL="YH > ——
I u # e (XU )_n(logn)Z

We will use such a constand throughout this paper.

Proof: Suppose thatx* N L=?""1 = ¢, There exists a program that, with inputand
u finds the first strings such thatw e L=2""1, Then, there exists a constantsuch that

Kuw|r)y <KUu|r)+mn

We have
2~ y1—C2

ux* N L§2n71 > uw) > 27K(uw\r) >2—K(u\r)—y1 >
e ( ) = pr (Uw) > = _7n(logn)2

In a similar way we prove that there exists a consjarguch that

27 V2—C

if S*uN L= £ @thenp (T unL="h > ———
| u #0 pe(ZFU )_n(logn)z

Letcz = min(2-1~%, 2772=%); we get the result. O

Definition 10 Let L be a non empty regular language witlstates. Leta > 0 and let
r € R(L). We let

U2 ={uez="uz*nL=""hH>al
V2= {vex=" n(ZvnL=""h > a

§ = {uv)eUx V2| uvell
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Lemma9. We have

n+1

Card(U?) < 3

Card(V?) <

Card(S)

Proof: Let us writefr(U?) for the set of strings ol which are not prefix of another
string inU2. That is

n

a

nin+1)
a2

IA

fr(UY)={ue U2 |Vu e UA, U e uS* = u=U}
fr(U2) is a prefix set. Therefore, if, U’ e fr(U2), u# U = uZ* NU'L* = @J. We have:

1> pr(UfuzluefrU))=={u us* |ue fr(Ud)}

a x Card(fr(U?))

IV 1V

ThereforeCard(fr(U?)) <1/a
In the other hand, every string of lengithas at mosh + 1 prefixes. Then

n+1

Card(U}?) < 2

We prove in a similar way thaard(V,?) < n/a.
Lastly,

- nin+1)
a2 O

Card(§') < Card(U?) x Card(V,?)
Proposition 5. Let L be a non empty regular language with n states. LetR(L) and

let a be such thad < a < cz/n(logn)? (where g is defined in Lemma8). Then S is a
positive teaching set and its size is polynomial in n &yal.

Proof: Applying Lemmas 7 and 8, we see tf&tis a superset o8s. From Lemma 43

is a positive teaching set. From Lemma 9, the cardin&’dé polynomial inn and J/a.
O

Corollary 2. Let L be a non empty regular language with n statexl let a be such that
0 < a < cz/n(logn)2. We can compute fronf & minimal DFA which recognizes L in time
polynomial in n andl/a.

Proof:  Apply Propositions 4 and 5. O

We have proved that every regular language has simple positive teaching sets. It remains
to show that it is possible to find such a teaching set from simple positive examples.
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6. Learning regular languages from simple positive examples

Lemma 8 shows that if a wordv € L has simple componentsand v, then the events
ux*NL=""tandx*v N L=2""1 have not too small a weight under any positive admissible
distribution.

We show below a kind of converse:uifis a frequent prefix i, if v is a frequent suffix
in L and ifuv is in L, thenuv must be frequent.

Lemma 10. There exists a constagtsuch that for every non negative integerfor all
strings ue £ =" and re ¥*, we have

K(u|r)=<logn+2log logn— logm; (ux*) + 8
and

K(u|r) < logn+2log logn — logm, (X*u) + 8

Proof: LetueX="andr € T*.
We have

mr(uz*) = Z 2—K(uv|r) <co Z 2—K(uv\r)
veX* veX*
wherecg has been defined in Lemma 1.
There exists a constaft such that for all strings, v, r we have
K({u,v)|r)<K(uv|r)+ logn+2log logn+ g1

where |u| <n. Indeed, we only need to know the lengthwofo compute the paitu, v)
from the stringuv, and we need a program whose length is at mosthleég@ log logn (up
to an additive constant) to compute .

