éa Machine Learning, 43, 293-318, 2001
(© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Adaptive Version of the Boost
by Majority Algorithm

YOAV FREUND
AT&T Labs, 180 Park Avenue, Florham Park, NJ 07932, USA

Editor: Yoram Singer

Abstract. We propose a new boosting algorithm. This boosting algorithm is an adaptive version of the boost
by majority algorithm and combines bounded goals of the boost by majority algorithm with the adaptivity of
AdaBoost.

The method used for making boost-by-majority adaptive is to consider the limit in which each of the boosting
iterations makes an infinitesimally small contribution to the process as a whole. This limit can be modeled using
the differential equations that govern Brownian motion. The new boosting algorithm, named BrownBoost, is based
on finding solutions to these differential equations.

The paper describes two methods for finding approximate solutions to the differential equations. The first is a
method that results in a provably polynomial time algorithm. The second method, based on the Newton-Raphson
minimization procedure, is much more efficient in practice but is not known to be polynomial.

Keywords: boosting, Brownian motion, AdaBoost, ensamble learning, drifting games

1. Introduction

The AdaBoost boosting algorithm has become over the last few years a very popular
algorithm to use in practice. The two main reasons for this popularity are simplicity and
adaptivity. We say that AdaBoost &laptivebecause the amount of update is chosen as

a function of the weighted error of the hypotheses generated by the weak learner. In con-
trast, the previous two boosting algorithms (Schapire, 1990; Freund, 1995) were designed
based on the assumption that a uniform upper bound, strictly smaller fRamxists on

the weighted error of all weak hypotheses. In practice, the common behavior of learning
algorithms is that their error gradually increases with the number of boosting iterations and
as a result, the number of boosting iterations required for AdaBoost is far smaller than the
number of iterations required for the previous boosting algorithms.

The “boost by majority” algorithm (BBM), suggested by Freund (1995), has appealing
optimality properties but has rarely been used in practice because it is not adaptive. In this
paper we present and analyze an adaptive version of BBM which we call BrownBoost (the
reason for the name will become clear shortly). We believe that BrownBoost will be a useful
algorithm for real-world learning problems.

While the success of AdaBoost is indisputable, there is increasing evidence that the
algorithm is quite susceptible to noise. One of the most convincing experimental studies
that establish this phenomenon has been recently reported by Dietterich (2000). In his

294 Y. FREUND

experiments Diettrich compares the performance of AdaBoost and bagging (Breiman, 1996)
on some standard learning benchmarks and studies the dependence of the performance on
the addition ofclassification noisdo the training data. As expected, the error of both
AdaBoost and bagging increases as the noise level increases. However, the increase in the
error is much more significant in AdaBoost. Diettrich also gives a convincing explanation

of the reason of this behavior. He shows that boosting tends to assign the examples to which
noise was added much higher weight than other examples. As aresult, hypotheses generated
in later iterations cause the combined hypothesis to over-fit the noise.

In this paper we consider only binary classification problems. We denote an example by
(X, y) wherex is the instance ang € {—1, +1} is the label. The weights that AdaBoost
assigns to examplé, y) is e " *Y) wherer (x, y) = h(X)y, y € {—1, +1} is the label in
the training set anti(x) is the combined “strong” hypothesis which is a weighted sum of
the weak hypotheses that corresponds to the instance

h(x) = Z nt ; S hi).

wheree; denotes the weighted error bf with respect to the weighting that was used for
generating it. We catl(x, y) the “margin” of the exampléx, y). Itis easy to observe that if,

for a given exampléx, y) the prediction of most hypotheses is incorrect,hj€x)y = —1

thenr (x, y) becomes a large negative number and the weight of the example increases very
rapidly and without bound.

To reduce this problem several authors have suggested using weighting schemes that
use functions of the margin that increase more slowly #faor example, the algorithm
“Gentle-Boost” of Friedman, Hastie, and Tibshirani (1998); however, none of the sugg-
estions have the formal boosting property as defined in the PAC framework.

The experimental problems with AdaBoost observed by Dietterich and the various recent
attempts to overcome these problems have motivated us to have another look at BBM. The
weights that are assigned to examples in that algorithm are also functions of the targin.
However, the form of the function that relates the margin and the weight is startlingly
different than the one used in AdaBoost, as is depicted schematically in figure 1. The
weight is anon-monotondunction of the margin. For small values ofx, y) the weight
increases as(x, y) decreases in a way very similar to AdaBoost; however, from some point
onwards, the weighdecreasessr (x, y) decreases.

The reason for this large difference in behavior is that BBM is an algorithm that is
optimized to minimize the training erraithin a pre-assigned number of boosting iterations
As the algorithm approaches its predetermined end, it becomes less and less likely that
examples which have large negative margins will eventually become correctly labeled.
Thus it is more optimal for the algorithms to “give up” on those examples and concentrate
its effort on those examples whose margin is a small negative number.

To use BBM one needs to pre-specify an upper bour2l-1 y on the error of the
weak learner and a “target” errer > 0. In this paper we show how to get rid of the
parametety. The parameter still has to be specified. Its specification is very much akin
to making a “bet” as to how accurate we can hope to make our final hypothesis, in other
words, how much inherent noise there is in the data. As we shall show, setiingero

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 295

AdaBoost
boost by

-
- e ——

margin

Figure 1L A schematic comparison between examples weights as a function of the margin for AdaBoost and
BBM.

transforms the new algorithm back into AdaBoost. It can thus be said that AdaBoost is a
special case of the new algorithm where the initial “bet” is that the error can be reduced
to zero. This intuition agrees well with the fact that AdaBoost performs poorly on noisy
datasets.

To derive BrownBoost we analyzed the behavior of BBM in the limit where each boosting
iteration makes a very small change in the distribution and the number of iterations increases
to infinity. In this limit we show that BBM’s behavior is closely related to Brownian motion
with noise. This relation leads us to the design of the new algorithm as well as to the proof
of its main property.

The paper is organized as follows. In Section 2 we show the relationship between BBM
and Brownian motion and derive the main ingredients of BrownBoost. In Section 4 we
describe BrownBoost and prove our main theorem regarding its performance. In Section 5
we show the relationship between BrownBoost and AdaBoost and suggest a heuristic for
choosing a value for BrownBoost’s parameter. In Section 6 we prove that (a variant of)
BrownBoost is indeed a boosting algorithm in the PAC sense. In Section 7 we present two
solutions to the numerical problem that BrownBoost needs to solve in order to calculate the
weights of the hypotheses. We present two solutions, the firstis an approximate solution that
is guaranteed to work in polynomial time, the second is probably much faster in practice,
but we don't yet have a proof that it is efficient in all cases. In Section 8 we make a few
remarks on the generalization error we expect for BrownBoost. Finally, in Section 9 we
describe some open problems and future work.

