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Abstract. We propose a new boosting algorithm. This boosting algorithm is an adaptive version of the boost
by majority algorithm and combines bounded goals of the boost by majority algorithm with the adaptivity of
AdaBoost.

The method used for making boost-by-majority adaptive is to consider the limit in which each of the boosting
iterations makes an infinitesimally small contribution to the process as a whole. This limit can be modeled using
the differential equations that govern Brownian motion. The new boosting algorithm, named BrownBoost, is based
on finding solutions to these differential equations.

The paper describes two methods for finding approximate solutions to the differential equations. The first is a
method that results in a provably polynomial time algorithm. The second method, based on the Newton-Raphson
minimization procedure, is much more efficient in practice but is not known to be polynomial.
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1. Introduction

The AdaBoost boosting algorithm has become over the last few years a very popular
algorithm to use in practice. The two main reasons for this popularity are simplicity and
adaptivity. We say that AdaBoost isadaptivebecause the amount of update is chosen as
a function of the weighted error of the hypotheses generated by the weak learner. In con-
trast, the previous two boosting algorithms (Schapire, 1990; Freund, 1995) were designed
based on the assumption that a uniform upper bound, strictly smaller than 1/2, exists on
the weighted error of all weak hypotheses. In practice, the common behavior of learning
algorithms is that their error gradually increases with the number of boosting iterations and
as a result, the number of boosting iterations required for AdaBoost is far smaller than the
number of iterations required for the previous boosting algorithms.

The “boost by majority” algorithm (BBM), suggested by Freund (1995), has appealing
optimality properties but has rarely been used in practice because it is not adaptive. In this
paper we present and analyze an adaptive version of BBM which we call BrownBoost (the
reason for the name will become clear shortly). We believe that BrownBoost will be a useful
algorithm for real-world learning problems.

While the success of AdaBoost is indisputable, there is increasing evidence that the
algorithm is quite susceptible to noise. One of the most convincing experimental studies
that establish this phenomenon has been recently reported by Dietterich (2000). In his
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experiments Diettrich compares the performance of AdaBoost and bagging (Breiman, 1996)
on some standard learning benchmarks and studies the dependence of the performance on
the addition ofclassification noiseto the training data. As expected, the error of both
AdaBoost and bagging increases as the noise level increases. However, the increase in the
error is much more significant in AdaBoost. Diettrich also gives a convincing explanation
of the reason of this behavior. He shows that boosting tends to assign the examples to which
noise was added much higher weight than other examples. As a result, hypotheses generated
in later iterations cause the combined hypothesis to over-fit the noise.

In this paper we consider only binary classification problems. We denote an example by
(x, y) wherex is the instance andy ∈ {−1,+1} is the label. The weights that AdaBoost
assigns to example(x, y) is e−r (x,y) wherer (x, y) = h(x)y, y ∈ {−1,+1} is the label in
the training set andh(x) is the combined “strong” hypothesis which is a weighted sum of
the weak hypotheses that corresponds to the instancex:

h(x) =
∑

i

ln
1− εi

εi
hi (x),

whereεi denotes the weighted error ofhi with respect to the weighting that was used for
generating it. We callr (x, y) the “margin” of the example(x, y). It is easy to observe that if,
for a given example(x, y) the prediction of most hypotheses is incorrect, i.e.hi (x)y = −1
thenr (x, y) becomes a large negative number and the weight of the example increases very
rapidly and without bound.

To reduce this problem several authors have suggested using weighting schemes that
use functions of the margin that increase more slowly thanex, for example, the algorithm
“Gentle-Boost” of Friedman, Hastie, and Tibshirani (1998); however, none of the sugg-
estions have the formal boosting property as defined in the PAC framework.

The experimental problems with AdaBoost observed by Dietterich and the various recent
attempts to overcome these problems have motivated us to have another look at BBM. The
weights that are assigned to examples in that algorithm are also functions of the margin.1

However, the form of the function that relates the margin and the weight is startlingly
different than the one used in AdaBoost, as is depicted schematically in figure 1. The
weight is anon-monotonefunction of the margin. For small values ofr (x, y) the weight
increases asr (x, y) decreases in a way very similar to AdaBoost; however, from some point
onwards, the weightdecreasesasr (x, y) decreases.

The reason for this large difference in behavior is that BBM is an algorithm that is
optimized to minimize the training errorwithin a pre-assigned number of boosting iterations.
As the algorithm approaches its predetermined end, it becomes less and less likely that
examples which have large negative margins will eventually become correctly labeled.
Thus it is more optimal for the algorithms to “give up” on those examples and concentrate
its effort on those examples whose margin is a small negative number.

To use BBM one needs to pre-specify an upper bound 1/2 − γ on the error of the
weak learner and a “target” errorε > 0. In this paper we show how to get rid of the
parameterγ . The parameterε still has to be specified. Its specification is very much akin
to making a “bet” as to how accurate we can hope to make our final hypothesis, in other
words, how much inherent noise there is in the data. As we shall show, settingε to zero
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Figure 1. A schematic comparison between examples weights as a function of the margin for AdaBoost and
BBM.

transforms the new algorithm back into AdaBoost. It can thus be said that AdaBoost is a
special case of the new algorithm where the initial “bet” is that the error can be reduced
to zero. This intuition agrees well with the fact that AdaBoost performs poorly on noisy
datasets.

To derive BrownBoost we analyzed the behavior of BBM in the limit where each boosting
iteration makes a very small change in the distribution and the number of iterations increases
to infinity. In this limit we show that BBM’s behavior is closely related to Brownian motion
with noise. This relation leads us to the design of the new algorithm as well as to the proof
of its main property.

The paper is organized as follows. In Section 2 we show the relationship between BBM
and Brownian motion and derive the main ingredients of BrownBoost. In Section 4 we
describe BrownBoost and prove our main theorem regarding its performance. In Section 5
we show the relationship between BrownBoost and AdaBoost and suggest a heuristic for
choosing a value for BrownBoost’s parameter. In Section 6 we prove that (a variant of)
BrownBoost is indeed a boosting algorithm in the PAC sense. In Section 7 we present two
solutions to the numerical problem that BrownBoost needs to solve in order to calculate the
weights of the hypotheses. We present two solutions, the first is an approximate solution that
is guaranteed to work in polynomial time, the second is probably much faster in practice,
but we don’t yet have a proof that it is efficient in all cases. In Section 8 we make a few
remarks on the generalization error we expect for BrownBoost. Finally, in Section 9 we
describe some open problems and future work.

2. Derivation

In this section we describe an intuitive derivation of algorithm BrownBoost. The derivation
is based on a “thought experiment” in which we consider the behavior of BBM when the
bound on the error of the weak learner is made increasingly close to 1/2. This thought
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experiment shows that there is a close relation between boost by majority and Brownian
motion with drift. This relation gives the intuition behind BrownBoost. The claims made
in this section are not fully rigorous and there are not proofs; however, we hope it will help
the reader understand the subsequent more formal sections.

