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Abstract. To achieve a constant overflow probability, the two queueing resources, viz. buffer and band-
width, can be traded off. In this paper we prove that, under general circumstances, the corresponding trade-
off curve is convex in the ‘many-sources scaling’. This convexity enables optimal resource partitioning in a
queueing system supporting heterogeneous traffic, with heterogeneous quality-of-service requirements.
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1. Introduction

A generic model of a queue in the following consists of i.i.d. sources (say n) that feed
into a buffer, which is emptied at a constant rate C (i.e., the link capacity, or bandwidth).
A major performance measure is the probability that the buffer level is above some
level B, commonly called the overflow probability. To achieve a fixed overflow prob-
ability the queueing resources, viz. buffer and link rate, can be traded off against each
other. In this paper we study this trade-off in the so-called ‘many sources regime’ [9].
In this regime buffer and bandwidth are scaled by the number of sources: B ≡ nb and
C ≡ nc, where n is typically large.

Large deviations techniques can be used to show that, under general conditions,
the overflow probability decays exponentially in n [1,2]. The exponential decay rate can
be expressed explicitly in terms of b, c, and the stochastic characteristics of the sources.
Our objective is to characterize the way b and c trade off, with the decay rate held fixed.

Our main result is that the corresponding trade-off curve is convex. This convex-
ity has important consequences for differential Quality-of-Service (QoS), i.e., multiple
classes with class-specific overflow probabilities. It enables the computation of a re-
source partitioning that optimizes the number of admissible sources. A common tech-
nique to implement differential QoS is generalized processor sharing (GPS). We relate
the partitioning to the design of weights for GPS.

This note is structured as follows. Section 2 describes our main result: the trade-off
curve between buffer and bandwidth is convex, under the many-sources scaling. Sec-
tion 3 considers partitioning procedures for heterogeneous QoS, and shows that straight-
forward algorithms directly follow from the convexity. Section 4 briefly discusses our
results and some directions for future research.
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2. Convexity of tradeoff curve under many-sources scaling

2.1. Model and preliminaries

We consider traffic from n independent, statistically identical, stationary sources feeding
into a buffered resource. This resource is modeled as a queue with constant depletion
rate C. Define

A(t) : = {Traffic generated by a single source, in steady state,

in a time interval of length t}.
Let Ai(t) be defined analogously, but now specifically for the ith source. We are inter-
ested in the steady-state probability of the buffer content exceeding level B, denoted by
p(B,C). As known, it holds that (under the usual stationarity conditions)

p(B,C) = P

(
∃t ∈ T :

n∑
i=1

Ai(t) − Ct > B

)
.

The queue can be defined in discrete time (T = N) and continuous time (T = R+).

Many-sources scaling. We rescale the resources by the number of sources: C ≡ nc

and B ≡ nb, where n is typically large. This scaling, introduced by Weiss [9], is natural
since queues in real networks tend to multiplex large numbers of sources. We assume
that the system is stable and nontrivial:

EA(t) < ct.

In the scaled model we define

pn(b, c) := steady-state probability that the buffer content exceeds level nb.

Exponential decay. Under non-restrictive conditions, the overflow probability pn(b, c)

decays exponentially in the scaling parameter n. We define the corresponding exponen-
tial decay rate:

I (b, c) := − lim
n→∞

1

n
logpn(b, c).

The key result on I (b, c), based on large deviations arguments, is given below in theo-
rems 2.2 and 2.4. A major contribution to the development of these results was given
by Botvich and Duffield [1], whereas related results were derived in [2,8]. Recently, a
significant improvement was made by Likhanov and Mazumdar [6]. We will distinguish
between discrete and continuous time.

Discrete time. In discrete time, we will rely on the results by Likhanov and Mazumdar
[6]. They impose the following assumption on the input traffic.
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Assumption 2.1 (See [6]). Assume It (b, c) is larger than α log t , for t large enough,
and a positive α, where

It (b, c) := sup
θ>0

(
θ(b + ct) − log E eθA(t)

)
.

