
Machine Learning, 45, 123–145, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Learning with Maximum-Entropy Distributions∗
YISHAY MANSOUR mansour@math.tau.ac.il
MARIANO SCHAIN mariano@math.tau.ac.il
Computer Science Department, Tel-Aviv University, Tel-Aviv, Israel

Editor: Lisa Hellerstein

Abstract. We are interested in distributions which are derived as a maximum entropy distribution from a given
set of constraints. More specifically, we are interested in the case where the constraints are the expectation of
individual and pairs of attributes. For such a given maximum entropy distribution (with some technical restrictions)
we develop an efficient learning algorithm for read-once DNF. We extend our results to monotone read-k DNF
following the techniques of (Hancock & Mansour, 1991).

Keywords: PAC-learning, maximum entropy, learning algorithms

1. Introduction

The PAC learning model (Valiant, 1984) is a basic model in computational learning theory.
Its introduction brought forth a simple set of assumptions and raised many challenging prob-
lems. Initially, the main goal was a computational one, to develop new algorithms within
this framework and show the learnability of different concept classes. The PAC model has
been very successful in the study of the tradeoff between sample size versus accuracy and
confidence, but less successful in the algorithmic study. Only a few algorithmic techniques
were developed, and many simple concept classes have proven to be computationally in-
tractable. We recall two intractability results in the PAC model, namely, efficient learning
3-term DNF (Pitt & Valiant, 1988) (for learning using a hypothesis which is a 3-term DNF)
and efficient learning polynomial size formula (Kearns & Valiant, 1989) (for learning using
any hypothesis).

In addition, since the distribution may be arbitrary, it is rather simple to show equivalence
in difficulty of related concept classes, such as general DNF and monotone read-once DNF
(Haussler et al., 1991). A much more complicated and non-intuitive result is showing that if
DNF is learnable with membership queries in the PAC model, then DNF can also be learned
without membership queries (Angluin & Kharitonov, 1991).

Researchers were aware that the need to learn a concept class with respect to an arbitrary
distribution is one of the main sources of intractability in the PAC model. Research was done
on learnability with respect to a fixed distribution, and a model, similar to the PAC model,
was suggested, where the learning algorithm may depend on the underlying distribution

∗This research was supported in part by a grant from the Israel Science Foundation. A preliminary version of this
paper appeared in the 10th Annual Conference on Computational Learning Theory.

124 Y. MANSOUR AND M. SCHAIN

(Benedek & Itai, 1991; Natarajan, 1987). They also gave examples where such models
allowed the learning of classes, not learnable before.

When looking for learning with respect to a fixed distribution rather than an arbitrary
one, it is most important to choose “natural” distributions. The most common distributions
are the uniform and product distributions. For example, with respect to such distributions
one can learn read-once DNF (Kearns, Li, & Valiant, 1994), although with respect to an
arbitrary distribution it is equivalent to learning general DNF, which is a major open problem
in computational learning theory.

This was the starting point of our research; we were interested in expanding the set
of “natural” distributions that are considered. One huge difference between an arbitrary
distribution and a uniform/product distribution is the independence assumption. In a product
distribution, by definition, the values of the various attributes are independent. This is
a very severe handicap when considering “natural” distributions, and clearly helps the
learning algorithm. We are interested in considering a wide class of distributions where the
independence assumption does not hold. First let us deviate and discuss maximum entropy
distributions.

The entropy is a functional over probability distributions. Intuitively it measures the
uncertainty of an observer over the outcome of an experiment (see, e.g., Cover and Thomas
(1991)). Maximizing the entropy may be viewed in many cases as trying to adopt the “most
permissive” distribution that obeys certain constraints. We view our setting as being given
a set of constraints on the distribution, each constraint being an expectation of a predicate
of the attributes. Later, assuming that there are distributions that satisfy a set of constraints,
we focus on the distribution that maximizes the entropy.

To motivate this, let us consider a few special cases. First, if there are no constraints,
then all the distributions are possible, and the maximum entropy distribution is the uni-
form distribution. Second, if we are given the expectations of individual attributes as
constraints and no other constraint, the maximum entropy is the product distribution,
where each attribute has the desired expectation. The case that we choose to concen-
trate on in this work is that in which we have expectations of individual variables and
pairs of variables (i.e., probability that two attributes simultaneously have the
value 1).

There is a vast literature on the subject of maximum entropy distributions, a subject
of special interest in physics (Smith & Grandy, 1985). One of the basic results is the
form of the maximum entropy distribution, given a set of constraints. Unfortunately, from
a computational point of view, it is NP-complete to decide if there is any distribution
that satisfies the set of pair-wise constraints (Koller & Megiddo, 1993; Kilian & Naor,
1995).

As stated before, learning the read-once DNF concept class over an arbitrary distribu-
tion is equivalent to learning DNF (Haussler et al., 1991). Constraining the underlying
probability distribution to uniform or product distribution enables one to learn read-once
DNF (Kearns, Li, & Valiant, 1994). However, the algorithms for learning read-once DNF
over uniform or product distributions depend heavily on the fact that the attributes are
independent. This is why it is interesting to develop an efficient learning algorithm for
read-once DNF under maximum entropy distributions. This enables us to extend our

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 125

learnability horizon and include many distribution classes which do not have the indepen-
dence assumption.

We present an efficient learning algorithm for read-once DNF over the maximum entropy
distribution for pairwise expectations (assuming that the expectations are bounded from 0
and 1). Our algorithm receives the parameters of the maximum entropy distribution, and
based on them and on random examples from the target concept, finds a read-once DNF
that approximates the target read-once DNF.

Our algorithm is based on a definition of the influence of a variable on the value of a
DNF, and on the observation that for maximum entropy distributions the sign of a variable
in a DNF is the same as the sign of that influence. We show that given a method to retrieve
the sign of the influence of a variable, the target DNF can be reconstructed. An efficient
method to retrieve the sign of the influence is then described, implying the PAC learnability
result.

Intuitively, the influence of a variable on a boolean function is the probability that flipping
the variable’s value changes the output of the function. By our definition, the influence is
composed of two expected values—the difference between the expectations of the function
with the variable fixed for each of its two possible values. The first of these expectations can
be directly estimated. For the second expectation, since the variables are not independent,
a special decorrelating transformation was designed and applied.

Having a method to approximately measure the influence, we prove a separation result.
We first define a measure of the relative influence of a variable on the other variables.
We show that for maximum entropy distributions with bounded relative influence (denoted
α-bounded, and defined later), either the influence is zero or its value is bounded away
from zero by a constant that depends polynomially on the desired accuracy parameters.
This means that only a reasonable number of samples is needed to recover the sign of the
influence up to the desired accuracy—establishing the efficient PAC learnability result of
read-once DNF over α-bounded maximum entropy distributions.

We extend the results to monotone read-k DNF. The work of Hancock and Mansour
(1991) gives an algorithm that efficiently learns monotone read-k DNF over uniform or
bounded product distributions. We follow their techniques and prove that a similar algorithm
works for α-bounded maximum entropy distributions as well.