In order to use BBM two parameters have to be specified ahead of time: the desired
accuracyε >0 and a non-negative parameterγ >0 such that the weak learning algorithm
is guaranteed to always generate a hypothesis whose error is smaller than 1/2− γ . The
weighting of the examples on each boosting iteration depends directly on the pre-specified
value ofγ . Our goal here is to get rid of the parameterγ and, instead, create a version
of BBM that “adapts” to the error of the hypotheses that it encounters as it runs in a way
similar to AdaBoost.

We start by fixingδ to some small positive value, small enough that we expect most of
the weak hypotheses to have error smaller than 1/2− δ. Given a hypothesish whose error
is 1/2− γ , γ > δ we defineh′ to be

h′(x) =


h(x), with probabilityδ/γ

0, with prob.(1− δ/γ )/2
1, with prob.(1− δ/γ )/2

.

It is easy to check that the error ofh′(x) is exactly 1/2− δ. Assume we use this hypothesis
and proceed to the following iteration.

Note that ifδ is very small, then the change in the weighting of the examples that occurs
after each boosting iteration is also very small. It is thus likely that the same hypothesis
would have an error of less than 1/2− δ for many consecutive iterations. In other words,
instead of calling the weak learner at each boosting iteration, we can instead reuse the same
hypothesis over and over until its error becomes larger than 1/2− δ, or, in other words
very close2 to 1/2. Using BBM in this fashion will result in a combined hypothesis that is
a weightedmajority of weak hypotheses, where each hypothesis has an integer coefficient
that corresponds to the number of boosting iterations that it “survived”. We have thus
arrived at an algorithm whose behavior is very similar to the variant of AdaBoost suggested
by Schapire and Singer (To appear). Instead of choosing the weights of weak hypotheses
according to their error, we choose it so that the error of the last weak hypothesis on the
altered distribution is (very close to) 1/2.

Note that there is something really strange about the altered hypotheses that we are
combining: they contain a large amount of artificially added noise. On each iteration where
we useh(x)we add to it some new independent noise; in fact, ifδ is very small then the be-
havior ofh′(x) is dominatedby the random noise! the contribution of the actual “useful”
hypothesish being proportional toδ/γ . Still, there is no problem in principle, in using this
modification of BBM and, as long as we can get at leastO(δ−2 ln(1/ε)) boosting iterations
we are guaranteed that the expected error of the final hypothesis would be smaller thanε.

In a sense, we have just described an adaptive version of BBM. We have an algorithm
which adapts to the performance of its weak hypotheses, and generates aweightedmajority
vote as its final hypothesis. The more accurate the weak hypothesis, the more iterations of
boosting it participates in, and thus the larger the weight it receive in the combined final
hypothesis. This is exactly what we were looking for. However, our need to setδ to be very
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small, together with the fact that the number of iterations increases likeO(δ−2) makes the
running time of this algorithm prohibitive.

To overcome this problem, we push the thought experiment a little further; we letδ

approach0 and characterize the resulting “limit algorithm”. Consider some fixed example
x and some fixed “real” weak hypothesish. How can we characterize the behavior of the
sum of randomly altered versions ofh, i.e. of h′1(x) + h′2(x) + · · · whereh′1, h

′
2, . . . are

randomized alterations ofh asδ→ 0?
As it turns out, this limit can be characterized, under the proper scaling, as a well-known

stochastic process calledBrownian motion with drift.3 More precisely, let us define two real
valued variablest andx which we can think about as “time” and “position”. We set the time
to bet = δ2i , so that the time at the end of the boosting process, afterO(δ−2) iterations, is
a constant independent ofδ, and we define the “location” by4

rδ(t)= δ
dt/δ2e∑

j=1

h′j (x).

Then asδ → 0 the stochastic processrδ(t) approaches a well defined continuous time
stochastic processr (t) which follows a Brownian motion characterized by its meanµ(t)
and varianceσ 2(t) which are equal to

µ(t)=
∫ t

0

1

γ (s)
ds, σ 2(t)= t,

where 1/2− γ (t) is the weighted error of the hypothesish at timet . Again, this derivation
is not meant as a proof, so we make no attempt to formally define the notion of limit used
here; this is merely a bridge to get us to a continuous-time notion of boosting. Note that
in this limit we consider thedistributionof the prediction of the example, i.e. the normal
distribution that results from the Brownian motion of the sumh′1(x)+ h′2(x)+ · · · .

So far we have described the behavior of the altered weak hypothesis. To complete the
picture we now describe the corresponding limit for the weighting function defined in BBM.
The weighting function used there is the binomial distribution (Eq. (1) in Freund (1995)):

αi
r =

(
kδ − i − 1

b kδ
2 c − r

)(
1

2
+ δ

)b kδ
2 c−r(1

2
− δ

)d kδ
2 e−i−1+r

. (1)

wherekδ is the total number of boosting iterations,i is the index of the current iteration, and
r is the number of correct predictions made so far. Using the definitions fort andrδ given
above and lettingδ → 0 we get thatαi

r approaches a limit which is (up to an irrelevant
constant factor)

α(t, r )= exp

(
− (r (t)+ c− t)2

c− t

)
(2)

wherec = limδ→ 0 δ
2kδ. Similarly, we find that the limit of the potential function (Eq. (6)

in Freund (1995))

β i
r =

b kδ
2 c−r∑
j=0

(
kδ − i

j

)(
1

2
+ δ

) j(1

2
− δ

)kδ−i− j

. (3)
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is

β(t, r ) = 1

2

(
1− erf

(
r (t)+ c− t√

c− t

))
(4)

where erf(·) is the so-called “error function”:

erf(a) = 2

π

∫ a

0
e−x2

dx.

To simplify our notation, we shall use a slightly different potential function. The use of this
potential function will be essentially identical to the use ofβ i

r in Freund (1995).
Given the definitions oft, r (t), α(t, r ) andβ(t, r ) we can now translate the BBM algo-

rithm into the continuous time domain. In this domain we can, instead of running BBM a
huge number of very small steps, solve a differential equation which defines the value oft
that corresponds to a distribution with respect to which the error of the weak hypothesis is
exactly one half.

However, instead of following this route, we now abandon the intuitive trail that lead us
here, salvage the definitions of the variablest, r, c, α(t, r )andβ(t, r )and describe algorithm
BrownBoost using these functions directly, without referring to the underlying intuitions.

3. Preliminaries

We assume the labely that we are to predict is either+1 or−1. As in Schapire and Singer’s
work (Schapire & Singer, 1998), we allow “confidence rated” predictions which are real
numbers from the range [−1,+1]. The error of a prediction̂y is defined to be

error(ŷ, y)= |y− ŷ| =1− yŷ.