Theorem 2.2 (Decay rate in discrete time). Under assumption 2.1,

I (b, c) = inf
t∈N

It (b, c) = inf
t∈N

sup
θ>0

(
θ(b + ct) − log E eθA(t)

)
. (1)

In fact, [6] proves a stronger result: a subexponential function f (·) (i.e., log f (n) =
o(n)) is found such that pn(b, c) exp(nI (b, c))f (n) → 1 as n → ∞. To do so, it is
assumed that the infimum over t ∈ N is attained at a unique t�; we do not need that
assumption here.

Continuous time. In continuous-time, an additional assumption has to be made on the
regularity of the traffic. For this purpose we here use [1, hypothesis 1(iv)], which essen-
tially implies that the decay rate for discrete time (T = N) carries over to continuous
time (T = R+). This is proven analogously to the proof of [1, theorem 1, p. 302].

Hypothesis 1(iv) is stated as follows. Define

An
t,r := sup

0<r ′<r

n∑
i=1

Ai(t) − Ai

(
t − r ′).

Then it is required that

lim sup
r↓0

lim sup
n→∞

1

n
sup
t�0

log E exp
(
θAn

t,r

)
� 0.

It is easily verified that, due to the stationarity and i.i.d. assumptions, this requirement
reduces to the following.

Assumption 2.3 (See [1]). Assume that for all θ ∈ R,

lim sup
r↓0

log E exp
(
θ sup

0<r ′<r
A(r ′)

)
� 0.

Theorem 2.4 (Decay rate in continuous time). Under assumptions 2.1 and 2.3,

I (b, c) = inf
t>0

sup
θ>0

(
θ(b + ct) − log E eθA(t)

)
. (2)

Applicability. The striking feature of the above theorems is that they are applicable for
almost all types of traffic sources of practical interest. Short-range dependent sources
satisfy the conditions (Markov fluid sources, Markov-modulated Poisson processes, on–
off sources with light-tailed on-times), see [1], but also long-range dependent processes
(fractional Brownian motion, on–off sources with heavy tailed on-times), see [3,6,7].
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2.2. Results

Using the above large deviations results, we are in a position to show that buffer and
bandwidth trade off in a convex manner, for fixed decay rate δ. To that end, first introduce
some notation. Let t� ∈ T and θ� be the parameter values that optimize (1), respectively
(2), for given (b, c). Define

f (θ, t) := log EeθA(t) and fθ(θ, t) := ∂

∂θ
log EeθA(t).

For given I (b, c) = δ, we necessarily have

θ�
(
b + ct�

)− f
(
θ�, t�

) = δ, (3)

b + ct� = fθ
(
θ�, t�

)
. (4)

Equality (3) is by definition of t� and θ�. Clearly, (4) is a first order condition necessary
for optimality (obtained by differentiating the objective function to θ). The following
lemma gives an explicit relation between b and c, for fixed δ.

Lemma 2.5. For fixed decay rate δ, resources b and c are related through

b = sup
t∈T

fθ
(
θδ(t), t

) − ct, (5)

where θδ(t) is uniquely determined by

θδ(t)fθ
(
θδ(t), t

) − f
(
θδ(t), t

) = δ. (6)

Proof. Because the decay rate is δ, we have that for all t ∈ T

sup
θ>0

θ(b + ct) − f (θ, t) � δ,

with equality at t�. It is not hard to see that this is equivalent to saying that for all t ∈ T

inf
θ>0

(
δ + f (θ, t)

θ

)
− ct � b, (7)

with equality at t�, or in other words,

b = sup
t∈T

(
inf
θ>0

(
δ + f (θ, t)

θ

)
− ct

)
.

For given t , the optimum over θ > 0 (say, θδ(t)) in (7) satisfies relation (6), as follows
immediately from differentiation to θ . The convexity of f in θ immediately implies that
θfθ(θ, t)−f (θ, t) increases in θ. In addition, the function vanishes at the origin. Hence,
the value of θδ(t) is uniquely determined for any δ > 0.