Our algorithm requires only statistical queries. For this reason we use the Statistical
Query model (Kearns, 1993) to describe the algorithm. We use a variant of the statistical
query model (Aslam & Decatur, 1994) where we have the ability to query the expectation
of a real-valued function with a bounded range, instead of only boolean predicates. This
variant preserves the fact that learning in it implies PAC learnability even in the presence of
random classification noise. As a result, our algorithm is tolerent of random classification
noise.

The paper is organized as follows. Section 2 gives the basic definitions and notation
to be used in subsequent sections. Section 3 presents the maximum-entropy method and
properties of maximum-entropy distributions. The learning algorithm for read-once DNF is
described in Section 4. A similar result for monotone read-k DNF is given in
Section 5.

126 Y. MANSOUR AND M. SCHAIN

2. Model and notation

2.1. PAC learning model

A concept c is a Boolean function c :X → {0, 1}, where X is the learning domain. An
example for c is a pair (x, c(x)), where x ∈ X .

Let D be a fixed probability distribution over X and C be a set of concepts. A learning
algorithm for concept class C with respect to distribution D is an algorithm that has access
to examples, (x, c(x)) of an unknown target concept c ∈ C where the input x is drawn
independently according to D. The output of the learning algorithm is a hypothesis h ∈ C.
The error of h with respect to the distribution D and the target concept c is

ErrorD(h, c)
def= PrD(h 	= c).

Similarly to Benedek and Itai (1991), we say that an algorithm PAC-learns the concept class
C over distribution D if for any c ∈ C given ε, δ > 0 the algorithm outputs a hypothesis
h ∈ C, such that

Pr(ErrorD(h, c) ≥ ε) ≤ δ.

We say that such a learning algorithm is efficient if it runs in time polynomial in n, 1
ε

and
log 1

δ
.

2.2. Restrictions

We consider the domain X = {0, 1}n . A vector x = (x1, . . . , xn) ∈ X is an assignment to
the n variables x1, . . . , xn . For 1 ≤ i ≤ n we define:

xi def= (x1, . . . xi−1, xi+1, . . . , xn).

For b ∈ {0, 1} we define:

xi←b
def= (x1, . . . xi−1, b, xi+1, . . . , xn).

Let D be a probability distribution over the n-dimensional Boolean domain X . Let f be a
Boolean function f :X → {0, 1}. Restricting a function f by fixing the value of a variable
xi to b ∈ {0, 1}, is denoted by

fi←b(xi)
def= f (xi←b) = f (x1, . . . xi−1, b, xi+1, . . . , xn).

Note that fi←b can also be considered as a function over the domain X , one that does not
depend on xi .

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 127

When we restrict a probability distribution we also need to normalize the sum of the
probabilities to 1:

Di←b(xi)
def= D(xi | xi = b) = D(xi←b)

PrD(xi = b)
.

Denote by ED[f (x)] the expectation of f (x) where x is drawn according to the distribution
D. The following lemma is a simple use of Bayes’ formula.

Lemma 1. Let f (x) be a boolean function f : {0, 1}n → {0, 1}, and D(x) be a probability
distribution over {0, 1}n. Then

EDi←b [fi←b(xi)] = ED[Ib(xi) f (x)]

ED[Ib(xi)]
,

where Ib(x) is the indicator function (i.e., Ib(x) = 1 iff x = b, otherwise Ib(x) = 0).

Proof: The proof follows directly from the definitions:

EDi←b [fi←b(xi)] =
∑

z∈{0,1}n−1

Di←b(z) fi←b(z)

=
∑

x∈{0,1}n

Ib(xi)
D(xi←b)

PrD(xi = b)
fi←b(xi)

=
∑

x∈{0,1}n Ib(xi)D(x) f (x)

PrD(xi = b)

= ED[Ib(xi) f (x)]

ED[Ib(xi)]
. ✷

The influence of a variable xi on the boolean function f is the probability that flipping
the variable’s value changes the output of f . We define a related quantity,

InflD(xi , f)
def= EDi←1 [fi←1(xi)] − EDi←1 [fi←0(xi)].

Note that the absolute value of InflD(xi , f) computes the correct influence for unate
functions (functions that are either monotone or anti-monotone in each variable) under
product distributions. However, the absolute value of InflD(xi , f) always gives a lower
bound on the real influence, and this will be sufficient for our purpose.

2.3. Read-once DNF

A literal
i is the positive or negative appearance of a variable, e.g. xi or x̄i . A term m is a
conjunction of literals, e.g. m = x6 ∧ x̄8 ∧ x3. A DNF is a disjunction of terms, i.e.

g(x) = m1 ∨ m2 ∨ · · · ∨ ms .

128 Y. MANSOUR AND M. SCHAIN

A DNF is read-once if each variable appears in at most one term. The sign of the variable
xi in the read-once DNF g, denoted Sign (xi , g), is 1 if xi appears in g, −1 if x̄i appears in
g, and 0 otherwise.

Let g(x) be a read-once DNF, and m be the term in which xi appears. We can rewrite m
as1 m = gi1(xi)
i where gi1(xi) are the other literals in m. Let gi0(xi) be the disjunction of
all the terms of g(x) except m. Then

g(x) ≡ gi0(xi) ∨ gi1(xi)
i .

Let bi = 0 if
i = xi and bi = 1 if
i = x̄i . Then gi←bi ≡ gi0 and gi←b̄i
≡ gi0 ∨ gi1.

2.4. Learning using statistical queries

The Statistical-Query learning model (Kearns, 1993) uses an expectation oracle STAT that
has as input a function SQ(x, b) which is a boolean function (a predicate) of x ∈ X and
a target concept value of b = c(x). We use here a generalized model (Aslam & Decatur,
1994) in which SQ is a real-valued function rather than a predicate. In order to maintain the
simulation in the PAC model we require that the range of SQ be bounded by some constant
L , i.e.,

SQ :X × {0, 1} → [0, L].

As in the PAC model we assume a probability distribution D(x) over the domain X . The
oracle STAT also receives an accuracy parameter µ > 0. For every input (SQ, µ) the oracle
STAT outputs a value ÊSQ which is µ-close to the true expectation ESQ = ED[SQ(bf x, c)],
i.e.,

|ÊSQ − ESQ| ≤ µ.

This implies that O(log L
µ
) bits are sufficient to encode STAT’s output.

We say that an algorithm learns using statistical queries the concept class C over distri-
bution D if for any c ∈ C, given ε > 0 and access to an oracle STAT, the algorithm outputs a
hypothesis h ∈ C such that ErrorD(h, c) < ε. It is worth noting that in the statistical query
model there is no confidence parameter and we are guaranteed that the output hypothesis
is accurate.

We say that such a statistical query algorithm is efficient if every function SQ given to
STAT can be evaluated in time polynomial in n and the algorithm runs in time polynomial
in n and 1

ε
(the running time includes the number of statistical queries the algorithm per-

forms), where the query accuracy µ is also bounded by an inverse of a polynomial in those
parameters.