We can interpret̂y as a randomized prediction by predicting+1 with probability(1+ ŷ)/2
and−1 with probability(1− ŷ)/2. In this case error(ŷ, y)/2 is the probability that we
make a mistaken prediction. A hypothesish is a mapping from instances into [−1,+1].
We shall be interested in the average error of a hypothesis with respect to a training set.
A perfect hypothesis is one for whichh(x)y= 1 for all instances, and a completely random
one is one for whichhi (x)= 0 for all instances. We call a hypothesis a “weak” hypothesis
if its error is slightly better than that of random guessing, which, in our notation, corre-
spond to an average error slightly smaller than 1. It is convenient to measure the strength
of a weak hypothesis by itscorrelation with the label which is(1/m)

∑m
j = 1 h(xj )yj =

1− (1/m)
∑m

j=1 error(h(xj ), yj ).
Boosting algorithms are algorithms that define different distributions over the training ex-

amples and use a “weak” learner (sometimes called a “base” learner) to generate hypotheses
that are slightly better than random guessing with respect to the generated distributions. By
combining a number of these weak hypotheses the boosting algorithm creates a combined
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hypothesis which is very accurate. We denote the correlation of the hypothesishi by γi and
assume that theγi ’s are significantly different from zero.

4. The algorithm

Algorithm BrownBoost is described in figure 2. It receives as an input parameter a positive
real numberc. This number determines our target error rate; the larger it is, the smaller

Inputs:
Training Set: A set ofm labeled examples:T = (x1, y1), . . . , (xm, ym) wherexi ∈Rd andyi ∈
{−1,+1}.

WeakLearn — A weak learning algorithm.
c — a positive real valued parameter.
ν > 0 — a small constant used to avoid degenerate cases.

Data Structures:
prediction value: With each example we associate a real valuedmargin. The margin of example
(x, y) on iterationi is denotedri (x, y).The initial prediction values of all examples is zero
r1(x, y) = 0.

Initialize “remaining time”s1 = c.
Do for i = 1, 2, . . .

1. Associate with each example a positive weight

Wi (x, y)= e−(ri (x,y)+si )
2/c

2. CallWeakLearn with the distribution defined by normalizingWi (x, y) and receive from it a
hypothesishi (x) which has some advantage over random guessing

∑
(x,y) Wi (x, y)hi (x)y=

γi > 0.
3. Letγ,α andt be real valued variables that obey the following differential equation:

dt
dα
=γ=

∑
(x,y)∈T exp

(− 1
c (ri (x, y)+αhi (x)y+ si − t)2

)
hi (x)y∑

(x,y)∈T exp
(− 1

c (ri (x, y)+αhi (x)y+ si − t)2
) (5)

Whereri (x, y), hi (x)y andsi are all constants in this context.
Given the boundary conditionst= 0,α= 0 solve the set of equations to findti = t∗ > 0 and
αi =α∗ such that eitherγ∗ ≤ ν or t∗ = si .

4. Update the prediction value of each example to

ri+1(x, y) = ri (x, y)+ αi hi (x)y

5. Update “remaining time”si+1 = si − ti

Until si+1≤ 0
Output the final hypothesis,

if p(x) ∈ [−1,+1] then p(x) = erf

∑N
i=1 αi hi (x)√

c


if p(x) ∈ {−1,+1} then p(x) = sign

 N∑
i = 1

αi hi (x)


Figure 2. Algorithm BrownBoost.
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the target error. This parameter is used to initialize the variables, which can be seen as
the “count-down” clock. The algorithm stops when this clock reaches zero. The algorithm
maintains, for each example(x, y) in the training set itsmargin r(x, y). The overall structure
of the algorithm is similar to that of AdaBoost. On iterationi a weightWi (x, y) is associated
with each example and then the weak learner is called to generate a hypothesishi (·) whose
correlation isγi .

Given the hypothesishi the algorithm chooses a weightαi and, in addition, a positive
numberti which represents the amount of time that we can subtract from the count-down
clocksi . To calculateti andαi the algorithm calculates the solution to the differential Eq. (5).
In a lemma below we show that such a solution exists and in later sections we discuss in
more detail the amount of computation required to calculate the solution. Givenαi andti
we update the margins and the count-down clock and repeat. Unlike AdaBoost we cannot
stop the algorithm at an arbitrary point but rather have to wait until the count-down clock,
si , reaches the value zero. At that point we stop the algorithm and output our hypothesis.
Interestingly, the natural hypothesis to output is a stochastic rule. However, we can use a
thresholded truncation of the stochastic rule and get a deterministic rule whose error bound
is at most twice as large as the stochastic rule.

In order to simplify our notation in the rest of the paper, we shall use the following shorter
notation when referring to a specific iteration. We drop the iteration indexi and use the
index j to refer to specific examples in the training set. For example(xj , yj ) and parameters
α andt we define the following quantities:

v j = ri (xj , yj )+ si old margin

u j = hi (xj )yj step

dj = v j +αu j − t new margin

w j =
exp

(−d2
j

/
c
)∑

k exp
(−d2

k

/
c
) weight

Using this notation we can rewrite the definition ofγ as

γ(α, t)=
∑

j exp
(−d2

j

/
c
)
u j∑

j exp
(− d2

j

/
c
) =∑

j

w j u j

which we shall also write as

γ(α, t)= Ew[u]

which is a short hand notation that describes the average value ofuj with respect to the
distribution defined byw j .

The two main properties of the differential equation that are used in the analysis are the
equations for the partial derivatives:

∂

∂t
γ= 2

c
(Ew[du] − Ew[d]Ew[u])= 2

c
Covw[d, u]. (6)
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Where Covw[d, u] stands for the covariance ofdj andu j with respect to the distribution
defined byw j . Similarly we find that5

∂

∂α
γ= 2

c
(Ew[u]Ew[du] − Ew[du2])=−2

c
Covw[du, u]. (7)

The following lemma shows that the differential Eq. (5) is guaranteed to have a solution.

Lemma 1. For any set of real valued constants a1, . . . ,an, b1, . . . ,bn. There is one and
only one functiont :R→ R such thatt(0)= 0 and

dt(α)
dα
= f (α, t) =

∑
j exp

(− (aj+αbj−t)2

c

)
bj∑

j exp
(− (aj+αbj−t)2

c

)
and this function is continuous and continuously differentiable.

Proof: In Appendix A. 2

The lemma guarantees that there exists a function that solves the differential equation and
passes throughα= 0, t= 0. Asγi > 0 we know that the derivative of this function at zero
is positive. As the solution is guaranteed to have a continuous first derivative, there are only
two possibilities. Either we reach the boundary conditionγ= ν or the derivative remains
larger thanν, in which case we will reach the boundary conditiont= si . It is also clear that
within the ranget ∈ [0, t∗] there is a one-to-one relationship betweent andα. We can thus
use eithert orα as an index to the solution of the differential equation.

We now prove the main theorem of this paper, which states the main property of
BrownBoost. Note that there are no inequalities in the statement or in the proof, only
strict equalities!

Theorem 2. If algorithm BrownBoost exits the main loop(i.e. there exists some finite i
such that

∑
i ti ≥ c) then the final hypothesis obeys:

1

m

m∑
j=1

|yj − p(xj )| =1− erf(
√

c).

Proof: We define the potential of the example(x, y) at timet> 0 on iterationi to be

βi,t(x, y)= erf

(
1√
c
(ri (x, y)+αhi (x)y+ si − t)

)
,

and the weight of the example to be

Wi,t(x, y) = exp

(
− 1

c
(ri (x, y)+αhi (x)y+ si − t)2

)
whereri (x, y), si andhi (x)y depend only oni andα depends on the “time”t.
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The central quantity in the analysis of BrownBoost is the average potential over the
training data. As we show below, this quantity is aninvariant of the algorithm. In other
words, the average potential remains constant throughout the execution of BrownBoost.