2. Derivation

In this section we describe an intuitive derivation of algorithm BrownBoost. The derivation
is based on a “thought experiment” in which we consider the behavior of BBM when the
bound on the error of the weak learner is made increasingly closg2oThis thought

296 Y. FREUND

experiment shows that there is a close relation between boost by majority and Brownian
motion with drift. This relation gives the intuition behind BrownBoost. The claims made
in this section are not fully rigorous and there are not proofs; however, we hope it will help
the reader understand the subsequent more formal sections.

In order to use BBM two parameters have to be specified ahead of time: the desired
accuracy > 0 and a non-negative parameter 0 such that the weak learning algorithm
is guaranteed to always generate a hypothesis whose error is smaller/thanyl The
weighting of the examples on each boosting iteration depends directly on the pre-specified
value ofy. Our goal here is to get rid of the parameteand, instead, create a version
of BBM that “adapts” to the error of the hypotheses that it encounters as it runs in a way
similar to AdaBoost.

We start by fixings to some small positive value, small enough that we expect most of
the weak hypotheses to have error smaller théh-165. Given a hypothesis whose error
is1/2—y,y > § we defineh’ to be

h(x), with probabilitys/y
h(x) =10, with prob.(1—68/y)/2.
1, with prob.(1—68/y)/2

Itis easy to check that the errorlof(x) is exactly %2 — §. Assume we use this hypothesis
and proceed to the following iteration.

Note that ifs is very small, then the change in the weighting of the examples that occurs
after each boosting iteration is also very small. It is thus likely that the same hypothesis
would have an error of less thai2— é for many consecutive iterations. In other words,
instead of calling the weak learner at each boosting iteration, we can instead reuse the same
hypothesis over and over until its error becomes larger thi@h18, or, in other words
very closé to 1/2. Using BBM in this fashion will result in a combined hypothesis that is
aweightedmajority of weak hypotheses, where each hypothesis has an integer coefficient
that corresponds to the number of boosting iterations that it “survived”. We have thus
arrived at an algorithm whose behavior is very similar to the variant of AdaBoost suggested
by Schapire and Singer (To appear). Instead of choosing the weights of weak hypotheses
according to their error, we choose it so that the error of the last weak hypothesis on the
altered distribution is (very close toy2.

Note that there is something really strange about the altered hypotheses that we are
combining: they contain a large amount of artificially added noise. On each iteration where
we useh(x) we add to it some new independent noise; in fad j#fvery small then the be-
havior of h’(x) is dominatedby the random noise! the contribution of the actual “useful”
hypothesis being proportional té/y . Still, there is no problem in principle, in using this
modification of BBM and, as long as we can get at l€a&t~2 In(1/¢)) boosting iterations
we are guaranteed that the expected error of the final hypothesis would be smalter than

In a sense, we have just described an adaptive version of BBM. We have an algorithm
which adapts to the performance of its weak hypotheses, and genenatigghtedmnajority
vote as its final hypothesis. The more accurate the weak hypothesis, the more iterations of
boosting it participates in, and thus the larger the weight it receive in the combined final
hypothesis. This is exactly what we were looking for. However, our need tatadte very

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 297

small, together with the fact that the number of iterations increase©lige?) makes the
running time of this algorithm prohibitive.

To overcome this problem, we push the thought experiment a little further; we let
approachO and characterize the resulting “limit algorithm”. Consider some fixed example
x and some fixed “real” weak hypothesisHow can we characterize the behavior of the
sum of randomly altered versions bf i.e. of hj(x) + hy(x) + - -- whereh!, h, ... are
randomized alterations dfass — 0?

As it turns out, this limit can be characterized, under the proper scaling, as a well-known
stochastic process call&lownian motion with dritf More precisely, let us define two real
valued variables andx which we can think about as “time” and “position”. We set the time
to bet = §2i, so that the time at the end of the boosting process, &ftér?) iterations, is
a constant independent &fand we define the “location” By

/8%
rst)=3 Z b} (x).
j=1
Then ass§ — 0 the stochastic process(t) approaches a well defined continuous time
stochastic procesgt) which follows a Brownian motion characterized by its meat)
and variance ?(t) which are equal to

toq
)= | —d 2t) =t,
wn(t) /oy(S) s, o°(t)

where Y2 — y (1) is the weighted error of the hypothesisit timet. Again, this derivation
is not meant as a proof, so we make no attempt to formally define the notion of limit used
here; this is merely a bridge to get us to a continuous-time notion of boosting. Note that
in this limit we consider thelistribution of the prediction of the example, i.e. the normal
distribution that results from the Brownian motion of the skipix) + h5(x) 4 - - -.

So far we have described the behavior of the altered weak hypothesis. To complete the
picture we now describe the corresponding limit for the weighting function defined in BBM.
The weighting function used there is the binomial distribution (Eqg. (1) in Freund (1995)):

i ks —i—1\ /1 %8]-r 1 99—i—14r
a,=<L%J_r><§+a) (5_5) . M

wherek; is the total number of boosting iteratiomss the index of the current iteration, and
r is the number of correct predictions made so far. Using the definitionsafiodr s given
above and letting — 0 we get thatr! approaches a limit which is (up to an irrelevant
constant factor)

)

wherec = lim;_, ¢ §%k;. Similarly, we find that the limit of the potential function (Eq. (6)
in Freund (1995))

(r(t)+c—t)2>
c—t

at,r)= exp(—

ks

S - i k=i—]
P ks—i) (1 1
e

298 Y. FREUND

et tC—t
ﬂ(t,r)_2<1 erf(—)) (4)

where erf.) is the so-called “error function”:

2 (% o
erf(a) = —/ e dx.
T Jo

To simplify our notation, we shall use a slightly different potential function. The use of this
potential function will be essentially identical to the usespin Freund (1995).

Given the definitions of, r (t), a(t, r) andS(t, r) we can now translate the BBM algo-
rithm into the continuous time domain. In this domain we can, instead of running BBM a
huge number of very small steps, solve a differential equation which defines the value of
that corresponds to a distribution with respect to which the error of the weak hypothesis is
exactly one half.

However, instead of following this route, we now abandon the intuitive trail that lead us
here, salvage the definitions of the varialilesc, a(t, r) andg(t, r) and describe algorithm
BrownBoost using these functions directly, without referring to the underlying intuitions.