Now it is easily seen that, due to (6),

b = sup
t∈T

δ + f (θδ(t), t)

θδ(t)
− ct = sup

t∈T
fθ(θδ(t), t) − ct. �
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The above lemma immediately implies the convexity of the b–c trade-off curve.
Note the striking form of equation (5) which is identical to the maximum buffer content
computation for a deterministic arrival process specified by φδ(t) := fθ(θδ(t), t). Thus,
φδ(t) can be interpreted as an ‘effective arrival process’ for the given traffic and loss
exponent δ. We later enumerate some interesting properties of φδ(t).

Lemma 2.6. For given δ, it holds that

db

dc
= −t� (8)

is increasing in c. Hence, the trade-off curve is convex.

Proof. The stated convexity and relation (2.6) immediately follow by observing that b
is a Legendre transform supt fθ (θδ(t), t) − ct , see (5). Due to the optimality of t�,

d

dt
fθ (θδ(t), t)

∣∣
t �

= c,

while the product rule of differentiation yields

db

dc
=
(

dfθ(θδ(t), t)

dt

∣∣∣∣
t �

− c

)
dt�

dc
− t� ≡ −t�

as claimed in lemma 2.6. �

The convexity proof has the simple pictorial interpretation shown in figure 1. As c
increases, figure 1(i) depicts the property that the function φδ(t)−ct has the property that
its local maxima shift towards smaller t , and the further local maxima fall by a greater
amount. Thus, the global maximum can only shift leftward – either by the left-shift of
a specific local maximum, or by a different local maximum to the left of the original
becoming globally larger. During this process of increasing c, note that the height of
the global optimum itself varies continuously, and each ‘jump’ in the global optimum
(by a left shift to a different local maximum) represents a nondifferentiable point on the
b–c trade-off curve. A similar explanation can be given for figure 1(ii), which depicts

Figure 1. Pictorial proof of lemma 2.6. All local maxima (minima) move leftward (rightward) as C in-
creases, and local maxima/minima further away from the origin diminish more than nearby ones. (iii) de-

picts the resulting piecewise smooth b–c trade-off curve.
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the left-shift of points of slope c on the φδ(t) curve with increasing c. The b–c trade-
off curve itself is thus continuous and piece-wise differentiable, as shown in figure 1(iii).
Note that the proof does not require continuity of φδ(t), thus also applying to the discrete
time case.

Notice that the above observations are just pictorial explanantions of the well-
known convexity of Legendre transforms, included here to add intuition.

3. Explicit calculations for continuous time

For continuous t (T = R+) all calculations can be done explicitly. Assume differentia-
bility of f (θ, t) with respect to t .

3.1. Properties of the effective arrival process φδ(t)

The next lemma shows that the φδ(t) function corresponds to a proper arrival process, in
that it is a semi-monotonically increasing function of t . Hence φδ(t) can be interpreted
as a true ‘effective arrival process’, which, if known, can be directly used for traffic
management purposes (admission control, resource allocation). If not known explicitly,
it can potentially be estimated through measurements.

Lemma 3.1. The following are direct consequences of equations (5) and (6):

dφδ(t)

dt
= ft(θδ(t), t)

θδ(t)
(9)

for fixed δ,

∂φδ(t)

∂δ
= 1

θδ(t)
(10)

for fixed t . (9) implies semi-monotonic increase of φδ(t) with respect to t for given δ,
which is required of a causally valid arrival process. (10) implies semi-monotonicity
and concavity of φδ(t) with respect to δ for fixed t , which is also to be expected for
reasonable arrival processes.

Proof. Directly differentiating (6) with respect to t for fixed δ, we get

dφδ(t)

dt
≡ dfθ(θδ(t), t)

dt
= d((δ + f (θδ(t), t))/θδ(t))

dt

= ft(θδ(t), t)

θδ(t)
+ 1

θδ(t)

dθδ(t)

dt

(
fθ
(
θδ(t), t

) − δ + f (θδ(t), t)

θδ(t)

)
≡ ft(θδ(t), t)

θδ(t)
,

where the last equality follows from (6) itself. Due to the non-negativity of f (θ, t) for
non-negative θ, t , it follows that φδ(t) has a non-negative derivative with respect to time
for fixed δ, and is hence non-decreasing as claimed. Note that the derivative has the
natural interpretation of the ‘effective arrival rate’, and is obtainable as the expectation
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value of the original arrival rate with respect to a twisted distribution, where θδ(t) denotes
the loss-dependent twist parameter.