When the algorithm starts,r1(x, y)= 0 for all examples,α= 0, s1= c and t = 0; thus
the potential of each example is erf(

√
c) and the average potential is the same.

Equating the average potential at the beginning to the average potential at the end we get
that

m erf
(√

c
) = ∑

(x,y)

βN+1,0(x, y)

=
∑
(x,y)

erf

(
r N+1(x, y)√

c

)

=
∑
(x,y)

erf

((∑N
i=1 αi hi (x)

)
y√

c

)

=
∑
(x,y)

y erf

(∑N
i=1 αi hi (x)√

c

)
.

Plugging in the definition of the final predictionp(x), dividing both sides of the equation
by−m and adding 1 to each side we get:

1− erf
(√

c
) = 1− 1

m

∑
(x,y)

yp(x)= 1

m

∑
(x,y)

|y− p(x)|

Which is the statement of the theorem.
We now show that the average potential does not change as a function of time.
It follows directly from the definitions that for any iterationi and any example(x, y),

the potential of the example does not change between boosting iterations:βi,ti (x, y) =
βi+1,0(x, y). Thus the average potential does not change at the boundary between boosting
iterations.

It remains to show that the average potential does not change within an iteration. To
simplify the equations here we use, for a fixed iterationi , the notationβ j (t) andW j (t) to
replaceβi,t(xj , yj ) andWi,t(xj , yj ) respectively. For a single example we get

d

dt
β j (t)=

2

cπ
W j (t)

[
bj

dα

dt
− 1

]

The solution to the differential equation requires that

dα

dt
= 1

γ
.
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By using the definition ofW j (t) andγ and averaging over all of the examples we get:

d

dt
1

m

m∑
j=1

β j (t) =
2

cmπ

[
1

γ

m∑
j=1

(W j (t)bj )−
m∑

j=1

W j (t)

]

= 2

cmπ

[ ∑m
j=1 W j (t)∑m

j=1(W j (t)bj )

m∑
j=1

(W j (t)bj )−
m∑

j=1

W j (t)

]
= 0

which shows that the average potential does not change with time and completes the
proof. 2

5. Choosing the value ofc

Running BrownBoost requires choosing a parameterc ahead of time. This might cause us
to think that we have not improved much on the situation we had with BBM. There we had
two parameters to choose ahead of time:γ andε. With BrownBoost we have to choose only
one parameter:c, but this still seems to be not quite as good as we had it with AdaBoost.
There we have no parameters whatsoever! Or do we?

In this section we show that in fact thereis a hidden parameter setting in AdaBoost.
AdaBoost is equivalent to setting the target errorε in BrownBoost to zero.

Observe the functional relationship betweenc andε we give in Theorem 2:ε = 1−
erf(
√

c). Second, note that if we letε→ 0 then we get thatc→∞. It would thus be
interesting to characterize the behavior of our algorithm as we letc→∞.

The solution of Eq. (5) in figure 2 implies that, if the algorithm reaches the “normal”
solution whereγ(t)= ν andν= 0 then the solutiont∗,α∗ satisfies∑m

j=1 exp
(− (aj+α∗bj−t∗)2

c

)
bj∑m

j=1 exp
(− (aj+α∗bj−t∗)2

c

) = 0

Now, assume that|hi (x)|, αi and ti are all bounded by some constantM for iteration
i = 1, . . . ,n and letc→∞; it is easy to see that under these conditions limc→∞(aj /c)= 1
while all other terms remain bounded byMn. We thus have

lim
c→∞

∑m
j=1 exp

(− (aj+α∗bj−t∗)2

c

)
bj∑m

j=1 exp
(− (aj+α∗bj−t∗)2

c

)
= lim

c→∞

∑m
j=1 exp

(− a2
j+2aj (bjα

∗−t∗)
c

)
bj∑m

j=1 exp
(− a2

j+2aj (bjα∗−t∗)
c

)
=
∑m

j=1 exp(−2(aj + bjα
∗))bj∑m

j=1 exp(−2(aj + bjα
∗))

= 0
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Note that in this limit there are no dependencies onc or on t∗ which cancel with the
denominator. Plugging in the definitions ofaj and bj we get that the condition for the
choice ofα is

∑
(x,y) exp

(−2
(∑i−1

i ′=1 αi ′hi ′(x)y+α∗hi ′(x)y
))

hi (x)y

exp
(−2

(∑i−1
i ′=1 αi ′hi ′(x)y+α∗hi ′(x)y

)) = 0

If we stare at this last equation sufficiently long we realize that the condition that it defines
on the choice of the weight of thei ’th hypothesisαi =α∗ is identical to the one defined
by Schapire and Singer in their generalized version of AdaBoost (Schapire & Singer, 1999,
Theorem 3).

Note however that another effect of lettingc increase without bound is that our algorithm
will never reach the condition to exit the loop, and thus we cannot apply Theorem 2 to bound
the error of the combined hypothesis. On the other hand, we can use the bounds proven for
AdaBoost.6

If we setc= 0 we get trivially that the algorithm exits the loop immediately. We can thus
devise a reasonable heuristic to choosec. Start by running AdaBoost (which corresponds
to settingc very large in our algorithm) and measure the error of the resulting combined
hypothesis on a held-out test set. If this error is very small then we are done. On the other
hand, if the error is large, then we setc so that the observed error is equal to 1−erf(

√
c) and

run our algorithm again to see whether we can reach the loop-exit condition. If not—we
decreasec further, if yes, we increasec. Repeating this binary search we can identify a
locally optimal value ofc, i.e. a value ofc for which BrownBoost exits the loop and the
theoretical bound holds while slightly larger setting ofc will cause BrownBoost to never
achieve

∑
i ti ≥ c and exit the loop.

It remains open whether this is also the global maximum ofc, i.e., whether the legitimate
values ofc form an (open or closed) segment between 0 and somecmax> 0.

6. BrownBoost is a boosting algorithm

So far we have shown that BrownBoost has some interesting properties that relate it to BBM
and to AdaBoost. However, we have not yet shown that it is indeed a boosting algorithm
in the PAC sense. In other words, that it provides a polynomial time transformation of any
weak PAC learning algorithm to a strong PAC learning algorithm.

There are two parts to showing that the algorithm is a PAC learning algorithm. First, we
should show that when the errors of the weak hypotheses are all smaller than 1/2− γ for
someγ > 0 then the algorithm will reach any desired error levelε within a number of
boosting iterations that is poly-logarithmic in 1/ε. Secondly, we need to show that solving
the differential equation can be done efficiently, i.e. in polynomial time.

In this section we show the first part, the issue of efficiency will be addressed in the
next section. In order to show that a poly-logarithmic number of iterations suffices, we
need to show that the “remaining time” parameter,si decreases by a constant if the er-
rors are uniformly bounded away from 1/2. As it turns out, this is not the case for
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Parameter: θ >0

1. Solve Equation (5) to findα∗, t∗.
2. Let A= 32

√
c ln 2

θ
.