Afundamental theorem in Kolmogorov complexity theory (see Symmetry of Algorithmic
Information in Li & Vitanyi, 1993) says that there exists a consgasuch that for all strings
u, v, r we have

K{u,v)[r) = K@u[r)+ K@ |u, Ku),r)— B2
Therefore,

Kuv|r)>K@u|r)+K(@]|u, K(u),r)— logn—2log logn — g1 — 2
Then

M, (UE*) < con(logn)22f+Azp=KUIN J = oK juKw.n

veXx*

As
Z 27K(u|u,K(u),r) <1

vex*
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we have,
m, (UZ*) < con(logn)?2fithzp—KWuIn
and
K(u|r) < logn+ 2 log logn— logm; (UZ*) + 1+ B2+ logco
Let B = B1+ B2+ logco: we get the result.
The second inequality is showed in a similar way. O

Corollary 3. There exists a constanf such that for every non negative integerfar
every non empty regular language L with n stafes every re R(L) and a> 0, and for
every pair(u, v) € §, we have

a 2
“f(”V)““(W)

Proof: First, there exists a constaptsuch that
s (Up) > m; (Up) > 27K ID 5 o=KUIn-Ke|n -y

From previous lemma and Lemma 2, we have

oK o 2 M UEY
n(logn)2
2Pm,(uz*NL=2-1
- n(logn)?
2P (uz* N L=2-1
- r ( )mr(L)
n(logn)2
a
> C 2_157
= n(logn)?
and in a similar way,
a
2_K(U|r) >C 2_/3
= n(logn)?
Therefore
a 2
260-2B—y
uv) > (€1)°2 —_—
pr (Uv) = (Cp) (n(logn)2>
Letcy = (¢1)%27%#~7: we get the result. O

Now, we are going to show that if we draw a sufficiently large sample according to a
positive admissible distribution it is possible to compeactlya positive teaching set for
the target.

We recall some classical results based on the Hoeffding bounds:
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Lemma 11. Let Xy, ..., Xy be a sequence of m independent Bernoulli triatsch with
probability of success p. LetS w be a random variable estimating the parameter
p (i.e.E[S] = p). Then for0 < ¢ < 1 the following inequality holds

Pr[|S— p| > €] < 2e2N¢

Therefore, if we want to estimate the weightokventsAy, ..., Ay under a probability
distributiony with accuracy and confidencg, itis sufficient to drawN elements according
to  whereN satisfies the 2N<* < §. Verify thatN = 1205108 s syjtable.

Now, consider the following algorithm:

Algorithm: 7
Input: §,n
Leta= n(loc—émz wherecs is defined in Lemma 8
Let Ny = [9(+2n2z-Indy
suppose that the target language L has at most n states
and that the underlying distributiop, is a positive
admissible distribution according to L
Draw N; examples according to the ora&&(L, ;)
Discard the examples whose length is greater thar-21
Build a multisampleE with the remaining examples,
i.e. letw € £* andn,, a positive integer
(w, ny) € Eiff J[w] <2n — 1 andw has been drawn exactly, times
Let § = {(u,v) € =" x £="-1| 3k > 0 (uv, k) € E}
Let Uy = my(§) andV; = m2(§)
we have a sufficiently large sample to estimate the following weights
with good accuracy and confidence
For all u € U, compute
Ay (UZ*N L=2""1 = 2{n, | (w, n,) € E andw € ux*}/N;
For all v € V, compute
A (Z*v N L=2"Y = ©{n, | (w,n,) € Eandw € Z*v}/N;
Let U2 = (u e U, | fir uD* N L=2-1) > 2a/3} and
VP = (v e Vr | i (5*0 N L= > 2a/3)
2
Let N2 — rc_i(3n(lt;gn) )Zln 18n;26+1)
Draw N, examples according ®@X(L, wr)
Discard the examples whose length is greater than-21
Build a sampleE’ with the remaining examples
§° « ((u,v) e U x V23 [uve E)
We will prove thatS isa positive teaching set with high confidence
Output; 2/

Proposition 6. For every non empty regular language L with n statesevery represen-
tationr € R(L) and for every positive admissible distributign, the running time of the
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algorithm7 is polynomial in n andl/s. With a probability greater thad — §, 7 outputs
a positive teaching set for L.