3. Preliminaries

We assume the labglthat we are to predict is eitherl or—1. As in Schapire and Singer’s
work (Schapire & Singer, 1998), we allow “confidence rated” predictions which are real
numbers from the range-[l, +1]. The error of a predictios is defined to be

error(y,y) =y —yl=1-yy.

We can interprey as a randomized prediction by predictirg with probability(1+ ¥)/2

and —1 with probability (1 — y)/2. In this case errofy, y)/2 is the probability that we

make a mistaken prediction. A hypothekiss a mapping from instances inte-1, +1].

We shall be interested in the average error of a hypothesis with respect to a training set.
A perfect hypothesis is one for whitt{x)y = 1 for all instances, and a completely random
one is one for whicli; (x) = 0 for all instances. We call a hypothesis a “weak” hypothesis

if its error is slightly better than that of random guessing, which, in our notation, corre-
spond to an average error slightly smaller than 1. It is convenient to measure the strength
of a weak hypothesis by itsorrelation with the label which is(1/m) ZT:1 h(xj)y; =
1—(1/m) Z',-":l error (h(x;), Y;).

Boosting algorithms are algorithms that define different distributions over the training ex-
amples and use a “weak” learner (sometimes called a “base” learner) to generate hypotheses
that are slightly better than random guessing with respect to the generated distributions. By
combining a number of these weak hypotheses the boosting algorithm creates a combined

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 299

hypothesis which is very accurate. We denote the correlation of the hypdthesig; and
assume that thg's are significantly different from zero.

4. The algorithm

Algorithm BrownBoost is described in figure 2. It receives as an input parameter a positive
real numbetrc. This number determines our target error rate; the larger it is, the smaller

Inputs:

Training Set: A set ofm labeled examplest = (x4, y1), - . -, (Xm, Ym) Wherex; € RY andy; €
{(—1, +1}.

WeakLearn — A weak learning algorithm.

¢ — a positive real valued parameter.

v > 0 — a small constant used to avoid degenerate cases.

Data Structures:
prediction value: With each example we associate a real valnedgin The margin of example
(X, y) on iterationi is denoted; (x, y).The initial prediction values of all examples is zero

ri(x,y) =0.
Initialize “remaining time”s; = c.
Dofori =1,2,...

1. Associate with each example a positive weight

Wi (%, y) = e (i n+s)?/e

2. CallWeakLearn with the distribution defined by normalizing; (x, y) and receive from it a
hypothesid; (x) which has some advantage over random guesgggy) Wi (X, y)hi (X)y =
» > 0.

3. Let+, « andt be real valued variables that obey the following differential equation:

dt e Y xyret XP(—E T (X, V) + ahi (0y +5 — H2) hi 0y
da Y xyer OXP(— T (X, Y) + ahi ()Y +5 —1)?)

®

Wherer; (X, Y), hj (X)y ands are all constants in this context.
Given the boundary conditioris= 0, « = 0 solve the set of equations to find=t* > 0 and
aj = o* such that eithey* < vort*=s5.

4. Update the prediction value of each example to

lipa(X, y) =ri(x, y) + oihi (x)y
5. Update “remaining time§1 =5 —

Until 541 <0
Output the final hypothesis,

4 _ e Zlieihioo
ifp(x) € [-1, +1] then px) = erf(iﬁ

N
if p(x) € {—1, +1} then px) = sign(Zai hi (x))

i=1

Figure 2 Algorithm BrownBoost.

300 Y. FREUND

the target error. This parameter is used to initialize the varigheéhich can be seen as
the “count-down” clock. The algorithm stops when this clock reaches zero. The algorithm
maintains, for each example, y) inthe training setitsnarginr(x, y). The overall structure

of the algorithm is similar to that of AdaBoost. On iteraticaweightW (x, y) is associated

with each example and then the weak learner is called to generate a hypbihesihose
correlation isy;.

Given the hypothesik; the algorithm chooses a weight and, in addition, a positive
numbert; which represents the amount of time that we can subtract from the count-down
clocks . To calculate; andg; the algorithm calculates the solution to the differential Eq. (5).

In a lemma below we show that such a solution exists and in later sections we discuss in
more detail the amount of computation required to calculate the solution. Givemdt;

we update the margins and the count-down clock and repeat. Unlike AdaBoost we cannot
stop the algorithm at an arbitrary point but rather have to wait until the count-down clock,
s, reaches the value zero. At that point we stop the algorithm and output our hypothesis.
Interestingly, the natural hypothesis to output is a stochastic rule. However, we can use a
thresholded truncation of the stochastic rule and get a deterministic rule whose error bound
is at most twice as large as the stochastic rule.

In order to simplify our notation in the rest of the paper, we shall use the following shorter
notation when referring to a specific iteration. We drop the iteration indaxd use the
indexj to refer to specific examples in the training set. For exarpgley;) and parameters
« andt we define the following quantities:

vi =i (Xj,¥j)+5S old margin

uj = hi(X))y; step

dj =vj +auj; —t new margin
exp(—d?/c

wj = _oe(d/9 weight

>k exp(-di/c)

Using this notation we can rewrite the definitionphs

> exp(—d?/c)u;
Y, exp(—d?/c) ZwJuJ

which we shall also write as

y(a, 1) =

'Y(av = Ew[u]

which is a short hand notation that describes the average valuewith respect to the
distribution defined byw;.

The two main properties of the differential equation that are used in the analysis are the
equations for the partial derivatives:

%7_—(E [du] — w[d]Ew[u]):écovw[d,U]- ©)

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 301

Where Coy,[d, u] stands for the covariance df andu; with respect to the distribution
defined byw;. Similarly we find that

D 2(E, [UlE,[dY] — E,[dwP]) = 2 Coy,[du, u]. @)
Ja c c

The following lemma shows that the differential Eq. (5) is guaranteed to have a solution.

Lemma 1. For any set of real valued constantg,a. ., a,, by, ..., b,. There is one and
only one functiont : R — R such thatt(0) =0 and

Y, exp(— @y,
Y exp(— @)

and this function is continuous and continuously differentiable.

dt(@)
da

fla,t) =

Proof: In Appendix A. O

The lemma guarantees that there exists a function that solves the differential equation and
passes throughe=0,t=0. Asy; > 0 we know that the derivative of this function at zero
is positive. As the solution is guaranteed to have a continuous first derivative, there are only
two possibilities. Either we reach the boundary conditiog v or the derivative remains
larger tharv, in which case we will reach the boundary conditieas. It is also clear that
within the range € [0, t*] there is a one-to-one relationship betweé@amda. We can thus
use eithet or a as an index to the solution of the differential equation.

We now prove the main theorem of this paper, which states the main property of
BrownBoost. Note that there are no inequalities in the statement or in the proof, only
strict equalities!