3. If t∗ ≥ γ 2
i /A then let(αi , ti )= (α∗, t∗).

4. If t∗<γ 2
i /A then find 0≤ t′ ≤ t∗ for which

∑
j W j(t′)≤ θ and the correspondingα′ and let(αi ,

ti )= (α′, t′ + γ 2
i /A).

Figure 3. A variant of step 3 in algorithm BrownBoost (figure 2). This variant is provably a boosting
algorithm in the PAC sense.

BrownBoost itself. Indeed, the decrease insi can be arbitrarily small even when the error
is constant. However, as we shall see, in this case there is a very simple choice fort andα in
which t is sufficiently large. This choice is not an exact solution of the differential equation,
but, as we shall see, its influence on the average potential is sufficiently small.

In figure 3 we describe the variant of BrownBoost which utilizes this observation. The
desired property of this variant is stated in the following theorem.

Theorem 3. Assume that we are using the variant of BrownBoost described in figure3.
Let1/10>ε >0 be a desired accuracy and set c= (erf−1(1− ε))2 andθ = (ε/c)2.

If the advantages of the weak hypotheses satisfy

m∑
i=1

(
γ 2

i − ν2
)≥ Ac= 32c3/2

√
ln 2+ 2 ln

c

ε

Then the algorithm terminates and the training error of the final hypothesis is at most2ε.

Corollary 4. If γi >γ for all i then the number of boosting iterations required by
BrownBoost to generate a hypothesis whose error isε is Õ((γ −ν)−2(ln(1/ε))2) (ignoring
factors of orderln ln 1/ε.)

Proof: Asc→∞, 1−erf(
√

c)= e−c/
√
πc(1+ o(1)). Thus it is sufficient to setc= ln 1/ε

to guarantee that the initial potential is smaller thanε. Plugging this choice ofc into the
statement of Theorem 3 proves the corollary. 2

7. Solving the differential equation

In order to show that BrownBoost is anefficientPAC boosting algorithm it remains to be
shown how we can efficiently solve the differential Eq. (5). We shall show two methods for
doing that, the first is of theoretical interest, as we can prove that it requires only polynomial
time. The second is a method which in practice is much more efficient but for which we
have yet to prove that it requires only polynomial number of steps.
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7.1. A polynomial time solution

The solution described in this section is based on calculating a finite step solution to the
differential equation. In other words, we start witht0 = 0,α0 = 0. Giventk,αk we calculate
γk and using it we calculate a small update oftk,αk to arrive atαk+1. We repeat this process
until γk<ν at which point we stop and go to the next iteration of BrownBoost. We also
check at each point if the total weight is smaller thatθ and, if it is, follow the prescription
in figure 3 and settk+1 = tk = γ s

k /A,αk+1 = αk.
These small updates do not solve the differential equation exactly, however, we can show

that the total decrease in the average potential that they cause can be made arbitrarily small.
This solution method corresponds to solving the differential equation by a small-step

approximation. Clearly, this is a crude approximation and the constants we use are far from
optimal. The point here is to show that the required calculation can be done in polynomial
time. In the next section we describe a solution method which is much more efficient in
practice, but for which we don’t yet have a proof of efficiency.

Theorem 5. For any1/2>ε >0, if we choose c so that c≥ min(1, 18 ln(c/ε)), and use,
in step3 of BrownBoost the settingsαi = min(ε, γi ), ti =α2

i /3, then the total decrease in
the average potential is at most12ε/

√
c.

Proof: in Appendix C. 2

Given this approximation we get that BrownBoost is indeed a poly-time boosting algorithm
in the PAC sense. We sketch the analysis of this algorithm below.

Let ε >0 be a small constant which is our desired accuracy. Suppose we have a weak
learning algorithm which can, for any distribution of examples, generate a hypothesis whose
correlation is larger thanε. Then we setc to be large enough so thatc≥ max(c ln(c/ε)) and
ε <1−erf(

√
(c)). Both conditions are satisfied byc=O(log(1/ε)). If we now use Brown-

Boost with the approximate solution described in Theorem 5. We are guaranteed to stop
within 3(c/ε2)=O(ln(1/ε)/ε2) iterations. The training error of the generated hypothesis,
which is the final potential, is at most(1+ 12/

√
c)ε.

7.2. A more practical solution

In this section we describe an alternative method for solving the differential equation, which,
we believe (and some initial experiments indicate), is much more efficient and accurate then
the previous method.

As we know from the proof of Theorem 2, the exact solution to Eq. (5) is guaranteed to
leave the average potential of the examples in the training set unchanged. In other words,
the solution forα andt should satisfy

m∑
j=1

erf

(
aj +αbj − t√

c

)
=

m∑
j=1

erf

(
aj√

c

)



AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 307

On the other hand, the boundary conditionγ = 0 corresponds to the equation

m∑
j=1

exp

(
− (aj +αbj − t)2

c

)
bj = 0. (8)

We thus have two nonlinear equations in two unknowns,t andα, to which we wish to find
a simultaneous solution.

We suggest using Newton-Raphson method for finding the solution. In order to simplify
the notation, we usej to index the examples in the sample. Recall thati is the boosting
iteration that we will keep fixed in this derivation.

We defineEz .= [α, t], and Evj = [bj,−1]. Using this notation we write the two non-linear
equations as the components of a function fromR2 toR2:

f (Ez) =
[∑

j

bj exp

(
−1

c
(aj + Ev j · Ez)2

)
,
∑

j

(
erf

(
aj + Evj · Ez√

c

)
− erf

(
aj√

c

))]

Our goal is to findEz such that f (Ez)= [0, 0]. The Newton-Raphson method generates a
sequence of approximate solutionsEz1, Ez2, . . . , Ezk using the following recursion:

Ezk+1=Ezk − (Df (Ez))−1 f (Ezk),

whereDf is the Jacobian of the functionf .
Using the notationdj =aj + Ev j · Ez, wj = e−d2

j /c and

W=
∑

j

wj, U =
∑

j

wjdjbj,

B=
∑

j

wjbj, V =
∑

j

wjdjb
2
j .

we can write the Jacobian as follows:

Df (Ez)= 2

[ −V/c U/c

B/
√
πc −W/

√
πc

]

In order to calculate the inverse ofDf (Ez) we first calculate the determinant ofDf (Ez),
which is:

det(Df (Ez)) = 4

c
√
πc
(VW− UB)

Using the adjoint ofDf (Ez) we can express the inverse as:

(Df (Ez))−1 = −2

det(Df (Ez))

[
W/
√
πc U/c

B/
√
πc V/c

]
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Combining these Equations, using the subscriptk to denote the value of “constants” on
thek’th iteration of Newton-Raphson, and denoting

Ek =
∑

j

(
erf

(
dj,k√

c

)
− erf

(
aj,k√

c

))

we find that the Newton-Raphson update step is:

αk+1 = αk + cWkBk +√πcUk Ek

2(VkWk −UkBk)

and

tk+1 = tk + cB2
k +
√
πcVkEk

2(VkWk −UkBk)

If we divide the enumerator and denominator byW2
k we get an expression of the up-

date step that is a function of expected values with respect to the distribution defined by
normalizing the weightswj :

αk+1 = αk +
cB̂k +√πcÛk

Ek
Wk

2(V̂k − Ûk B̂k)

and

tk+1= tk +
cB̂2

k +
√
πcV̂k

Ek
Wk

2(V̂k − Ûk B̂k)

where

B̂k= Bk

Wk
, V̂k= Vk

Wk
, Ûk= Uk

Wk

How efficient is this solution method? Newton-Raphson methods are guaranteed to have
an asymptotically quadratic rate of convergence for twice differentiable conditions. This
means that the error decreases at the rate ofO(e−i 2

) when the starting point is “sufficiently
close” to the correct solution. We are currently trying to show that the error in the solution
decreases at a similar rate when we start from an easy to calculate starting point, such as
the one suggested in Theorem 5.