It can be shown (Kearns, 1993) that if a concept class C is efficiently learnable using sta-
tistical queries over distribution D, then C is efficiently PAC-learnable over the distribution
D (even in the presence of random classification noise).

We say that the statistical query oracle is Exact when µ = 0 (in this case the oracle returns
the exact expectation). Since an Exact oracle is an ideal entity we ignore its output encoding

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 129

complexity. We introduce the exact oracle only as a methodological step in developing our
algorithm.

3. Maximum-entropy distributions

3.1. The maximum-entropy formalism

The entropy measures the uncertainty of the outcome of an experiment. Its value can be
interpreted as the average number of bits needed to encode the samples generated by D.
The entropy of a distribution D is

H(D)
def= −

∑
x∈X

D(x) log D(x) = ED[− log D(x)].

We would like to impose constraints on the distribution. A constraint determines the
probability of a certain event. (Such constraints may be viewed as a prior.)

Our goal is to find a distribution that satisfies those constraints while imposing the fewest
“additional constraints”. One way of achieving this, assuming such a distribution exists, is
by choosing the distribution that maximizes the entropy subject to the constraints imposed.

We first examine the form of the maximum entropy distribution, satisfying a given set of
constraints. Though this problem has been widely studied, we briefly present here the basic
results only. The interested reader may refer to Papoulis (1991), Smith and Grandy (1985).
We want to determine the probability distribution D(x) subject to the constraints that the
expected value of the function fi (x) is µi , i.e.

E[fi (x)] = µi i = 1, . . . , m.

Among all distributions satisfying the above constraints, the one with maximum entropy
has the form

D(x) = Ae− ∑m
i=1 λi fi (x),

where the parameters λi are the solution of the system

− ∂

∂λi
ln Z = µi i = 1, . . . , m,

and Z(λ1, . . . , λm)
def=

∑
x∈X

e− ∑m
i=1 λi fi (x).

The normalization factor is A = 1
Z . In our special case, we are given n expectations,

E(xi) = µi , and n2 correlations, E(xi x j) = µij. One can show (Papoulis, 1991) that
the distribution D suggested by the maximum entropy method (denoted MEM) has the
following form.

130 Y. MANSOUR AND M. SCHAIN

Theorem 2 (Papoulis, 1991). Let D be the maximum entropy distribution that satisfies
the constraints E(xi) = µi and E(xi x j) = µij. If D(x) > 0 for every x, then,

D(x) = Ae−xt Mx−wt x,

where M is a symmetric n × n matrix and w ∈ �n is a vector (we denote by xt the vector x
transposed).

Note that since we assume that the distribution has the form that all the inputs have
non-zero probability, i.e., D(x) > 0 for every x , this implies that none of the µij are either
0 or 1.

As stated in the introduction, the related computational problem is hard since testing
the consistency of the given expectations (existence of any distribution satisfying those
constraints) is known to be NP-Complete (Koller & Megiddo, 1993; Kilian & Naor, 1995).

3.2. Properties of MEM distributions

In this section we derive a few properties of MEM distributions. One basic property that
is important to us is relating the probabilities when a variable is fixed to 1 or 0. We show
that for MEM distributions these probabilities are somewhat related. (Note that in a product
distribution they are identical.)

Claim 3. Let D be an MEM distribution with parameters M and w. For any i , 1 ≤ i ≤ n,
there exists a vector zi and a scalar ri such that

D(xi←1) = e−zi xi −ri D(xi←0),

where zi = 2Mi
i and ri = mii +wi (Mi

i is the i’th row of the matrix M with the i’th element
deleted, and mii is the i’th element on the diagonal of M).

Proof: Without loss of generality, and to simplify the notation we prove the claim for
i = 1. We write the symmetric matrix

M =
(

a bt

b M11

)
,

then

ln D(1 x1) = ln A − (1x1)

(
a bt

b M11

) (
1

x1

)
− (1 x1)

(
w1

w1

)

= ln A − (x1)t M11x1 − (x1)t w1 − a − 2bt x1 − w1

= ln D(0 x1) − a − 2bt x1 − w1.

Therefore, D(x1←1) = e−2bt x1−(a+w1) D(x1←0). ✷

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 131

A simple conclusion is the following relation for the conditional distributions

Di←1(xi) = βi e
−zi xi −ri Di←0(xi), where βi

def= PrD(xi = 0)

PrD(xi = 1)
.

The above property allows us to compute the expectation of the restricted function fi←0(xi)

over the probability distribution Di←1(xi). (Note that examples of fi←0(xi) are only avail-
able over the conditional distribution Di←0(xi) !) The following lemma shows how this is
done.

Lemma 4. Let D be an MEM distribution with parameters M and w, and f (x) be a
boolean function. Then

EDi←1 [fi←0(xi)] = EDi←0

[
βi e

−zi xi −ri fi←0(xi)
]
,

where zi = 2Mi
i and ri = mii + wi .

We thus have a method to compute the influence InflD(xi , f) of a variable xi on a boolean
function f over a given MEM distribution D.

4. Learning read-once DNF

4.1. Learning using Exact Statistical Queries oracle

In this section we develop a statistical query algorithm for the special case where we receive
the exact expectation each time we query STAT. We use the exact oracle to highlight some
of our ideas, and in Section 4.3 we show how to adapt it to the case where STAT returns
the expectation with an additive error.

The algorithm itself is very similar to the one for learning read-once DNF under a
uniform/product distribution (Kearns, Li, & Valiant, 1994). We first identify the literals on
which the target function depends, and then test whether every two such literals appear in
the same term.

The following theorem derives a simple condition which enables one to learn read-once
DNF over MEM distributions using Exact Statistical Queries oracle (i.e. µ = 0 in the SQ
Learning model).

Theorem 5. Let P(x) be a probability distribution over {0, 1}n−1 such that for every
z ∈ {0, 1}n−1, P(z) > 0. Let g(x) be read-once DNF. Then the following holds:
1) EP [gi←1(xi)] > EP [gi←0(xi)] iff xi appears in g(x);
2) EP [gi←1(xi)] < EP [gi←0(xi)] iff x̄i appears in g(x);
3) EP [gi←1(xi)] = EP [gi←0(xi)] iff g(x) does not depend on xi .

Proof: If g(x) does not depend on xi we have gi←1 ≡ gi←0, and therefore the expectations
are identical. Recall the representation g(x) ≡ gi0(xi)∨ gi1(xi)
i . If xi appears in g(x) then

132 Y. MANSOUR AND M. SCHAIN

gi←1(xi) ≡ gi0(xi) ∨ gi1(xi) ≥ gi0(xi) ≡ gi←0(xi). Since g depends on xi , there is some
z ∈ {0, 1}n−1 such that gi←1(z) > gi←0(z). The lemma assumes that P(z) > 0 for every z;
therefore, EP [gi←1(xi)] > EP [gi←0(xi)]. The case of x̄i is similar. ✷

Assuming that for each pair of attributes all four combinations are possible, the MEM
distribution D has the property that D(x) > 0 for every x.