Theorem 2. If algorithm BrownBoost exits the main logpe. there exists some finite i
such that)_; t; > c) then the final hypothesis obeys

l m
=3 1y — pxp)| =1—erf(/c).
m &

Proof: We define the potential of the examggbe y) at timet > 0 on iteration to be

1
Je00y) +ah 0y +5 - t)),

and the weight of the example to be

Bit(X,y)= erf(

1
Wi (X, y) = exp(— iy + ahi(x)y+s — t)z)

wherer; (X, ¥), 5§ andh; (x)y depend only om anda depends on the “timet.

302 Y. FREUND

The central quantity in the analysis of BrownBoost is the average potential over the
training data. As we show below, this quantity is iamariant of the algorithm. In other
words, the average potential remains constant throughout the execution of BrownBoost.

When the algorithm starts; (x, y) =0 for all examplesp =0, 53 =c andt =0; thus
the potential of each example is gyfc) and the average potential is the same.

Equating the average potential at the beginning to the average potential at the end we get
that

merf(v©) = > Busro(X, Y)

x.y)
rne1(X, Y)
= erf<7)
2o
- 5 (o
x.y) Ve
SN aih (X)>
= yerf(i .
2 N;

Plugging in the definition of the final predictigmx), dividing both sides of the equation
by —m and adding 1 to each side we get:

1 1
1-erf(ve) =1- =3 ypoo="—73 "Iy~ p()|

x.y) x.y)

Which is the statement of the theorem.

We now show that the average potential does not change as a function of time.

It follows directly from the definitions that for any iteratiorand any exampléx, y),
the potential of the example does not change between boosting iteratiqrs; y) =
Bi+1.0(X, ¥). Thus the average potential does not change at the boundary between boosting
iterations.

It remains to show that the average potential does not change within an iteration. To
simplify the equations here we use, for a fixed iteratiotie notation3; (t) andWj (t) to
replaceg; 1 (X, y;) andW ¢(X;, y;j) respectively. For a single example we get

d 2 da

The solution to the differential equation requires that

da_l

at A

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 303

By using the definition ofV; (t) and~ and averaging over all of the examples we get:

di 2 [1Q -
&E;ﬁi(t) E[JZ(Wi(t)bj)_Z;Wj(t)}

j=1 1=

2 ZTleJ(t) - -
= W (t)b;j) — Wi (t
cm[z;“_1<w,-<t>bj>;(i (b)) 1; m}

=0

which shows that the average potential does not change with time and completes the
proof. O

5. Choosing the value ot

Running BrownBoost requires choosing a parametanead of time. This might cause us
to think that we have not improved much on the situation we had with BBM. There we had
two parameters to choose ahead of tipmande. With BrownBoost we have to choose only
one parameter, but this still seems to be not quite as good as we had it with AdaBoost.
There we have no parameters whatsoever! Or do we?

In this section we show that in fact theisea hidden parameter setting in AdaBoost.
AdaBoost is equivalent to setting the target eerém BrownBoost to zero.

Observe the functional relationship betwe=ande we give in Theorem 2¢ = 1 —
erf(,/c). Second, note that if we let— 0 then we get that — oco. It would thus be
interesting to characterize the behavior of our algorithm as we-etc.

The solution of Eqg. (5) in figure 2 implies that, if the algorithm reaches the “normal”
solution wherey(t) = v andv = 0 then the solution*, o* satisfies

(a.+ *b__t*)z
Yy exp(—)by
(a.+ *b'*'[*)z
ZT::L exq_ : acJ)
Now, assume thah; (x)|, «j andt; are all bounded by some constavit for iteration

i=1,...,nandletc — oo; itis easy to see that under these conditions li;y(a; /c) =1
while all other terms remain bounded Mn. We thus have

(aj+a*bj —t*)?
L

C— 00 ZT:;]_ exq_ (aj+a*cbj—t*)2)

a?+4-2a; (bja*—t*)
i S exp(- TG,
T oo Zr]n L eXd— a12+261 (bja*ft*))
= [§
_ YL exp(—2(aj + bja*))b;
Z’j“:l exp(—2(aj + bja*))
=0

304 Y. FREUND

Note that in this limit there are no dependenciescoor on t* which cancel with the
denominator. Plugging in the definitions af andb; we get that the condition for the
choice ofa is

Ly X2 Ly 00y +a’hi oY) 9y
eXd—Z(Zi;ll Oli/hi’(x)y + a*hV(X)y))

If we stare at this last equation sufficiently long we realize that the condition that it defines
on the choice of the weight of thieh hypothesisyj = o* is identicalto the one defined
by Schapire and Singer in their generalized version of AdaBoost (Schapire & Singer, 1999,
Theorem 3).

Note however that another effect of lettingncrease without bound is that our algorithm
will never reach the condition to exit the loop, and thus we cannot apply Theorem 2 to bound
the error of the combined hypothesis. On the other hand, we can use the bounds proven for
AdaBoost®

If we setc = 0 we get trivially that the algorithm exits the loop immediately. We can thus
devise a reasonable heuristic to choos8tart by running AdaBoost (which corresponds
to settingc very large in our algorithm) and measure the error of the resulting combined
hypothesis on a held-out test set. If this error is very small then we are done. On the other
hand, if the error is large, then we geto that the observed error is equal te é&rf(,/c) and
run our algorithm again to see whether we can reach the loop-exit condition. If not—we
decrease further, if yes, we increase. Repeating this binary search we can identify a
locally optimal value ofc, i.e. a value oftt for which BrownBoost exits the loop and the
theoretical bound holds while slightly larger settingoofvill cause BrownBoost to never
achieve) ; ti > c and exit the loop.

It remains open whether this is also the global maximum) 0é., whether the legitimate
values ofc form an (open or closed) segment between 0 and syye- 0.

6. BrownBoost is a boosting algorithm

So far we have shown that BrownBoost has some interesting properties that relate it to BBM
and to AdaBoost. However, we have not yet shown that it is indeed a boosting algorithm
in the PAC sense. In other words, that it provides a polynomial time transformation of any
weak PAC learning algorithm to a strong PAC learning algorithm.

There are two parts to showing that the algorithm is a PAC learning algorithm. First, we
should show that when the errors of the weak hypotheses are all smaller/thamnylfor
somey > 0 then the algorithm will reach any desired error lewetithin a number of
boosting iterations that is poly-logarithmic irid. Secondly, we need to show that solving
the differential equation can be done efficiently, i.e. in polynomial time.