8. The generalization error of BrownBoost

In Schapire et al. (1998) prove theorems (Theorems 1 and 2) which bound the generaliza-
tion error of a convex combination of classifiers as a function of the margin distribution
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of the same combination. Clearly, this theorem can be applied to the output of BrownBoost.
Moreover, we claim that BrownBoost is more appropriate than AdaBoost for minimizing
these bounds. This is because the bounds consist of two terms: the first is equal to the
fraction of training examples whose margin is smaller thanθ and the second is proportional
to 1/θ . In cases where the data is very noisy one can clearly get better bounds by “giving
up” on some of the noisy training examples and allocating them to the first term and by
doing that increasingθ and decreasing the second term. Unlike AdaBoost, BrownBoost can
be tuned, using the parameterc, to achieve this effect.

One issue that might be important is controlling thel1 norm of the coefficients of the weak
hypotheses. In the theorem we assume that

∑
i |αi | = 1. As stated, BrownBoost does not

have any control over the norm of the coefficients. However, a simple trick can be used to
make sure that thel1 norm is always bounded by 1. Suppose that the weak learner generates
the hypothesishi . Instead of finding the coefficientαi for hi , we can use the following
altered version ofhi :

ĥi (x) = hi (x)−
i−1∑
j=1

αjhj(x).

Suppose that
∑i−1

j=1 |α j | =1, then, as long asαi ≤ 1 all of the coefficients remain posi-
tive and their sum remains 1. The case whereαi = 1 is degenerate in this case because
it effectively eliminates all of the previous hypotheses from the new combination and
only the new hypothesis remains. In this case we can remove all of the previous hy-
potheses from the combination and starting the algorithm with the combined hypothesis
beinghi (x).

9. Conclusions and future work

We have shown that BrownBoost is a boosting algorithm that possesses some interesting
properties. We are planning to experiment with this algorithm extensively in the near future
to see how it performs in practice.

There are several technical issues that we would like to resolve regarding BrownBoost.
We would like to show that the Newton-Raphson method, or something similar to it, is
guaranteed to converge quickly to the solution of the differential equation. We would like to
know whether there can be more than one local maximum forc. And we would also like to
formalize the noise resistant properties of the algorithm and characterize the types of noise
it can overcome.

It seems that BrownBoost is optimizing a function of the margin that is much more
closely related to the bound proven in Schapire et al. (1998) than AdaBoost. In this regard it
seems like it can be a method for “direct optimization of margins” as suggested by Mason,
Bartlett, and Baxter (1998). Experiments are needed in order to see whether this theoretical
advantage pans out in practice.

The relationship between boosting and Brownian motion has been studied further by
Schapire (1999) and by Freund and Opper (2000).
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Appendix

A. Proof of Lemma 1

Proof: To prove the lemma we use a standard Lipschitz condition on ordinary differential
equations, which we state again here in a slightly simplified form

Theorem 6(Theorem7.1.1in Stoler and Bulrisch (1992)). Let f be defined and continuous
on the strip S:= {(x, y) |a≤ x≤ b, y ∈ R}, a, b finite. Further let there be a constant L
such that

| f (x, y1)− f (x, y2| ≤ L|y1− y2|

for all x ∈ [a, b] and all y1, y2 ∈ R. Then for every x0 ∈ [a, b] and every y0 ∈ R there
exists exactly one function y(x) such that
1. y(x) is continuous and continuously differentiable for x∈ [a, b]
2. y′(x)= f (x, y(x)), for x ∈ [a, b]
3. y(x0)= y0

As f is infinitely differentiable it suffices to prove a bound on the partial derivative off
with respect tot . In our casef (α, t) = γ. From Eq. (6) we know that

∂

∂t
γ= 2

c
Covw[d, u] (9)

So it is sufficient if we prove that within any strip−A≤α≤ A the value ofdi and ui

are also uniformly bounded. There is a finite number of examples thusU = maxi |ui |
and V = maxi |vi | are finite.7 It remains to show an upper bound ondi = vi + αui − t.
Unfortunatelyt is not bounded on the strip so we need to work a little harder.

To overcome the problem witht potentially being unbounded we fix some real number
B> 0 and defineγB to be a clipped version of the functionγ:

γB(α, t) = γ(α,max(−B,min(B, t)))

Note theγB is equal toγ whenever|t| ≤ A, and is continuous everywhere. The partial
derivative∂/∂tγB is equal to that that ofγ whent< A, zero whent> A and undefined at
t= A. Whent< A the magnitude ofdi is bounded by|di | ≤V + AU+ B. Using Eq. (9)
we conclude thatγB satisfies the conditions of Theorem 6 for the stripα ∈ [−A, A], from
which we conclude that there is one and only one functiont(α)which satisfies botht(0)= 0
and(dt(α)/dα)=γB(α, t) on that strip. Note however that|γ(α, t)|<U which implies
that also|γA(α, t)|<U . Thus also the derivative|(dt(α)/dα)| ≤U and thus within the
rangeα ∈ [−A, A] the function is bounded in|t(α)|< AU. SettingB > AU we conclude
that the solution of the differential equation defined byγA(α, t) is the same as the solution
of the differential equation defined byγ(α, t).
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Finally, a solution exists for any setting ofA> 0 and all of these solutions must conform
to each other. Thus there is one solution of the differential equation for the whole real
line. 2

B. Proof of Theorem 3

Proof: The proof consists of two parts, corresponding to the two cases that the algorithm
can follow on each iteration. In each case we show two properties. First, we show that the
difference in the “remaining time”si − si+1 is always at leastγ 2

i /A. Second, we show that
the total decrease in the average potential from times1= c until si = 0 is at mostε. The
parameterc is chosen so that the initial potential is 1− ε. Combining these claims we get
that the final potential is at least 1− 2ε. From this lower bound on the final potential, using
the same argument as in the proof of Theorem 2 we find that the error of the final hypothesis
is at most 2ε.