Corollary 6. Let D be an MEM distribution and g(x) be a read-once DNF. Then for every
variable x

Sign(x, g) = Sign(InflD(x, g)).

Corollary 6 implies that knowing the signs of the influences InflD(xi , g) is sufficient to
decide which literals appear in a read-once DNF.

The following lemma shows how to compute Sign(x, g).

Lemma 7. Given the parameters M and w of an MEM distribution D, Sign(xi , g) can be
computed using two queries to an exact statistical queries oracle.

Proof: Using Lemma 4 we write,

InflD(xi , g)
def= EDi←1 [gi←1(xi)] − EDi←1 [gi←0(xi)]

= EDi←1 [gi←1(xi)] − EDi←0

[
βi e

−zi xi −ri gi←0(xi)
]
.

Recall that βi = ED[I0(xi)]/ED[I1(xi)]. Using Lemma 1,

InflD(xi , g) = ED[g(x)I1(xi)]

ED[I1(xi)]
− ED[I0(xi)]

ED[I1(xi)]

ED
[
e−zi xi −ri g(x)I0(xi)

]
ED[I0(xi)]

= ED[g(x)I1(xi)] − ED
[
e−zi xi −ri g(x)I0(xi)

]
ED[I1(xi)]

.

Therefore,

Sign(InflD(xi , g)) = Sign(InflD(xi , g)ED[I1(xi)])

= Sign
(
ED[g(x)I1(xi)] − ED

[
e−zi xi −ri g(x)I0(xi)

])
.

It follows by Corollary 6 that to compute Sign(xi , g) the required queries are

SQ1(x, b)
def= I1(xi)b,

and

SQ2(x, b)
def= e−zi xi −ri I0(xi)b.

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 133

The queries given to the oracle yield the exact expectations E1 = ED[g(x)I1(xi)] and
E2 = ED[e−zi xi −ri g(x)I0(xi)], respectively. Since Sign(xi , g) = Sign(E1 − E2) the lemma
follows. ✷

The above proof establishes the following identity

InflD(xi , g)ED[I1(xi)] = ED[g(x)I1(xi)] − ED
[
e−zi xi −ri g(x)I0(xi)

]
.

Lemma 7 allows us to find the variables appearing in a read-once DNF g(x) and their
sign, under a given MEM probability distribution D(x). Let S be this set of literals. The
next step is to find the terms forming g(x). To do this we have to test if every pair of literals
in S appears in the same term or not. The following claim allows us to use the same method
as before.

Claim 8. Let
i ,
 j ∈ S. The literals
i and
 j appear in the same term of a read-once DNF
g(x) if and only if Sign(x j , gi←bi) = 0 (constraining
i to zero renders g not dependent on

 j). (Recall from Section 2.3 that bi = 0 if
i = xi and bi = 1 if
i = x̄i .)

The above claim together with Corollary 6 suggests that in order to test if
i and
 j appear
in the same term of g(x) we should check the sign of InflDi←bi

(x j , gi←bi).

Lemma 9. Given the parameters M and w of an MEM distribution D, Sign(x j , gi←bi)

can be computed using two queries to an exact statistical queries oracle.

Proof: We prove the lemma for the case bi = 0 (the other case is similar). Without loss
of generality, we can assume that j > i . We have

InflDi←0 (x j , gi←0) = EDi←0, j←1 [gi←0, j←1(xij)] − EDi←0, j←1 [gi←0, j←0(xij)],

where zij is recursively defined as in Claim 3. By Lemma 1,

InflDi←0(x j , gi←0) = ED[g(x)I0(xi)I1(x j)] − ED
[
e−zi j xi j −ri j g(x)I0(xi)I0(x j)

]
ED[I0(xi)I1(x j)]

.

Therefore,

Sign(InflDi←0(x j , gi←0))

= Sign(InflDi←0(x j , gi←0)ED[I0(xi)I1(x j)])

= Sign
(
ED[g(x)I0(xi)I1(x j)] − ED

[
e−zi j xi j −r j g(x)I0(xi)I0(x j)

])
It follows by Corollary 6 that to compute Sign(x j , gi←0) the queries needed are,

SQ1(x, b)
def= I0(xi)I1(x j)b

134 Y. MANSOUR AND M. SCHAIN

and

SQ2(x, b)
def= e−zi j xi j −r j I0(xi)I0(x j)b.

The queries given to the oracle yield the exact expectations E1 = ED[g(x)I0(xi)I1(x j)]
and E2 = ED[e−zi j xi j −r j g(x)I0(xi)I0(x j)], respectively. Since Sign(x j , gi←0) = Sign(E1

− E2) the lemma follows. ✷

4.2. Bounded MEM distributions

Recall the general form of an MEM distribution D(x) = Ae−xt Mx−wt x. We call an MEM
distribution α-bounded if the inner product of any row of M with every possible x ∈ X is
bounded by a constant α. In addition we require that the elements of w be bounded by α,
i.e., for all x and i

|Mi x| ≤ α and |wi | ≤ α.

As we shall see, the value of α is a measure of the relative influence of a variable on the
other variables. For example, for a product distribution to be α-bounded implies that the
probability of each variable being 1 is bounded away from both 1 and 0. The relationship
between the value of α and the properties of the related MEM distributions is left for future
research.

Unlike product distributions, in MEM distributions the value of one variable influences
the distribution of the other variables. Still, we prove that this influence is limited.

Lemma 10. Let D(x) be an α-bounded MEM distribution. Let x, y ∈ {0, 1}n differ only
in one place, then

∣∣∣∣ ln
D(x)

D(y)

∣∣∣∣ ≤ 3α.

Proof: Without loss of generality, we can assume that x and y differ in the first place, i.e.

x = (1 z) and y = (0 z).

Write the matrix

M =
(

a bt

b M1

)
,

and the vector w = (w1w1). By Claim 3

ln D(x) = ln D(y) − a − 2bt z − w1;

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 135

therefore,∣∣∣∣ ln
D(x)

D(y)

∣∣∣∣ = |a + 2bt z + w1| ≤ |a + bt z| + |bt z| + |w1| ≤ 3α .

The last inequality follows from the fact that D is an α-bounded MEM distribution. ✷

Building on Lemma 10, we show that two vectors that are close in Hamming distance
have somewhat similar probabilities.

Lemma 11. Let d(x, y) be the number of bits in which x and y differ. Then∣∣∣∣ ln
D(x)

D(y)

∣∣∣∣ ≤ 3αd(x, y).

Proof: Form a series of vectors, z0 = x, z1, . . . , zd−1, zd = y such that d = d(x, y) and
d(zi , zi+1) = 1 for i = 0, . . . , d − 1. It follows that

∣∣∣∣ ln
D(x)

D(y)

∣∣∣∣ = | ln D(x) − ln D(y)| =
∣∣∣∣∣

d−1∑
i=0

ln D(zi) − ln D(zi+1)

∣∣∣∣∣
≤

d−1∑
i=0

| ln D(zi) − ln D(zi+1)| =
d−1∑
i=0

∣∣∣∣ ln
D(zi)

D(zi+1)

∣∣∣∣.
Now, by Lemma 10,

∣∣∣∣ ln
D(x)

D(y)

∣∣∣∣ ≤
d−1∑
i=0

∣∣∣∣ ln
D(zi)

D(zi+1)

∣∣∣∣ ≤ 3αd . ✷

A case which will be of special interest to us is when the distance between x and y is
logarithmic.