In this section we show the first part, the issue of efficiency will be addressed in the
next section. In order to show that a poly-logarithmic number of iterations suffices, we
need to show that the “remaining time” paramegerdecreases by a constant if the er-
rors are uniformly bounded away fromy2Z As it turns out, this is not the case for

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 305

Parameter: 6 >0

. Solve Equation (5) to fine*, t*.
. LetA=32/cIn 2.

. Ift* > 2/ Athen let(e, t) = (*, t¥).
L ftr < yiz/Athen find O<t’ <t* for which Zj Wij(t') <6 and the corresponding’ and let(e;,

)= (/. t' + 2/ A).

AW N P

Figure 3 A variant of step 3 in algorithm BrownBoost (figure 2). This variant is provably a boosting
algorithm in the PAC sense.

BrownBoost itself. Indeed, the decreasesirtan be arbitrarily small even when the error
is constant. However, as we shall see, in this case there is a very simple choiaadarin
whicht is sufficiently large. This choice is not an exact solution of the differential equation,
but, as we shall see, its influence on the average potential is sufficiently small.

In figure 3 we describe the variant of BrownBoost which utilizes this observation. The
desired property of this variant is stated in the following theorem.

Theorem 3. Assume that we are using the variant of BrownBoost described in fgyure
Let1/10> ¢ > 0 be a desired accuracy and setgerf 1(1 — ¢))2 andd = (¢/c)2.
If the advantages of the weak hypotheses satisfy

m

yz —_ 1}2 2 AC: 3203/2 |n2+ 2 InE
2
= €

|
Then the algorithm terminates and the training error of the final hypothesis is atZnost

Corollary 4. If » >y for all i then the number of boosting iterations required by
BrownBoost to generate a hypothesis whose errelissO ((y — v)~2(In(1/¢))?) (ignoring
factors of orderdnIn1/¢.)

Proof: Asc — oo, 1—erf(,/c) =e ¢/ /mc(1+0(1)). Thusitis sufficientto se&t= In 1/¢
to guarantee that the initial potential is smaller thkarfPlugging this choice of into the
statement of Theorem 3 proves the corollary. O

7. Solving the differential equation

In order to show that BrownBoost is afficientPAC boosting algorithm it remains to be
shown how we can efficiently solve the differential Eq. (5). We shall show two methods for
doing that, the first is of theoretical interest, as we can prove that it requires only polynomial
time. The second is a method which in practice is much more efficient but for which we
have yet to prove that it requires only polynomial number of steps.

306 Y. FREUND

7.1. A polynomial time solution

The solution described in this section is based on calculating a finite step solution to the
differential equation. In other words, we start wigh= 0, ag = 0. Giventy, o we calculate
~, @nd using it we calculate a small updateofo to arrive atoy 1. We repeat this process
until 4, < v at which point we stop and go to the next iteration of BrownBoost. We also
check at each point if the total weight is smaller thatnd, if it is, follow the prescription
in figure 3 and sef11 =tk = ¥/ A, ay1 = o
These small updates do not solve the differential equation exactly, however, we can show
that the total decrease in the average potential that they cause can be made arbitrarily small.
This solution method corresponds to solving the differential equation by a small-step
approximation. Clearly, this is a crude approximation and the constants we use are far from
optimal. The point here is to show that the required calculation can be done in polynomial
time. In the next section we describe a solution method which is much more efficient in
practice, but for which we don’t yet have a proof of efficiency.

Theorem 5. Foranyl/2> ¢ > 0, if we choose ¢ so thate min(1, 18In(c/¢)), and use
in step3 of BrownBoost the settingg = min(e, 1), t =?/3, then the total decrease in
the average potential is at mok2¢/./c.

Proof: in Appendix C. O

Given this approximation we get that BrownBoost is indeed a poly-time boosting algorithm
in the PAC sense. We sketch the analysis of this algorithm below.

Let € > 0 be a small constant which is our desired accuracy. Suppose we have a weak
learning algorithm which can, for any distribution of examples, generate a hypothesis whose
correlation is larger thaen. Then we set to be large enough so that- max(cIn(c/¢)) and
€ < 1—erf(y/(c)). Both conditions are satisfied lay= O(log(1/¢)). If we now use Brown-

Boost with the approximate solution described in Theorem 5. We are guaranteed to stop
within 3(c/e?) = O(In(1/¢)/€?) iterations. The training error of the generated hypothesis,
which is the final potential, is at mo&t + 12/.,/C)e.

7.2. A more practical solution

Inthis section we describe an alternative method for solving the differential equation, which,
we believe (and some initial experiments indicate), is much more efficient and accurate then
the previous method.

As we know from the proof of Theorem 2, the exact solution to Eqg. (5) is guaranteed to
leave the average potential of the examples in the training set unchanged. In other words,
the solution fora andt should satisfy

(222820 S

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 307

On the other hand, the boundary conditipra= 0 corresponds to the equation
2
Zexp(M)q —o. ®)

We thus have two nonlinear equations in two unknowms)da;, to which we wish to find
a simultaneous solution.

We suggest using Newton-Raphson method for finding the solution. In order to simplify
the notation, we us¢ to index the examples in the sample. Recall ihitthe boosting
iteration that we will keep fixed in this derivation.

We defineZ =[a, t], andv; =[bj, —1]. Using this notation we write the two non-linear
equations as the components of a function fifrto R?:

f(2) = [Z b eXp(—%(aj +7 '?)2)’ 2 (erf<%i.z) - erf(%))}
i J

Our goal is to findZ such thatf (Z) =[0, 0]. The Newton-Raphson method generates a
sequence of approximate solutiansz,, . . ., Zx using the following recursion:

Z1 =2 — (DF @) f (Z0),

whereDf is the Jacobian of the functioh.
Using the notatiom =g + v; - Z, w; = 4/

W= ij, UZijdjbj,
B= Xj:wjbj, V= Xlzwj'djbjz.
j i

we can write the Jacobian as follows:

. —-V/c U/c
Df(2)=2
|:B/«/JTC —W/«/JTC:|

In order to calculate the inverse Bff (Z) we first calculate the determinant bf (2),
which is:

and

- 4

Using the adjoint oDf (Z) we can express the inverse as:

(Di@)-L -2 |:W/\/71_C U/c]

~ de(Df(2)) | B/ /7€ V/c

308 Y. FREUND

Combining these Equations, using the subsd¢ift denote the value of “constants” on
thek'’th iteration of Newton-Raphson, and denoting

(o) -+(3)

we find that the Newton-Raphson update step is:

CWBy + /7 cUKEx
2(VikWi — U By)

ki1 = ok +

and

Ca% + /W Ex

1 =1
k1= 5 2 VW — UgBo)

If we divide the enumerator and denominator M we get an expression of the up-
date step that is a function of expected values with respect to the distribution defined by
normalizing the weightsy;:

cBy + «/ncﬂk%k

Q] = Qg + = =
2(Mk — UkBy)

and
cBZ + «/nc\?k%kk
tk+1 = tk +—
2(Mk — Uk By)
where
R By ~ A\ A Uk
= Vi = —, U= —
k Wi k Wi k Wi

How efficient is this solution method? Newton-Raphson methods are guaranteed to have
an asymptotically quadratic rate of convergence for twice differentiable conditions. This
means that the error decreases at the ra@(ef'’) when the starting point is “sufficiently
close” to the correct solution. We are currently trying to show that the error in the solution
decreases at a similar rate when we start from an easy to calculate starting point, such as
the one suggested in Theorem 5.