Case I: Average weight at leastθ throughout the iteration. The idea of this part of the
proof is the following. The initial boundary of the differential equation isγ(0)= γi ,α= 0,
t= 0, the final boundary isγ(t∗)= ν. We shall give a lower bound denotedB on dγ(α)

dα and
then use the following integral:

t∗ =
∫ α∗

0

dt

dα
dα =

∫ α∗

0
γ(α) dα

≥
∫ α∗

0
(γ(0)− Bα) dα = γ(0)+ ν/over2γ(0)− ν/overB

= γ(0)2− ν2

2B
(10)

We now compute the lower boundB. Using Eqs. (6, 7) we get that

dγ(α)

dα
= ∂

∂α
γ + dt

dα

∂

∂t
γ

= ∂

∂α
γ + γ ∂

∂t
γ

= 2

c
(Ew[u]Ew[du] − Ew[du2])+ 2γ

c
(Ew[du] − Ew[d]Ew[u])

= 2

c
(2γEw[du] − Ew[du2] − γ2Ew[d]).

To bound this sum we bound the absolute value of each term. By definitionγ ≤ 1. All the
other expectations can be bounded using the following lemma.

Lemma 7. Let b1, . . . ,bm,a1, . . . ,am be real valued numbers such that|ai | ≤ |bi |. If there
exists0<θ ≤ 2/e (e= 2.71. . .) such that

1

m

m∑
i=1

e−b2
i ≥ θ,
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then ∣∣∣∣∣
∑m

i=1 ai e−b2
i∑m

i=1 e−b2
i

∣∣∣∣∣ ≤ 2

√
ln

(
2

θ

)
.

The proof of the lemma is given later.
We continue with the proof of case I. By assumption, in this case(1/m)

∑
i e−d2

i /c≥ θ for
all 0≤ t ≤ t∗. Settingbi = di /

√
c,ai = ui di /

√
c, noting that|ui | ≤1 we can apply Lemma 7

and find that|Ew[du]| ≤2
√

c ln(2/θ). Similarly, by settingai = di /
√

c or ai = u2
i di /
√

c
we find that|Ew[d]| ≤2

√
c ln(2/θ)and|Ew[du2]| ≤2

√
c ln(2/θ). Combining these bounds

we get that∣∣∣∣ d

dα
γ(α)

∣∣∣∣≤ 16√
c

ln
2

θ

.= B (11)

Combining Eqs. (10) and (11) we find that, on iterations where the total weight remains
aboveθ , si+1− si ≥ (γ 2

i − ν2)/2B = (γ 2
i − ν2)/A.

As for conservation of the average potential, we already know, from the proof of
Theorem 2, that on iterations where we use the exact solution of the differential equa-
tion the total potential does not change. This completes the proof for case I.

Case II: Average weight smaller thanθ at some point within the iteration.In this case the
claim thatsi − si+1≥ γ 2

i /A follows directly from the construction of the algorithm. What
remains to be shown in this case is that the decrease in the average potential is sufficiently
small. To do this we show that the speed of the decrease in the potential as a function of
time is smaller thanε/c, as the total time isc this gives that the maximal total decrease in
the potential isε.

The derivative of the average potential w.r.t.t is the average weight because:

d

dt
β(t,α)=−W(t,α). (12)

It remains to be shown that if the average weight at some point is smaller thanθ that it
will remain smaller thanε/c for whenα is kept unchanged andt is increased by a quantity
smaller or equal to 1/A (recall thatγ 2

i < 1). To this end we use the following lemma.

Lemma 8. If a1, . . . ,am andθ >0 are real numbers such that

1

m

m∑
j=1

e−a2
j ≤ θ (13)

then for all x> 0

1

m

m∑
j=1

e−(aj−x)2 ≤ e−(
√

ln(1/θ)−x)2 (14)
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Recall the definitions oft′ andα′ in figure 3. We setθ = (ε/c)2 andaj = (v j + α′uj −
t′)/
√

c andx= t/
√

c in Lemma 8 and get that for any 0≤ t ≤ 1/A

1

m

m∑
j=1

Wj(t′ + t,α′) = 1

m

m∑
j=1

e−(aj−t)2/c

≤ exp

(
−1

c

[√
c ln

1

θ
− 1

A

]2
)

≤ exp

(
−
[√

ln
1

θ
− 1

32

(
ln

1

θ

)−1/2]2
)

≤
√
θ = ε

c

where the last inequality follows from the constraintε <1/10 which implies thatθ ≤ 1/10.
This completes the proof of case II. 2

Proof of Lemma 7: It is easy to see that to prove the lemma it is sufficient to show for
the caseai = bi > 0 that

m∑
i=1

bi e
−b2

i ≤ 2

√
ln

(
2

θ

) m∑
i=1

e−b2
i (15)

We separate the sum in the LHS of Eq. (15) into three parts:

m∑
i=1

bi e
−b2

i =
∑
bi≤A

bi e
−b2

i +
∑

A<bi≤2A

bi e
−b2

i +
∑

2A<bi

bi e
−b2

i (16)

whereA=√ln(2/θ). Note that asθ ≤ 2/e, A≥ 1.
First, we show that, under the assumption of the lemma, the number of terms for which

bi ≤ A is large. Denote the number of such terms byαm, then the assumption of the lemma
implies that

θm <
∑
bi≤A

e−b2
i

∑
bi>A

e−b2
i ≤αm+ (1− α)me−A2

= αm+ (1− α)m(θ/2) = m(θ/2+ α(1− θ/2))

which implies thatα > θ/2.
Next we show that the third sum in Eq. (16) is small relative to an expression related to

the first sum. Observe that forx> 1/
√

2 the functionxe−x2
is monotonically decreasing.

Thus, as 2A≥ 2> 1/
√

2 we have that:

∑
2A<bi

bi e
−b2

i ≤ m2Ae−4A2 ≤ 2m
√

ln(2/θ)

(
θ

2

)4
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< m

(
θ

2

)2

= m
θ

2
e−A2

< αme−A2 ≤
∑
bi≤A

e−b2
i (17)

Combining Eqs. (16) and (17) we get

m∑
i=1

bi e
−b2

i ≤
∑
bi≤A

bi e
−b2

i +
∑

A<bi≤2A

bi e
−b2

i +
∑

2A<bi

bi e
−b2

i

≤ A
∑
bi≤A

e−b2
i + 2A

∑
A<bi≤2A

e−b2
i +

∑
bi≤A

e−b2
i

≤ 2A
∑

bi≤2A

e−b2
i ≤ 2A

m∑
i=1

e−b2
i

which proves Eq. (15) and completes the proof of the lemma. 2

Proof of Lemma 8: We fix x> 0 and maximize the LHS of Eq. (14) under the constraint
defined by Eq. (13).

Note first that if for some 1≤ i ≤m, ai < 0, then replacingai with −ai does not change
the constrained equation, and increases the LHS of Eq. (14). We can thus assume w.l.o.g.
that∀i , ai ≥ 0. Furthermore, ifx>ai ≥ 0 then settingai = x reduces the sum in Eq. (13)
and increases the sum in Eq. (14). We can thus assume w.l.o.g. that∀i,ai ≥ x.

Using the Lagrange method for constrained maximization we find that, for eachj :

∂

∂aj

(
m∑

i=1

e−(ai−x)2 + λ
m∑

i=1

e−a2
i

)
= 2(x − aj)e

−(aj−x)2 + 2λaj e
−a2

j = 0

Which implies that for allj

λ= aj − x

aj
ex(2aj−x).