Corollary 12. For a given α-bounded MEM distribution D, if d(x, y) ≤ c ln n
ε
, then

(n/ε)−3cα ≤ D(x)

D(y)
≤ (n/ε)3cα.

We show now that for α-bounded MEM distributions, long terms are insignificant. First
we prove a general Lemma.

Lemma 13. Let f (x) depend only on xl+1 · · · xn and D(x) be an α-bounded MEM dis-
tribution. Let v be a conjunction of
 literals, including either xi or x̄i , for i = 1, . . . , l.
Then

PrD(f)

(1 + e3α)l
≤ PrD(f ∧ v) ≤ PrD(f)

(1 + e−3α)l
.

136 Y. MANSOUR AND M. SCHAIN

Proof: Divide the elements of {0, 1}n into disjoint subsets such that all the elements of
a subset have the same value of xl+1 · · · xn . Note that f () has the same value on all the 2l

elements of each subset S. Denote by ST the set of subsets whose elements satisfy f ().
Each subset S ∈ ST has a single element xs satisfying v. For every i = 0, . . . , l there
are exactly (

l
i) elements yi in S that differ from xs in exactly i positions (in x1 · · · xl). By

Lemma 11, the probability of such a yi is at least (e−3α)i D(xs) and at most (e3α)i D(xs).
Since the total probability of all the elements in ST is PrD(f), we have

PrD(f) =
∑
S∈ST

∑
y∈S

D(y) ≥
∑
S∈ST

l∑
i=0

(
l

i

)
(e−3α)i D(xs).

By the binomial theorem,

PrD(f) ≥ (1 + e−3α)l
∑
S∈ST

D(xs) = (1 + e−3α)lPrD(f ∧ v).

The other direction is similar, and the lemma follows. ✷

Corollary 14. Let g(x) be a DNF and D(x) be an α-bounded MEM distribution. Let m
be a term of g with k literals, then PrD(m = 1) ≤ 1

(1+e−3α)k .

We use Corollary 14 to prove that the learning algorithm can afford to ignore long terms.

Theorem 15. Let g(x) be a DNF of at most n terms, and D(x) be an α-bounded MEM
distribution. Denote by gα,ε the disjunction of all the terms of g of length at most k =
2e3α ln n

ε
. Then ErrorD(g, gα,ε)

def= PrD(g 	= gα,ε) < ε.

Proof: Let m be a term of length more than k = 2e3α ln n
ε
. By Corollary 14, using the

inequality 2 ≤ (1 + 1
a)a < e for a ≥ 1, we have that PrD(m = 1) < ε

n . Therefore,

ErrorD(g, gα,ε) = PrD(g = 1 ∧ gα,ε = 0) ≤
∑

m∈g,m 	∈gα,ε

PrD(m = 1) < ε. ✷

4.3. Learning using statistical queries

The existence of an exact statistical query oracle is not a realistic assumption. However,
relaxing the requirement to estimate the expectation makes it possible to simulate such an
oracle given examples of the target function. We show here how Statistical Queries (with
an accuracy parameter µ) can be used to efficiently learn read-once DNF over α-bounded
MEM distributions. We first concentrate on the special case where all the terms are short,
of size at most O(ln n/ε). Later we show how to extend this to the general case.

Corollary 6 states that the target function g depends on a variable xi if and only if
InflD (xi , g) 	= 0, and that the sign of that influence determines the sign of the variable
xi in g. In the proof of Lemma 7 we described the queries needed to compute the value of
�i

def= InflD (xi , g)ED[I1(xi)], an expression having the same sign as the required influence

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 137

InflD (xi , g). Finding a lower bound on the value |�i | is the main task of this section. Once
we establish a lower bound �, it is sufficient to run the statistical queries of the algorithm
(presented in Lemmas 7 and 9 and with appropriate accuracy parameters), such that the
total error is less than �/2. This will allow us to recover the true sign of �i from the values
that STAT returns. The main concern is to obtain a bound � which is a polynomial in n and
1/ε, since this is a requirement for the statistical query algorithm to be efficient.

In the analysis we can assume that the target function g satisfies ED(ḡ) > ε/2 (otherwise
we can estimate g by h ≡ 1). Recall the notation g =
i gi1 ∨ gi0. We denote the term in
which
i appears by mi (mi ≡
i gi1).

Lemma 16. Let D be an α-bounded MEM distribution and g(x) be a read-once DNF. If
ED(ḡ) > ε

2 and mi is a term of size at most l ≤ c ln n
ε

then ED(mi ∧ ḡi0) > ε
2 (ε

n)c(3α+1).

Proof: First we bound ED(ḡi0) > ED(ḡi0 ∧ m̄i) = ED(ḡ) ≥ ε/2. We can use Lemma 13,
since mi and gi0 depend on different variables. By Lemma 13, using the inequality (1 +
ea)b < eb(a+1), we have

ED(mi ∧ ḡi0) ≥ ε/2

(1 + e3α)l
>

ε

2

(
ε

n

)c(3α+1)

,

and the lemma follows. ✷

From the above lemma we can deduce the following corollary on the value of �.

Corollary 17. Let D be an α-bounded MEM distribution and let g(x) be a read-once
DNF such that ED(ḡ) > ε

2 . If
i appears in a term of size at most c ln n
ε

then

|�i | def= |InflD (xi , g) ED[I1(xi)]| > (ε/2)(ε/n)c(3α+1) def= �.

Proof: We assume
i = xi (the other case is similar). From the definition of �i ,

�i = PrD(xi = 1)(EDi←1 [gi←1] − EDi←1 [gi←0])

= PrD(xi = 1)EDi←1 [gi←1 − gi←0].

Since
i is positive and g is read-once, using the notation g = xi gi1 ∨ gi0 we have

�i = PrD(xi = 1)EDi←1 [gi0 ∨ gi1 − gi0]

= PrD(xi = 1)EDi←1 [ḡi0 ∧ gi1]

= ED[ḡi0 ∧ gi1 ∧ xi],

where the last equality follows from Lemma 1. Finally,

�i = ED[ḡi0 ∧ gi1 ∧ xi] = ED[ḡi0 ∧ mi] > (ε/2)(ε/n)c(3α+1),

where the last inequality follows from Lemma 16. ✷

138 Y. MANSOUR AND M. SCHAIN

We can now use the statistical queries as described in the proof of Lemma 7 to identify
the significant variables.

Once the significant variables are found we have to test if pairs of literals belong to the
same term. We can derive a similar bound on the true expectations in this case as well. (This
is because if D is α-bounded then Di←b is 2α-bounded, and if the terms of g are of size at
most c log n

ε
so are the terms of gi←b.) This establishes the learnability result for read-once

DNF with short terms.