Proof: There are less thar! 22 sets of the formruz* N L=~ and=*v N L=2"~1 where
u,ve ¥ =N, Then, from Lemma 11, with a confidence greater thans}2, we have for all
uel

a
| UEF AL — (U A L= < 2

and for allv € V,
N % <2n—-1 * <2n-1 a
| (B0 N L= — e (B0 N L] = 3
Therefore, with a probability greater than-15/2, we have:
Ura C L’jr2a/3 C Ura/3 and Vra c \7rZa/3 c Vra/3
hence,
FCS=]uv) eUPPx V23 uwve L) c §/°

Suppose now that these inequalities are satisfied. We will proveAS"ﬁét’tz S with a
probability greater than 4 §/2.

Let (u, v) € S. From Corollary 3, we havg, (uv) > C4(Wgn)2)2- From Lemma 9, we
havecard(S) < 9n(n + 1)/a.

The numbem, has been chosen in such a way that,

2\ N2 2
oInin+1) 1—c, a < 9n(n+1) eszC‘t(W) < 6/2
a2 3n(logn)? a2

i.e., with a probability greater than-1 §/2, all strings of{uv | (u, v) € S} will be drawn
and the algorithm will outpu®. As from Lemma 4Sis a positive teaching set, we get the
result.

The algorithm is clearly polynomial in and /5. More precisely, verify that for ev-
ery o >0, the number of examples drawn &n**In(1/8)) and the running time is
O(n>**In(1/8)). O

Theorem 2. The class of regular languages is probably exactly learnable from simple
positive examples.

Proof: Consider the following algorithm:
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Learning Algorithm:
Input: 3,1
Let us take | as an upper bound for the number of states of the target
Run algorithm7 with inputsé, |
Let Sbe the output
Run algorithm.4 with input S
Let r’ be the output
Output: r’

Propositions 6 and 4 show that, for every regular languagach thasizgL) < |, and
every representatiane R(L), the previous algorithm(7 (I, §)) outputs a representation
of L with probability greater than % §, when it is feeded with the oracEeX(L, u;). O

Algorithm 7 runs in time O(15t*In(1/8)) for every o >0. As SC $”® and from
Lemma 9,Card(r1(S)) and Card(r»(S)) are inO(l /a) i.e. in O(1%+) for everya > 0.
The length of the longest elementAn(S) andn2(S) is <I. Algorithm A can be imple-
mented in timeO (Card(rr1(S))Card(m2(S))Max{|u| /u € m1(S) U m2(S)}) that isO(15+*)
for everya > 0. Consequently, the total running time of the learning algorithm is in
0(°%*%1In(1/8)) for everya > 0.

6.1. Miscellaneous remarks

— It is important to note that our result is independent on the reference Turing machine
which has been chosen to define the Kolmogorov complexity. Indeed, the choice of a
particular Turing machin& has never been mentioned or used.

— We still don’'t have any rigorous definition of what collusion is. Therefore, we cannot
prove that no collusion phenomenon can occur in learning regular languages from simple
positive examples. But whatever a precise definition would be, if the target language
could be encoded by positive examples and if the learner could use this information, it
is likely that the class of regular language would be learnable in the model of Goldman
and Mathias. That is, the fact that REG is not GM learnable from positive examples is
maybe a sufficient reason to think that all danger of collusion is avoided.

— Lastly, note that our algorithm uses the general heuristic principle stated in Section 3:
each pair(u, v) U223 % V?2 constitutes a (micro) current hypothesis which predicts
that the stringuvis a simple positive string. lfiv does not appear in a reasonably large
new sample, the learning algorithm discards this hypothesis.

— It would have been nice to get rid bfas it is possible in classical PAC framework
(Haussler et al., 1991). Unfortunately, that seems impossible. Suppose, for example, that
we want to differenciatec* and =N where N is greater than the available running
time allowed to learrE*. No efficient strategy seems available. And as there exist very
long strings with pretty small complexity, turning the exact learning requirement into an
approximative one does not help. Maybe, it should have been fairer to say that for every
integerl, the clasREQG is probably exactly learnable.
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To conclude, let us study how the previous result can be adapted to the simple PAC model
of Li and Vitanyi (1991).