Similarly differentiating (6) with respect to δ for fixed t , we get

∂φδ(t)

∂δ
≡ ∂fθ(θδ(t), t)

∂δ
= ∂((δ + f (θδ(t), t))/θδ(t))

∂δ

= 1

θδ(t)
+ 1

θδ(t)

∂θδ(t)

∂δ

(
fθ
(
θδ(t), t

) − δ + f (θδ(t), t)

θδ(t)

)
≡ 1

θδ(t)

as claimed. Note that (6) directly implies that θδ(t) is an increasing function of δ for
fixed t due to the monotonicity of the LHS. In fact it is possible to show by direct
differentiation that

∂θδ(t)

∂δ
= 1

fθθ (θδ(t), t)

with the RHS clearly non-negative due to the convexity of f (θ, t) with respect to θ .
Thus, we see that

∂φδ(t)

∂δ

has a non-negative, but decreasing, value as δ increases, hence proving its semi-
monotonicity and concavity, respectively. �

3.2. The second derivative of the trade-off curve

We now compute the second derivative of the b–c trade-off curve, and explicitly show
that this is positive. Note that (3), (4) and

cθ� = ft(θ
�, t�), with ft (θ, t) := ∂

∂t
log E eθA(t) (11)

provide three equations in the four unknowns b, c, θ�, and t�. Hence b, θ�, and t� can
be considered as functions of c. Thus these equations hold in a functional sense, i.e., for
all c, and therefore we may differentiate them to compute various derivatives. Our aim
here is to prove that

d2b

dc2
≡ −dt�

dc

is non-negative, to prove convexity of the buffer-bandwidth trade-off curve.
This may be accomplished by combining (3) and (4) to δ + f (θ�, t�) = θ�fθ , as

before, followed by differentiation of the above and (11) as

ft
dt�

dc
= θ�

(
fθθ

dθ�

dc
+ fθt

dt�

dc

)
,

θ� + c
dθ�

dc
= fθt

dθ�

dc
+ ftt

dt�

dc
,
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defining

fθθ := ∂2

∂θ2
f
(
θ�, t�

)
, fθt := ∂2

∂θ∂t
f
(
θ�, t�

)
, ftt := ∂2

∂t2
f
(
θ�, t�

)
,

assuming the existence of all derivatives mentioned above. Solving for dt�/dC in the
above directly leads to the relation

d2b

dc2
= −dt�

dc
= − θ�fθθ

fθθftt − (c − fθt )2
. (12)

Now note that ftt is positive at t∗, where the mimimum over t is attained. On the other
hand, fθθ is negative, because there the maximum over θ is attained. This establishes
that the right-hand side of (12) is non-negative, thus proving that the b–c trade-off curve
is convex.

4. Optimal partitioning of queueing resources

We now consider the case of multiple heterogeneous classes of sources sharing com-
mon resources B and C. The sources are homogeneous within each class, but there is
heterogeneity across classes. We consider the problem of optimally partitioning (B,C)

into (Bi, Ci) among the classes. ‘Optimal’ here refers to maximizing the size of the
admissible region by maximizing n for a given connection mix vector

η = {η1, . . . , ηK} :=
{
n1

n
, . . . ,

nK

n

}
, where n :=

K∑
i=1

ni.

Clearly, partitioning of resources can support diverse QoS requirements by protecting
individual classes. In general, it loses the multiplexing advantage obtained by sharing
across classes. Thus for homogeneous QoS requirements, we get a conservative solution
to the FIFO system.

We begin this section by characterizing (and interpreting) the solution to the opti-
mal partitioning problem. Then we indicate how to use this solution when QoS differ-
entiation is offered through generalized processor sharing (GPS).