Theorem 18. The concept class read-once DNF with terms of size O(log n/ε) can be
efficiently learned with Statistical Queries over a given α-bounded MEM distribution.

In what follows we describe the modifications needed to handle an arbitrary read-once
DNF. The main concern is that the presence of long terms will hurt the learning process.
First note that by using Corollary 17 we are assured of recovering all the terms of size at
most c ln n

ε
. By definition, this is gα,ε . Since, by Theorem 15, longer terms are insignificant,

the short terms are sufficient for a good approximation of the target g.
The problem is that the algorithm might construct short terms that are not terms of the

target function but part of longer terms. Such terms increase the error when they are 1 and the
target function is 0. Of special concern are those terms that increase the error significantly,
called harmful terms.

The idea is to identify and delete the harmful terms. For a given term m, this can be done
by making a statistical query on the probability that m is 1 and the target function is 0. Once
we delete the harmful terms we have a good approximation of the target read-once DNF.
This will establish the following theorem.

Theorem 19. The concept class read-once DNF can be efficiently learned with Statistical
Queries over a given α-bounded MEM distribution.

Before we prove the theorem, examine the implementation of the algorithm in figures 1
and 2. The input parameters of the main procedure LearnMaxEnt are the allowed hypoth-
esis error of the SQ model ε and the parameters M, w, and α of the α-bounded MEM
distribution D. LearnMaxEnt first tests whether the target read-once DNF g can be triv-
ially approximated by a constant. If that is not the case then the procedure Literal is used
to construct a set S containing all the significant literals.

Literal receives as input the index of the literal to be tested, an accuracy parameter �

which is the lower bound on the influence of a variable appearing in a short term of g (recall
that if xi does not appear in g then its influence is 0), and the parameters M and w of the
α-bounded MEM distribution D. Literal makes Statistical Queries in order to estimate the
influence InflD(xi , g). By a proper choice of the accuracy parameter of the queries, the true
sign of the influence is recovered.

Once the set S is computed, LearnMaxEnt reconstructs the terms of g. Initially, every
literal
i is a term Termi . The procedure SameTerm is used to test whether a pair of literals
i

and
 j (where i < j) belongs to the same term of the target g. (For simplicity, the procedure
SameTerm is presented for the case where both literals
i and
 j are positive. The other
cases can be treated similarly.)

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 139

/* Find if g depends on xi or xi . */

Literal(i, �, M, w)

Let z = 2Mi
i , r = mii + wi .

Estimate γ1 = ED[g(x) ∧ I1(xi)] with accuracy �
4

Estimate γ0 = ED[e−zxi −r g(x) ∧ I0(xi)] with accuracy �
4

IF |γ1 − γ0| < �
2 RETURN 0

ELSE IF γ1 > γ0 RETURN xi

ELSE RETURN xi

/* Test is the literals
i and
 j appear in the same term. */

SameTerm(
i ,
 j , �, M, w)

Let z = 2Mi j
j , r = m j j + w j .

Estimate γ1 = ED[g(x) ∧ I0(xi) ∧ I1(x j)] with accuracy �
4

Estimate γ0 = ED[e−zxi j −r g(x) ∧ I0(xi) ∧ I0(x j)] with accuracy �
4

IF |γ1 − γ0| < �
2 RETURN True

ELSE RETURN False

Figure 1. The procedures used in the algorithm for learning read-once DNF over α-bounded MEM distribution.

SameTerm receives as input the two literals to be tested, an accuracy parameter �, and
the parameters M and w of the α-bounded MEM distribution D. As in Literal, SameTerm
makes Statistical Queries in order to estimate the influence InflDi←0 (x j , gi←0). A nonzero
influence indicates that the literals are not in the same term. Again, by a proper choice of
the accuracy parameter of the queries, the true sign of the influence is recovered.

If
i and
 j belong to the same term of the target g, then LearnMaxEnt deletes
 j from
S and adds it to the term Termi . Eventually, all the short terms of g are reconstructed.

The final step is to identify and delete the harmful terms (terms reconstructed by Learn-
MaxEnt that are part of longer terms of the target g). This is done with a statistical query,
estimating the harmfulness of every term.

Proof of Theorem 19: We will show that the algorithm LearnMaxEnt, described in
figures 1 and 2, efficiently learns the read-once DNF.

Our first claim is that Literal returns the true sign of xi . By (1) we have,

|γ1 − γ0| = ∣∣ED[g(x) ∧ I1(xi)] − ED
[
e−zxi −r g(x) ∧ I0(xi)

]∣∣
= |InflD(xi , g)PrD(xi = 1)| def= |�i |.

By Corollary 17, if xi appears in g then |�i | > �. Since γ0 and γ1 are each estimated with
accuracy �

4 their difference has an error of at most �
2 , and we are assured of recovering the

true sign.
Our second claim is that SameTerm returns True if and only if
i and
 j belong to the

same term of the target read-once DNF g. Again we have,

|γ1 − γ0| = ∣∣ED[g(x) ∧ I0(xi) ∧ I1(x j)] − ED
[
e−zxi j −r g(x) ∧ I0(xi) ∧ I0(x j)

]∣∣
= |InflDi←0(x j , gi←0)PrDi←0(x j = 1)|

140 Y. MANSOUR AND M. SCHAIN

/* Find an ε-approximation to g

with respect to an α-bounded distribution. */

LearnMaxEnt(ε, M, w, α)

Estimate p ≡ Prob[g = 0].

IF p < ε/2 OR p > 1 − ε/2 THEN DONE.

Let � = (ε/2)(ε/n)e3α(3α+1).

Let S = ∅.

/* Find the relevant literals. */

FOR each variable xi ,

Termi = ∅.

i =Literal(i, �, M, w)

IF
i 	= 0

S = S ∪ {
i }.
Termi = {
i }.

/* Construct candidates for terms. */

FOR each i = 1, . . . , n s.t
i ∈ S
FOR each j > i s.t
 j ∈ S
IF SameTerm(
i ,
 j , �, M, w)

AND SameTerm(
 j ,
i , �, M, w)

Termi = Termi ∪ {
 j }.
Term j = ∅.

S = S − {
 j }.
/* Delete inaccurate candidate terms.*/

FOR each i = 1, . . . , n s.t Termi 	= ∅
Estimate ti = ED(Termi ∧ g(X)) with accuracy ε

4n

IF ti > ε
4n THEN Termi = ∅.

RETURN
∨

i

∧

∈Termi

.

Figure 2. Algorithm for learning read-once DNF over α-bounded MEM distribution.