As they do in Li and Viginyi (1991) withk-reversible languages, we define a notion of
simple regular language

Definition 11 Let L be a non empty regular language andAet (2, Q,qo, T, §) be a
trimmed minimal automaton which recogniziesLet c be an integer and = Card(Q).
We say that is c-simple if for every statg € Q,

K(ug|ro) <clogn and K(vgq|r.) <clogn

Proposition 7. The class of c-simple regular languages is learnable from positive simple
examples provided that the examples are drawn according t@pibstive restriction of
Solomonoff-Levin distributiom.

Proof: The only place where we used the fact that the examples are drawn according
to ur where r is a representation of the target language.emma 7. But, if the target is
c-simple, we get a similar conclusion when we use non conditional compléity (ather

that K(-|r)). All the following lemmas can be adapted to this case in a straightforward
way. O

A regular languagé. is O-reversible if the mirror automaton of the minimal trimmed
DFA A that recognizest is deterministic. A O-reversible language is simple if for every
stateq, the least stringi such that (gp, u) = g and the least string such that(q,v) € T
are simple. Li and Vitanyi have proved in Li and &fityi (1991) that simple O-reversible
languages are PAC learnable from

But, if L is O-reversible, we have

uv e L and uyv € L = §(qo, Ug) = 8(qo, Up)

Hence, for every statg vy is the least string such théfg, vq) € T. We see that the notion of
simple regular languaggeneralizes the notion simpleO-reversible languageA similar
remark can be made abduteversible languages. Therefore, the Proposition 7 generalizes
the results of Li and Vahyi (1991) mentioned above.

7. Conclusion

Learning from positive data is an important topic in Computational Learning Theory, and
specially in the domain of Grammatical Inference since it is believed that it is possible to
learn the syntax of a natural language solely from positive instances. However, classical
models provide no tools to overcome the main difficulty in this kind of learning, i.e. to
avoid overgeneralization. This is specially true when we want the learning to be efficient,
i.e. polynomial in the size of the target representation. In the field of learning DFAs, most of
the positive results rely on an extra-hypothesis concerning the distribution of the examples
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to the learner: they must contain a “teaching set” as for the class@fersible languages
(Angluin, 1982) or they must be structured (Sakakibara, 1992).

Here, we use a generalization of the learning model of Li andrvit{Li & Vitanyi,
1991; Denis, D’Halluin & Gilleron, 1996) that makes the hypothesis that simple examples
are more frequent than complex ones, using the notion of Kolmogorov complexity to define
what is a simple example.

We proved that the class of regular languages is probably exactly learnable in this model.

Beyond the technical aspects of this result, we would like to emphasize the fact that the
hypothesis made by the model and the heuristic used by the learning algorithm have some
relevance from a cognitive point of view.

— The simplicity of an example or the fact that it is characteristic of a concept is often used,
without being defined. Kolmogorov complexity allows to give a rigorous definition of
this intuitive notion,

— Supposing that simple examples are more frequent is a plausible hypothesis in numerous
natural learning contexts,

— Supposing that a current hypothesis may be ruled out if some simple expected events do
not occur seems to be a plausible heuristic too,

— Lastly, the sole property of the model that we use to show the learnability of the class
of regular languages is the following: there exists a suBs#tthe language, composed
of frequent words, containing sufficiently rich information to allow the reconstruction of
the language and such that if a correct word has components appedSirtgém it must
be in Stoo. Again, we think that this hypothesis is plausible from a linguistic point of
view.

As afuture work, we would like to develop this result in both theoretical and experimental
directions. The class of regular languages is too poor to describe significant fragments of
natural language—context free languages are needed at least. What complexity levels are
reachable by the model and the techniques developed here?

The Solomonoff-Levin distribution is not computable and it would be interesting to isolate
which properties are needed in order to keep this result. This would allow to design more
practicable families of admissible distributions. We would like too to collect real data from
natural language corpuses and study to what extent it is possible to suppose they have been
generated by such admissible distributions.
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