4.1. Solution to the partitioning problem

In this section we assume that the ‘large deviations approximation’ is accurate. In other
words: in a system with n homogeneous inputs, and resources B and C,

p(B,C) ≈ exp
(
− inf

t∈T sup
θ

(
θ(B + Ct) − n log E exp

(
θA(t)

)))
. (13)

Notice that we neglect a prefactor that is of the order n−3/2, see [6], which is obviously
less significant than the exponential term. As concluded in the previous section, for a
fixed value of p(B,C), and n large (but constant), B and C trade off in a convex way.
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Now consider the system with K traffic classes with heterogeneous QoS require-
ments specified by Li , the maximum admissible loss ratio for a class i source. Let
�i := − logLi . Suppose that there are ni sources of type i, and they are assigned
resources (Bi, Ci). Then, based on approximation (13), there is a function Ri , such
that

Ri(Ci, Bi, ni) � �i (14)

indicates that the ni sources get the required QoS; obviously Ri is (minus) the log of the
overflow probability when resources (Bi, Ci) are available to ni sources.

Formulation as convex programming problem. To optimize the admissible region (for
a fixed connection mix η) we seek to solve

Maximize n

subject to Ri(Ci, Bi, nηi) � �i ∀ i, (15)∑
i

Ci � C,
∑
i

Bi � B.

We first observe that, at optimum, all the loss constraints in (15) would hold with equal-
ity, as otherwise we may reduce Bi and/or Ci for the corresponding class and admit
more connections.1 We hence suppose that, for fixed n (in particular the optimal value),
we may invert (14) to obtain the buffer as a function of the other parameters, i.e.,
Bi = Bi(Ci, nηi,�i). As derived in the previous section, this function is convex in Ci

under very mild conditions.
Now consider the intermediate problem:

Minimize
∑
i

Bi(Ci, nηi,�i)

(16)
subject to

∑
i

Ci � C.

Obviously, we have to find the largest n such that the mathematical program (16) has a
solution that does not exceed B. Due to the convexity of (Bi, Ci) curves, (16) can be
recognized as a standard convex minimization to which the Strong Lagrangian Princi-
ples can be applied, see, for example, [10]. It yields the following Kuhn–Tucker condi-
tions:

−dBi

dCi

= ∂Ri/∂Ci

∂Ri/∂Bi

= λ

for some global (class-independent) non-negative Lagrange multiplier λ.

1 We ignore the fact that n needs to be integral, but this is of minor consequence when n � 1.
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Figure 2. Illustration of optimal partitioning solution.

It, hence, follows that the maximum value of n retains feasibility of the following
conditions for some λ:

Ri(Ci, Bi, nηi) = �i,

−dBi

dCi

= ∂Ri/∂Ci

∂Ri/∂Bi

= λ, (17)∑
i

Ci � C,
∑
i

Bi � B.

Note that λ represents the slope of each of the bandwidth-buffer trade-off curves at the
optimal operating point. This is pictorially illustrated in figure 2(a).

Interpretation. Interestingly, the optimal λ equals t�, cf. equation (8). As shown by
Wischik [11], t� can be interpreted as the most likely time to overflow (i.e., the duration
of a typical busy period of the queue, leading to overflow). In other words: the system
capacity is maximized, if all the t�’s of the subsystems match. This seems reasonable,
since if one subsystem has overflow while other subsystems are still not completely
utilized, the chosen partitioning of the Bi and Ci seems suboptimal.

Clearly Ci should always be chosen such that the corresponding system is stable,
i.e., it should be larger than the mean input rate. The smallest possible Ci could also be
constrained by other considerations, such as a limit on the maximum delay, Di . In this
case, it is simple to add the requirement Bi/Ci � Di , yielding Bmax

i , Cmin
i as the inter-

section of the line Bi = DiCi with the loss trade-off curve Ri(Bi, Ci, ni) = �i . Also, in
many practical situations traffic streams are restricted to a peak rate, i.e., a maximum on
the traffic rate generated by a single source. These bounds on Ci imply that the λ con-
dition in (17) may not be satisfiable for all classes, see figure 2(b). Then the algorithm
has to be adapted such that λ is replaced by the closest achieved value for class i, and
choose the corresponding operating point (Bi, Ci) on the trade-off curve. These modifi-
cations are justified by standard results from theory of convex programming, and other
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convex constraints can be imposed on the operating region without altering our methods
significantly provided the constraints do not destroy the convex program structure. The
resulting operating point is hence uniquely specified for given λ. In conclusion, the op-
timal solution satisfies the following property: There exists non-negative λ such that the
choice