By Corollary 17, if x j appears in gi←0 then |InflDi←0(x j , gi←0)PrDi←0(x j = 1)| > �. Since
γ0 and γ1 are each estimated with accuracy �

4 their difference has an error of at most �
2 , and

we are assured of the correct answer.
We conclude that at the end of the first loop of LearnMaxEnt the set S contains all the

literals of short (size O(ln n
ε
)) terms of the target g (but may include some more literals

from other terms).
We now claim that all short terms of g are reconstructed correctly. First note that Same-

Term tests whether the literal
 j remains significant when
i is set to 0 (it is actually a
significance test, similar to the test done by Literal). Both literals belong to the same term
of g only if the conditional significance vanishes. Our main concern is the literals in S
from long terms of g. The double call to SameTerm in the second loop of LearnMaxEnt
ensures that the algorithm will not combine a literal
s from a short term of g and a literal
l

from a long term of g into the same term. (By Corollary 17,
s will remain significant even

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 141

when
l is set to 0.) It follows that at the end of the second loop of LearnMaxEnt all short
terms of g are reconstructed correctly (gα,ε). However, there might be more reconstructed
terms (whose literals are from long terms of g), some of which may be harmful.

Our next claim is that the last loop of LearnMaxEnt removes all the harmful recon-
structed terms. Since all the terms of gα,ε were reconstructed correctly, a term m can be
harmful only when m is 1 and g is 0 (we define the damage of m to be PrD(m ∧ ḡ)—the
increase in the error caused by m). All the terms with damage more than ε

2n are deleted by
LearnMaxEnt (the damage is estimated with accuracy ε

4n , so if a term is not deleted its
damage is at most ε

4n + ε
4n = ε

2n). Since there are at most n terms (g is read-once) the total
increase in error due to harmful terms is at most ε

2 .
All the queries are done with accuracy bounded by an inverse of a polynomial in m and

1
ε
, implying the efficiency of the algorithm. ✷

5. Learning monotone kµ DNF

In the previous sections we showed how a result about the learnability of read-once DNF over
product distributions can be extended to α-bounded MEM distributions. We now continue
and describe how another result can be extended in a similar way.

In Hancock and Mansour (1991) it was shown how to efficiently learn over product dis-
tributions the class of monotone DNF where each variable appears in no more than k terms
(denoted kµ-DNF). The learning algorithm did not reconstruct the DNF, but instead, effi-
ciently identified all the minimal blocking sets for each variable (a set of variables ρ blocks
the variable xi over a function f iff fρ←0 does not depend on xi , i.e., iff Infl (xi , fρ←0) = 0).
It was shown that knowing an approximation of the set of minimal blocking sets (denoted
ε-blocking sets) for each variable enables a good approximation of the kµ-DNF.

5.1. Computing using blocking sets

We first present (as in Hancock and Mansour (1991)) a function that computes a monotone
function f () given its blocking sets. The function compute() (see figure 3) receives as
input a vector of variables x1, . . . , xn and for each variable a set of minimal blocking
sets B1, . . .Bnwhere Bi ⊂ 2{1,...,n}. The computed value is f (x1, . . . , xn)as stated by the
following Lemma.

FUNCTION compute(x1, . . . , xn,B1, . . . ,Bn)

IF ∃xi = 1 such that

∀A ∈ Bi there exists j ∈ A,

such that x j = 1.

THEN RETURN 1

ELSE RETURN 0.

Figure 3. Computing the value of a monotone function using blocking sets.

142 Y. MANSOUR AND M. SCHAIN

Lemma 20 (Hancock & Mansour, 1991). Let f (x1, . . . , xn) be a monotone func-
tion, and Bi , 1 ≤ i ≤ n, be a maximal collection of minimal blocking sets of the variable
xi . Then,

compute(x1, . . . , xn,B1, . . . ,Bn) = f (x1, . . . , xn).

5.2. Identifying blocking sets

By the definition, blocking sets ρ of a variable xi over the kµ-DNF g can be identified by
estimating the influence of the variable xi on gρ←0. In the next section we will introduce
the definition of ε-blocking sets ρ over α-bounded MEM distributions. By that definition,
a lower bound on the influence of a variable xi on gρ←0 is polynomial in 1

n and ε. This will
allow us to efficiently identify ε-blocking sets. We will prove that over α-bounded MEM
distributions using ε-blocking sets in compute results in a sufficient approximation of the
kµ-DNF.

This generalizes the result of Hancock and Mansour (1991) from uniform and product
distributions to α-bounded MEM distributions. We start with a generalization of Lemma 16.

Lemma 21. Let D be an α-bounded MEM distribution and

g = T0 ∨ T1 ∨ T2 ∨ · · · ∨ Ts ∨ R1 ∨ R2 ∨ · · · ∨ Rq

be a monotone kµ-DNF such that T0 is a term of size l and T1 · · · Ts are all the terms sharing
literals with T0. If PrD(ḡ) > ε

2 then

PrD(T0 ∧ T̄1 ∧ · · · ∧ T̄s ∧ R̄1 ∧ · · · ∧ R̄q) >
ε/2

(1 + e3α)kl
.

Proof: Without loss of generality we can assume that T0 = x1 ∧ · · · ∧ xl . By the mono-
tonicity of g, every term Ti , i = 1, . . . , s, has at least one variable not appearing in T0.
Denote by S = {x j1 · · · x js } a set containing one variable from every Ti , i = 1, . . . , s, and
none from T0. Since g is kµ-DNF we have s ≤ (k − 1)l. Denote by Ra1 · · · Rat the terms
among R1 · · · Rq with no variable in S. First we bound

PrD
(
R̄a1 ∧ · · · ∧ R̄at

) ≥ PrD(ḡ) > ε/2.

Now, using the above definitions we write

PrD(T0 ∧ T̄1 ∧ · · · ∧ T̄s ∧ R̄1 ∧ · · · ∧ R̄q)

≥ PrD
(
T0 ∧ x̄ j1 ∧ · · · ∧ x̄ js ∧ R̄1 ∧ · · · ∧ R̄q

)
= PrD

(
T0 ∧ x̄ j1 ∧ · · · ∧ x̄ js ∧ R̄a1 ∧ · · · ∧ R̄at

)
.

We can now use Lemma 13. This is because T0 ∧ x̄ j1 ∧ · · · ∧ x̄ js imposes no more than
l + s ≤ kl constraints on variables not belonging to any of the terms Ra1 · · · Rat . We further

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 143

bound

PrD
(
T0 ∧ x̄ j1 ∧ · · · ∧ x̄ js ∧ R̄a1 ∧ · · · ∧ R̄at

)
>

ε/2

(1 + e3α)kl
,

which proves the lemma. ✷

Note that for the case where T0 is a term of size at most l = c ln n
ε
, the lemma generalizes

Lemma 16 for monotone kµ-DNF. (The resulting lower bound becomes ε
2 (ε

n)kc(3α+1).)

Lemma 22. Let D be an α-bounded MEM distribution and g be a monotone kµ DNF
such that PrD(ḡ) > ε

2 . If ρ is not a blocking set for xi then

InflDρ←0(xi , gρ←0) ≥ ε/2

(1 + e3α)kl
,

where l is the size of the smallest term that includes xi in gρ←0.