As we assume thataj ≥ x> 0 the last expression is positive and monotonically increasing
in aj . Thus the only extremum, which is the maximum, occurs when all theajs are equal
and thus all equal to

√
ln(1/θ). Plugging this value into all of theajs in Eq. (14) completes

the proof. 2

C. Proof of Theorem 5

Proof: The proof follows the same line as the proof of Theorem 2. The difference here is
that rather than showing that the average potential stays completely constant, we show that
its decrease on any iteration is small.
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In what follows we fix the boosting iterationi . We denote the potential of an example
(x, y) on iterationi by

βi (x, y)
.= erf

(
ai (x, y)+ z(x, y)

c

)
wherea(x, y)= ri (x, y) + si is viewed as the constant part andz(x, y)=αhi (x)y − t is
the variable part.

We start by focusing on the change in the potential of a single example(x, y) and a single
iterationi . Later, we will bound the change in the average potential over all examples in a
specific iteration. Finally, we will sum the change over all iterations. For this first part we
fix and drop the indicesi and(x, y). We concentrate on the change inβ as a function ofz.

As β(z) has an infinite number of derivatives with respect toz we can use the Taylor
expansion of third order to estimate it:

β(z)=β(0)+ z
∂

∂z

∣∣∣∣
z=0

β(z)+ z2

2

∂2

∂z2

∣∣∣∣
z=0

β(z)+ z3

6

∂3

∂z3

∣∣∣∣
z=θ
β(z)

whereθ is some number in the range(0, z). Computing the derivatives we get:

β(z)− β(0) = 2√
πc

exp

(
−a2

c

)[
z− a

c
z2

]
+ 4

3
√
πc5/2

((a+ θ)2− c/2) exp

(
− (a+ θ)

2

c

)
z3.

By considering the variability of the last term withθ we get the following bound:

β(z)− β(0)≥ 2√
πc

exp

(
−a2

c

)[
z− a

c
z2

]
− 2

3
√
πc3/2

z3 (18)

From our choice ofαi andti we get the following bound on|z(x, y)| for all examples
(x, y):

|z(x, y)| = |αi hi (x)y− ti | = |αi hi (x)y| + |ti | ≤
√

2|αi | (19)

In order to get an upper bound on the decrease in the average potential on iterationi we
sum Inequality (18) over the examples in the training set. We estimate the sum for each
power ofz in (18) separately.

To bound the sum of the first term in (18) we use the definition ofγi and the fact that
αi ≤ γi .∑

(x,y)

z(x, y)
2√
πc

exp

(
−ai (x, y)2

c

)
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=
∑
(x,y)

(αi hi (x)y− ti )
2√
πc

exp

(
−ai (x, y)2

c

)

= 2√
πc

(∑
(x,y)

exp

(
−ai (x, y)2

c

)) [
αi γi − α2

i

/
3
]

≥ 2√
πc

(∑
(x,y)

exp

(
−ai (x, y)2

c

))
2

3
α2

i (20)

To upper bound the sum of the second term in (18) we use the bound on|z(x, y)|. We
separate the sum into two parts according to the value ofai (x, y). Forai (x, y)< c/3 we have

2√
πc

∑
(x,y)

ai (x,y)≤c/3

ai (x, y)

c
exp

(
−ai (x, y)2

c

)
(z(x, y))2

≤ 2√
πc

(∑
(x,y)

(z(x, y))2

3
exp

(
−ai (x, y)2

c

))

≤ 2√
πc

(∑
(x,y)

exp

(
−ai (x, y)2

c

))
2

3
α2

i . (21)

For the casea(x, y)> c/3 we use the following technical lemma whose proof is given later.

Lemma 9. If a, c, ε are non-negative real numbers such that c> min(1, 18 ln(c/ε)) and
a > c/3 then

a

c
exp

(
−a2

c

)
≤ ε

c

Combining Lemma 9 with the condition onc and the setting ofti given in the statement of
the theorem we get

2√
πc

∑
(x,y)

a(x,y)>c/3

ai (x, y)

c
exp

(
−ai (x, y)2

c

)
(z(x, y))2

≤ 2√
πc

m
ε

c
2α2

i ≤
12m√
πc
ε

ti
c

(22)

where the first inequality follows from the fact that are at mostm terms in the sum.
Finally, we bound the last term in (18) by using the assumption thatαi ≤ ε and the bound

on z given in Eq. (19)∑
(x,y)

2

3
√
πc3/2

z3≤ 2

3
√
πc3/2

m23/2α3
i ≤

8m√
πc
ε

ti
c

(23)
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Combining the bounds given in Eqs. (20)–(23) we get the following bound on the decrease
in the average potential on iterationi :

1

m

∑
(x,y)

(βz(x, y)− β0(x, y))

≥ 2

m
√
πc

(∑
(x,y)

exp

(
−ai (x, y)2

c

))(
2

3
α2

i −
2

3
α2

i

)
− 20√

πc
ε

ti
c

≥− 20√
πc
ε

ti
c

Summing this bound over all iterationsi and using the assumption that
∑

i ti = c we get
that the total decrease from the initial potential to the final potential is∑

i

20√
πc
ε

ti
c
≤ 20√

πc
ε.

Using the same argument as in the proof of Theorem 2 we get the statement of this
theorem. 2

Proof of Lemma 9: We consider two possible ranges fora.
If c/3≤a≤ c/ε then

a

c
exp

(
−a2

c

)
≤ 1

ε
exp

(
−1

9
c

)
≤ ε

c

becausec ≥ 18 ln c
ε

andc ≥ 1.
If a > c/ε then

a

c
exp

(
−a2

c

)
≤ a

c
exp

(
−a

c

c

ε

)
= ε

c

(
a

ε
exp

(
−a

ε

))
≤ ε

c

1

e
<
ε

c

becausexe−x ≤ 1/e for all x. 2
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Notes

1. As BBM generates majority rules in which all of the hypotheses have the same weight, the margin is a linear
combination of thenumberof weak hypotheses that are correct and the number of iterations so far.
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2. If the error ofh is larger than 1/2+ δ then the error of−h(x) is smaller than 1/2− δ.
3. For an excellent introduction to Brownian motion see Breiman (1992); especially relevant is Section 12.2,

which describes the limit used here.
4. Note that the sum containsO(δ−2) terms of constant average magnitude and is multiplied byδ rather thanδ2,

thus the maximal value of the sum diverges to±∞ asδ → 0; however, thevarianceof rδ(t) converges to a
limit.

5. These clean expressions for the derivatives ofγ are reminiscent of derivatives of the partition function that
are often used in Statistical Mechanics. However, we don’t at this point have a clear physical interpretation of
these quantities.

6. This proof, in fact, follows a similar route to the proof of Theorem 2, but in this case the potential function and
the weight function are essentially the same because

∫
e−x dx = −e−x , while in our case

∫
e−x2 = erf(x).

7. In fact, we assume in the algorithm thatU = 1. However, we use this more general proof in order to note that
the bounded range assumption is not a requirement for the existance of a solution to the differential equation.
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