dBi

dCi

=


λ ∀ i: λmin

i � λ � λmax
i ,

λmin
i ∀ i: λ < λmin

i ,
λmax
i ∀ i: λ > λmax

i ,
(18)

is the optimal solution to (15). λmin (λmax
i ) is the minimum (maximum) absolute slopes

realized within the operating region of the class i trade-off curves.

Example. We now give an illustration of the optimal partitioning solution (18). First
consider nη fractional Brownian motion sources (without drift), with Hurst parameter H ,
using a queue with resources (B,C). Using log E exp(θA(t)) = 1

2θ
2σ 2t2H , it easily

follows from (13) that the buffer-bandwidth trade-off curve is given by

B1−HCH =
√

2�nησ 2HH(1 − H)1−H , (19)

when the QoS requirement � is imposed. Notice that the buffer-bandwidth trade-off is
indeed convex, and is described through a so-called Cobb–Douglas substitution function.

Now consider the setting of section 3.1. Let type i be fractional Brownian motion
with parameter Hi . With evident notation, for any i, it follows from (19) that there exist
Ki = Ki(n) such that

Bi = Ki(n)C
−γi
i , where γi := Hi

1 − Hi

, and Ki(n) = Min
1/(2(1−Hi)),

for some Mi (independent of n). From equations (17), there is a class-independent num-
ber λ such that

λ = −dBi

dCi

= Ki(n)γiC
−γi−1
i ,

or

Ci(n, λ) =
(
Ki(n)γi

λ

)1/(γi+1)

=
(
Miγi

λ

)1−Hi√
n

and

Bi(n, λ) =
(
Ki(n)λ

γi

γ
γi
i

)1/(γi+1)

=
(
Miλ

γi

γ
γi
i

)1−Hi√
n.

From the buffer and bandwidth constraints B = ∑K
i=1 Bi and C = ∑K

i=1 Ci we obtain

C

K∑
i=1

(
Miλ

γi

γ
γi
i

)1−Hi

= B

K∑
i=1

(
Miγi

λ

)1−Hi

.
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From the fact that the left-hand side is increasing in λ, whereas the right-hand side is
decreasing in λ, it immediately follows that there is a unique solution.

4.2. Relation to GPS and buffer management

The above partitioning model can be used to offer differentiated QoS. An alternative
mechanism to do so is Generalized Processor Sharing (GPS). In GPS, each class has
its own buffer and bandwidth, but the bandwidth left unused by one class can be used
by another class; for a more detailed explanation see, e.g., [4]. Hence, the partitioned
system discussed in section 3.1 is a ‘conservative description’ of the corresponding GPS
system. Therefore the (Bi, Ci) values of the partioned system can be used to determine
the weights and buffer sizes in the corresponding GPS system.

Given the optimal (Bi, Ci) split of the partitioned system, the GPS weight φi for
each class i connection can obviously be set conservatively as φi = Ci/(niC). This
holds when the GPS is implemented such that there is per-connection queueing; if on the
contrary the queueing is per-class, the weights would be &i = Ci/C. The corresponding
buffer space must be guaranteed as well. This can be accomplished using the technique
of virtual partitioning as described in [5]. The per-connection (respectively per-class)
allocations described therein are easily recognized to be bi = Bi/ni (respectively Bi)
from the optimal partition.

5. Conclusions and remarks

We have proved that the buffer-bandwidth trade-off curve is convex in the asymptotic
regime of many sources. One wonders whether this convexity holds under more general
conditions. This question remains open.

The partitioned system is more conservative than the corresponding GPS system,
since in the latter there is a higher degree of sharing of the link capacity across classes.
The capacity of the partitioned system is determined in section 3, but the capacity of the
corresponding GPS system (under the many-sources scaling) is, to our best knowledge,
not known yet.
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