Proof: Let T0 be a term of size l that includes xi and no variable in ρ. We can write

g = T0 ∨ T1 ∨ · · · ∨ Ts ∨ R1 ∨ · · · ∨ Rq and

gρ←0 = T0 ∨ Tj1 ∨ · · · ∨ Tjv ∨ Ra1 ∨ · · · ∨ Rat ,

where T1 · · · Ts are the terms sharing variables with T0. Without loss of generality we can
assume that Tj1 · · · Tju are the terms of gρ←0 in which xi appears. We have

InflDρ←0(xi , gρ←0)

def=PrDρ←0,i←1(gρ←0,i←1) − PrDρ←0,i←1(gρ←0,i←0)

= PrDρ←0,i←1

((
T0 ∨ Tj1 ∨ · · · ∨ Tju

) ∧ (
T̄ ju+1 ∧ · · · ∧ T̄ jv ∧ R̄a1 ∧ · · · ∧ R̄at

))
≥ PrDρ←0

(
T0 ∧ T̄ j1 ∧ · · · ∧ T̄ jv ∧ R̄a1 ∧ · · · ∧ R̄at

)
.

Since Dρ←0,i←1 is an α-bounded MEM and Pr(ḡ) > ε/2, we can use Lemma 21; hence,

InflDρ←0(xi , gρ←0) ≥ PrDρ←0

(
T0 ∧ T̄ j1 ∧ · · · ∧ T̄ jv ∧ R̄a1 ∧ · · · ∧ R̄at

)
≥ ε/2

(1 + e3α)kl
,

which completes the proof. ✷

5.3. ε-blocking sets

We say that a set ρ of variables ε-blocks the variable xi of a monotone function f over
α-bounded MEM distribution D iff

InflDρ←0(xi , fρ←0) <
ε

2
(1 + e3α)−kλ where λ = 2 ln

2kn

ε
.

144 Y. MANSOUR AND M. SCHAIN

Note that every blocking set is an ε-blocking set, and by Lemma 22, for a kµ DNF, if ρ

ε-blocks xi , it contains a variable from every term of length ≤ λ that contains xi .

Lemma 23. Let D be an α-bounded MEM distribution, g be a kµ DNF formula, Bi the
set of all ε-blocking sets for xi , and B = B1, . . . ,Bn. Then,

PrD(compute(x,B) 	= g(x)) ≤ ε/2.

Proof: As in Hancock and Mansour (1991), since every blocking set is an ε-blocking set,
Bi includes all the blocking sets of variable xi . This implies that if compute(x,B) = 1 then
g(x) = 1. Therefore the only errors are when compute(x,B) = 0 while the input x satisfies
some terms of g (i.e., g(x) = 1).

As noted before, an ε-blocking set for xi must contain a variable from every term con-
taining xi , whose length is at most λ. Hence an example satisfying such a term must have
a variable set to 1 in each ε-blocking set for x , and will therefore be correctly evaluated by
compute.

By Corollary 14, the contribution of all g’s terms with length more than λ is at most
kn(1 + e3α)−λ ≤ ε/2, which completes the proof. ✷

5.4. The algorithm

The resulting algorithm (see figure 4) for identifying ε-blocking sets is similar to the one
described in Hancock and Mansour (1991).

A set ρ with at most k variables is added to Bi only if InflDρ←0 (xi , gρ←0) < �, i.e., only
if ρ is an ε-blocking set. The estimation of the influence is based on an analysis similar to
the one described in the proof of Lemma 7. We conclude with the resulting theorem.

FindBlockingSets(k, ε, M, w, α)

Estimate p ≡ PrD[g = 0].

IF p < ε/2 THEN DONE.

Let λ = 2 ln 2kn
ε

.

LET � = p(1 + e3α)−kλ.

FOR each variable xi ,

Let Bi = ∅.

FOR each set ρ of at most k variables,

Estimate αρ,i ≡ ED[g(x)I0(ρ)I1(xi)] with accuracy �
4 .

Estimate βρ,i ≡ ED[e−zρ xρ−rρ g(x)I0(ρ)I0(xi)]

with accuracy �
4 .

IF |αρ,i − βρ,i | < �
2

THEN Bi = Bi ∪ {ρ}.

Figure 4. Identifying ε-blocking sets over an α-bounded MEM distribution.

LEARNING WITH MAXIMUM-ENTROPY DISTRIBUTIONS 145

Theorem 24. Let g be a kµ-DNF. Let D be an α-bounded MEM distribution. Then g(x)

can be efficiently approximated over D using statistical queries.

Note

1. We denote the boolean expression a ∧ b by ab.

References

Angluin, D. & Kharitonov, M. (1991). When won’t membership queries help? In Proceedings of the 23rd Annual
ACM Symposium Theory Computing (pp. 444–454). New York: ACM.

Aslam, J. A. & Decatur, S. E. (1994). Improved nose-tolerant learning and generalized statistical queries. Tech.
rep. TR-17-94, Harvard University.

Benedek, G. M. & Itai, A. (1991). Learnability with respect to fixed distributions. Theoretical Computer Science,
86(2), 377–390.

Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory. New York, NY: John Wiley and Sons Inc.
Hancock, T. & Mansour, Y. (1991). Learning monotone kµ dnf formulas on product distributions. In Proceedings

of the 2nd Annual Workshop on Computational Learning Theory (pp. 179–183). San Mateo, CA: Morgan
Kaufmann.

Haussler, D., Kearns, M., Littlestone, N., & Warmuth, M. K. (1991). Equivalence of models for polynominal
learnability. Information and Computation, 95(2), 129–161.

Kearns, M. (1993). Efficient noise-tolerant learning from statistical queries. In Proceedings of the 25th Annual
ACM Symposium on Theory of Computing (pp. 392–401).

Kearns, M., Li, M., & Valiant, L. G. (1994). Learning boolean formulas. Journal of the ACM, 41(6), 1298–1328.
Kearns, M. & Valiant, L. G. (1989). Cryptographic limitations on learning boolean formulae and finite automata.

In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (pp. 433–444).
Kilian, J. & Naor, M. (1995). On the complexity of statistical reasoning. In Proceedings of the 3rd Israel Symposium

on Theory of Computing and Systems (pp. 209–217).
Koller, D. & Megiddo, N. (1993). Constructing small sample spaces satisfying given constraints. In Proceedings

of the 25th Annual ACM Symposium on Theory of Computing (pp. 268–277).
Natarajan, B. K. (1987). On learning boolean functions. In Proceedings of the Nineteenth Annual ACM Symposium

on Theory of Computing (pp. 296–304). New York.
Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes (3rd edn.), ch. 15. New York, NY:

McGraw-Hill.
Pitt, L. & Valiant, L. G. (1988). Computational limitations on learning from examples. Journal of the ACM, 35(4),

965–984.
Smith, R. C. & Grandy, W. (1985). Maximum-Entropy and Bayesian Methods in Inverse Problems. Dordrecht: D.

Reidel Publishing Company.
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142.

Received June 1, 1998
Revised July 28, 2000
Accepted July 28, 2000
Final Manuscript August 20, 2001