8. The generalization error of BrownBoost

In Schapire et al. (1998) prove theorems (Theorems 1 and 2) which bound the generaliza-
tion error of a convex combination of classifiers as a function of the margin distribution

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 309

of the same combination. Clearly, this theorem can be applied to the output of BrownBoost.
Moreover, we claim that BrownBoost is more appropriate than AdaBoost for minimizing
these bounds. This is because the bounds consist of two terms: the first is equal to the
fraction of training examples whose margin is smaller thand the second is proportional

to 1/6. In cases where the data is very noisy one can clearly get better bounds by “giving
up” on some of the noisy training examples and allocating them to the first term and by
doing that increasing and decreasing the second term. Unlike AdaBoost, BrownBoost can
be tuned, using the parametgito achieve this effect.

One issue that might be important is controllingltheorm of the coefficients of the weak
hypotheses. In the theorem we assume ¥iafei| = 1. As stated, BrownBoost does not
have any control over the norm of the coefficients. However, a simple trick can be used to
make sure that tHe norm is always bounded by 1. Suppose that the weak learner generates
the hypothesi$;. Instead of finding the coefficient; for h;, we can use the following
altered version ofy;:

i—1

hi (x) = hi (x) — Za,-hj (X).
j=1

Suppose thaE'j;l1 lej| =1, then, as long ag; <1 all of the coefficients remain posi-

tive and their sum remains 1. The case where-1 is degenerate in this case because

it effectively eliminates all of the previous hypotheses from the new combination and

only the new hypothesis remains. In this case we can remove all of the previous hy-

potheses from the combination and starting the algorithm with the combined hypothesis

beingh; (x).

9. Conclusions and future work

We have shown that BrownBoost is a boosting algorithm that possesses some interesting
properties. We are planning to experiment with this algorithm extensively in the near future
to see how it performs in practice.

There are several technical issues that we would like to resolve regarding BrownBoost.
We would like to show that the Newton-Raphson method, or something similar to it, is
guaranteed to converge quickly to the solution of the differential equation. We would like to
know whether there can be more than one local maximuro.fand we would also like to
formalize the noise resistant properties of the algorithm and characterize the types of noise
it can overcome.

It seems that BrownBoost is optimizing a function of the margin that is much more
closely related to the bound proven in Schapire et al. (1998) than AdaBoost. In this regard it
seems like it can be a method for “direct optimization of margins” as suggested by Mason,
Bartlett, and Baxter (1998). Experiments are needed in order to see whether this theoretical
advantage pans out in practice.

The relationship between boosting and Brownian motion has been studied further by
Schapire (1999) and by Freund and Opper (2000).

310 Y. FREUND

Appendix
A. Proof of Lemma 1

Proof: To prove the lemma we use a standard Lipschitz condition on ordinary differential
equations, which we state again here in a slightly simplified form

Theorem 6(Theoren¥.1.1in Stoler and Bulrisch (1992)) Let f be defined and continuous
on the strip S= {(X, y) |a<Xx <b,y € R}, a, b finite. Further let there be a constant L
such that

[f(X, y1) — F(X, Yol <L|y1 — yal

for all x € [a,b] and all w4, y» € R. Then for every x € [a, b] and every y € R there
exists exactly one functiorn() such that

1. y(x) is continuous and continuously differentiable foexa, b]

2. YxX)=f(x,y(x)), forxe]a,b]

3. y(X0) =Yo

As f isinfinitely differentiable it suffices to prove a bound on the partial derivativé of
with respect td. In our casef (o, t) = ~. From Eq. (6) we know that

0 2
5’7 == Cov,[d, u] ©)

So it is sufficient if we prove that within any strip A <a < A the value ofd; andu;
are also uniformly bounded. There is a finite humber of examples thasmax |u;|
andV = max |vi| are finite! It remains to show an upper bound dn=v; + au; — t.
Unfortunatelyt is not bounded on the strip so we need to work a little harder.

To overcome the problem withpotentially being unbounded we fix some real number
B > 0 and defineyg to be a clipped version of the functien

Note the~g is equal toy whenever|t| < A, and is continuous everywhere. The partial
derivatived/dt~g is equal to that that of whent < A, zero whert > A and undefined at

t = A. Whent < A the magnitude of; is bounded bydi| <V + AU + B. Using Eq. (9)
we conclude thatg satisfies the conditions of Theorem 6 for the stéie [— A, A], from
which we conclude that there is one and only one fundtiof) which satisfies both(0) =0
and(dt(a)/da) =~vg(x, t) on that strip. Note however thaf («, t)| <U which implies
that alsojya(e, t)| <U. Thus also the derivativedt(a))/da)| <U and thus within the
rangea € [—A, A] the function is bounded ift(a)| < AU. SettingB > AU we conclude
that the solution of the differential equation definedpyc, t) is the same as the solution
of the differential equation defined by(a, t).

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 311

Finally, a solution exists for any setting 8f> 0 and all of these solutions must conform
to each other. Thus there is one solution of the differential equation for the whole real
line. O

B. Proof of Theorem 3

Proof: The proof consists of two parts, corresponding to the two cases that the algorithm
can follow on each iteration. In each case we show two properties. First, we show that the
difference in the “remaining time§ — s 1 is always at least?/A. Second, we show that

the total decrease in the average potential from tsme c until § =0 is at moste. The
parametec is chosen so that the initial potential is-1l. Combining these claims we get

that the final potential is at least12¢. From this lower bound on the final potential, using

the same argument as in the proof of Theorem 2 we find that the error of the final hypothesis
is at most 2.

Case |: Average weight at leagtthroughout the iteration. The idea of this part of the
proof is the following. The initial boundary of the differential equatiow {®) =y, a =0,

t =0, the final boundary i (t*) = v. We shall give a lower bound denot&don % and
then use the following integral:

*

o dt «
t* = —da = / vy(a) dx
0o da 0

v

/a (v(0) — Ba) dax = ~(0) + v/over2y(0) — v/overB
0

(0% —?
N 2B
We now compute the lower bourigl Using Egs. (6, 7) we get that

(10)

dy@ _ o dtd
da _8a7 daatfy

_o
T aa T

= 2(EuWIE, [du] — E, [0V + 21 (E, [du] - E, [dIE, [u])
= 2@y ldul ~ E,du?] ~+°E,[d)).

To bound this sum we bound the absolute value of each term. By definitioh. All the
other expectations can be bounded using the following lemma.

Lemma?. Leth,..., by, a,...,anberealvalued numbers suchthat| < |b;|. If there
existsO <0 <2/e(e=2.71...) such that

312 Y. FREUND
then
YA e

Zimzle—b.2 = 2\/@‘

The proof of the lemma is given later.

We continue with the proof of case |. By assumption, in this ¢agm) » ; e~9°/¢ > ¢ for
allo<t <t* Settingy, = d;//C, & = u;d;/+/C, notingthatu; | < 1 we canapply Lemma7
and find that E,,[du]| < 2\/cIn(2/6). Similarly, by settingg; = d;//C or & = u?d; /,/C
we findthat E,,[d]| < 2\/cIn(2/0) and|E, [du?]| < 2,/cIn(2/6). Combining these bounds
we get that

d 16 2
Combining Egs. (10) and (11) we find that, on iterations where the total weight remains
aboved, s41—§ > (32 — v?)/2B = (2 —v?)/A.

As for conservation of the average potential, we already know, from the proof of
Theorem 2, that on iterations where we use the exact solution of the differential equa-
tion the total potential does not change. This completes the proof for case I.

Case II: Average weight smaller th@at some point within the iteration. In this case the
claim thats — 1 > 32/ A follows directly from the construction of the algorithm. What
remains to be shown in this case is that the decrease in the average potential is sufficiently
small. To do this we show that the speed of the decrease in the potential as a function of
time is smaller tham /c, as the total time is this gives that the maximal total decrease in
the potential is-.

The derivative of the average potential wi.is the average weight because:

d
GAL @ =-W(t). (12)

It remains to be shown that if the average weight at some point is smallepthzat it
will remain smaller thar /c for whena is kept unchanged ands increased by a quantity
smaller or equal to AA (recall thaty? < 1). To this end we use the following lemma.

Lemmas8. Ifay,...,anandd > 0are real numbers such that
e <o (13)
then forall x> 0

m
Z ef(aj 7x)2 S ef(\/ |n(1/0)7)()2 (14)
=

1
m

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 313

Recall the definitions of anda’ in figure 3. We set = (¢/c)? anda; = (vj + a'Uj —
t)/4/candx =t/,/cin Lemma 8 and get that for any<0t <1/A

1 ’ ’ 1 —(aj—t)2/c
EZW,-(t—H,a):EZe i
i=1 j=1

ol ot -31)

IA

\/T 1/, 1\
| Jin===(In=
=& ["% 32(”9) }
<Vo=12
c
where the last inequality follows from the constraint 1/10 which implies tha# <1/10.
This completes the proof of case II. O

Proof of Lemma 7: It is easy to see that to prove the lemma it is sufficient to show for
the casey, =b; > 0 that

m) 2 m)
o D; —_ —b
iE:l bie™ <2 /In (9) ;:1 e (15)

We separate the sum in the LHS of Eq. (15) into three parts:

Xm: b; e = Z b e + Z b; et + Z by S (16)
i=1

b <A A<b; <2A 2A<b;

whereA=./In(2/0). Note that a® <2/e, A>1.

First, we show that, under the assumption of the lemma, the number of terms for which
by < Ais large. Denote the number of such termsuny, then the assumption of the lemma
implies that

om < Z P Z e <am+ (1 - a)yme”
b <A b >A
— am+ (1 —)M(B/2) = M©B/2 + a(l - 6/2))

which implies thatr > 6/2.

Next we show that the third sum in Eq. (16) is small relative to an expression related to
the first sum. Observe that far> 1/+/2 the functionxe™" is monotonically decreasing.
Thus, as 2> 2 > 1/+/2 we have that:

4
Z bie ™ < m2Ae*” < 2m\/ln(2/9)(%)

2A<b;

314 Y. FREUND

0\2 0
< m<§) =m§e’A

< ame® < > et (7)
b <A
Combining Egs. (16) and (17) we get

m

X:bie‘b'2 < Zbie‘b‘er Z bie ™ + Z be b

i=1 bi<A A<b; <2A 2A<b;
< AZe*'2+2A Z e*'2+22e*bi2
b <A A<b; <2A b <A
m
<2AY e <2AY e
b <2A i=1
which proves Eq. (15) and completes the proof of the lemma. O

Proof of Lemma 8: We fix x > 0 and maximize the LHS of Eq. (14) under the constraint
defined by Eq. (13).

Note first that if for some i <m, a <0, then replacingy with —a; does not change
the constrained equation, and increases the LHS of Eq. (14). We can thus assume w.l.0.g.
thatVi, a > 0. Furthermore, ik > & > 0 then settingy = X reduces the sum in Eq. (13)
and increases the sum in Eq. (14). We can thus assume w.l.o0.§i that- x.

Using the Lagrange method for constrained maximization we find that, forjeach

0 m m
8_a]' < Z e_(ai —x)? + A Z e_ai2> — 2(X _ aj')e_(al_x)z n zkaj eiajz _0
i=1 i1

Which implies that for allj

A= 8- X Xe"(z""i"‘).
a;
As we assume tha > x > 0 the last expression is positive and monotonically increasing
in . Thus the only extremum, which is the maximum, occurs when alathare equal

and thus all equal t¢/In(1/6). Plugging this value into all of thas in Eq. (14) completes
the proof. O

C. Proof of Theorem 5

Proof: The proof follows the same line as the proof of Theorem 2. The difference here is
that rather than showing that the average potential stays completely constant, we show that
its decrease on any iteration is small.

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 315

In what follows we fix the boosting iteratian We denote the potential of an example
(X, y) on iterationi by

B (x.y) = erf<a (X, y) + 2(X, y))

Cc

wherea(x, y) =ri(X, y) + s is viewed as the constant part ang, y) = ah; (X)y — tis
the variable part.

We start by focusing on the change in the potential of a single exaxpig and a single
iterationi . Later, we will bound the change in the average potential over all examples in a
specific iteration. Finally, we will sum the change over all iterations. For this first part we
fix and drop the indicesand(x, y). We concentrate on the changefias a function of.

As B(2) has an infinite number of derivatives with respectztae can use the Taylor
expansion of third order to estimate it:

d z 92 3 53
ﬂ(Z):ﬁ(0)+zE =0ﬁ(z)+EE T

B2 + B2
0 0

Z Z= Z=i

wheref is some number in the rang@, z). Computing the derivatives we get:

2 a? a,
B(2) — BO) = T exp<—€> |:Z— oZ :|

a+ 0)2>23.

(@+6)*-c/2) exp(— S

4
MENCE

By considering the variability of the last term withwe get the following bound:

2 2 2
B(2) — B(0) > \/ﬁ exp(—%) |:Z — %ZZ] — _3ﬁc3/2 2 (18)

From our choice ofy; andt; we get the following bound ote(x, y)| for all examples
X, y):

|12(x, Y)| = i i ()Y — & | = i h ()] + [ti] < v/2]a | (19)

In order to get an upper bound on the decrease in the average potential on ifevation
sum Inequality (18) over the examples in the training set. We estimate the sum for each
power ofz in (18) separately.

To bound the sum of the first term in (18) we use the definitiop; aind the fact that
o =Y.

2 a (X, y)?
(Xzy:)z(x,y)\/—n_cexp<— c >

316 Y. FREUND

2 a (X, y)z)
= ihi Xy — tj) — exp| —
(X,Xy:)(a Xy — 1) N p(s
_ 2 a5,
= 7= ((Xzy:) exp(s)) [aivi —of /3]
2 ax. YA\ 2 ,
> —— (O(Xy:) exp(— .)) 3% (20)

To upper bound the sum of the second term in (18) we use the boufagry)|. We
separate the sum into two parts according to the valag®f y). Fora (X, y) < ¢/3we have

2 axy [aXxy)? 2
= (XXy:) . eXp< c)(Z(x,y))

g (x,y)<c/3

2 (2(x, y))? ai(x, y)?
5m<z 3 ex‘“(‘f))

x.y)

< J% (Z exp<_a*(+’y)z)) gas. (21)

x.y)

For the casa(x, y) > ¢/3 we use the following technical lemma whose proofis given later.

Lemma9. Ifa,c, € are non-negative real numbers such that enin(1, 18In(c/¢)) and
a > c¢/3then

Combining Lemma 9 with the condition arand the setting of given in the statement of
the theorem we get

2 a (X, y) a (x, y)? 2
= (ij) . exp(— .)(z(x,y»

a(x,y)>c/3
€., 12m

2
<—m-20° < —e—
= Jmc ¢ = Jrctc
where the first inequality follows from the fact that are at magerms in the sum.
Finally, we bound the last term in (18) by using the assumptiorthate and the bound
onzgivenin Eq. (19)

(22)

m2¥2e3 < om b (23)

2 2
< -
Z 3J/mcd2" ~ 3, /mc3/? '—/mc ¢

x.y)

AN ADAPTIVE VERSION OF THE BOOST BY MAJORITY ALGORITHM 317

Combining the bounds given in Egs. (20)—(23) we get the following bound on the decrease
in the average potential on iteration

1
=D (B, ¥) = fo(X,)

xy)

2 a (X, y)? 2, 2, 20
> e _ —of — -)| — ——e—
~ my/nc <(X2y:) xp< c 3% T3 Jac ¢

20
> — €—

JTe ¢

Summing this bound over all iterationsand using the assumption that, ti = c we get
that the total decrease from the initial potential to the final potential is

20 20
L 20
— Jmc ¢~ /mc

Using the same argument as in the proof of Theorem 2 we get the statement of this
theorem. 0

Proof of Lemma 9: We consider two possible ranges for
If c/3<a=<c/ethen

aex i <1ex lc<
c P c/ € P 9/ "¢

because > 18In¢ andc > 1.
If a > c/e then

m

becausxe™ < 1/efor all x. O

Acknowledgments

Special thanks to Eli Shamir for pointing out to me the similarities between the boost-by-
majority and Brownian motion with drift. Thanks to Roland Freund for help with some
problems in numerical analysis. Thanks to Rob Schapire for several helpful discussions and
insights.

Notes

1. As BBM generates majority rules in which all of the hypotheses have the same weight, the margin is a linear
combination of theaumberof weak hypotheses that are correct and the number of iterations so far.

318 Y. FREUND

2. Ifthe error ofh is larger than 12 + § then the error of-h(x) is smaller than 12 — 5.

3. For an excellent introduction to Brownian motion see Breiman (1992); especially relevant is Section 12.2,
which describes the limit used here.

4. Note that the sum contaili¥(5~2) terms of constant average magnitude and is multiplied tather thars?,
thus the maximal value of the sum divergestico asé — 0; however, thevarianceof rs(t) converges to a
limit.

5. These clean expressions for the derivativeg @fre reminiscent of derivatives of the partition function that
are often used in Statistical Mechanics. However, we don't at this point have a clear physical interpretation of
these quantities.

6. This proof, in fact, follows a similar route to the proof of Theorem 2, but in this case the potential function and
the weight function are essentially the same becdiese* dx = —e™, while in our case/ e = erf(x).

7. Infact, we assume in the algorithm that= 1. However, we use this more general proof in order to note that
the bounded range assumption is not a requirement for the existance of a solution to the differential equation.

References

Breiman, L. (1992)Probability. SIAM, classics edition. Original edition first published in 1968.

Breiman, L. (1996). Bagging predictofglachine Learning, 24:2123-140.

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomizatiglachine Learning, 40:2139-158.

Freund, Y. (1995). Boosting a weak learning algorithm by majdrifgermation and Computation, 121:256-285.

Freund, Y., & Opper, M. (2000). Continuous drifting gamesPmceedings of the Thirteenth Annual Conference
on Computational Learning Theo(pp. 126—132). Morgan Kaufman.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application
to boostingJournal of Computer and System Sciences, 5619-139.

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting.
Technical Report.

Mason, L., Bartlett, P., & Baxter, J. (1998). Direct optimization of margins improves generalization in combined
classifiers. Technical report, Deparment of Systems Engineering, Australian National University.

Schapire, R. E. (1990). The strength of weak learnabNgchine Learning, 5:2197-227.

Schapire, R. E. (2001). Drifting gamédachine Learning, 43:3265-291.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the
effectiveness of voting methodEhe Annals of Statistics, 26:5651-1686.

Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated preditichsie
Learning, 37:3297-336.

Stoler, J., & Bulrisch, R. (1992)ntroduction to Numerical AnalysiSpringer-Verlag.

Received October 25, 1999
Revised October 25, 1999
Accepted March 3, 2000

Final manuscript October 3, 2000

