
Machine Learning, 45, 187–217, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Predicting the Future of Discrete Sequences
from Fractal Representations of the Past

PETER TIN̆O petert@ai.univie.ac.at
Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria; Department of
Computer Science and Engineering, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia

GEORG DORFFNER georg@ai.univie.ac.at
Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria; Department of
Medical Cybernetics and Artificial Intelligence, University of Vienna, Freyung 6/2, A-1010 Vienna, Austria

Editor: Michael Jordan

Abstract. We propose a novel approach for building finite memory predictive models similar in spirit to variable
memory length Markov models (VLMMs). The models are constructed by first transforming the n-block structure
of the training sequence into a geometric structure of points in a unit hypercube, such that the longer is the common
suffix shared by any two n-blocks, the closer lie their point representations. Such a transformation embodies a
Markov assumption—n-blocks with long common suffixes are likely to produce similar continuations. Prediction
contexts are found by detecting clusters in the geometric n-block representation of the training sequence via vector
quantization. We compare our model with both the classical (fixed order) and variable memory length Markov
models on five data sets with different memory and stochastic components. Fixed order Markov models (MMs)
fail on three large data sets on which the advantage of allowing variable memory length can be exploited. On
these data sets, our predictive models have a superior, or comparable performance to that of VLMMs, yet, their
construction is fully automatic, which, is shown to be problematic in the case of VLMMs. On one data set, VLMMs
are outperformed by the classical MMs. On this set, our models perform significantly better than MMs. On the
remaining data set, classical MMs outperform the variable context length strategies.

Keywords: variable memory length Markov models, iterative function systems, fractal geometry, chaotic
sequences, DNA sequences, volatility prediction

1. Introduction

Statistical modeling of complex sequences is a fundamental goal of machine learning due to
its wide variety of applications (Ron, Singer, & Tishby, 1996): in genetics (Prum, Rodolphe,
& deTurkheim, 1995), speech recognition (Nadas, 1984), finance (Bühlmann, 1998), or
seismology (Brillinger, 1994).

One of the models for sequences generated by stationary sources, assuming no particular
underlying mechanistic system, are Markov models (MMs) of finite order (Bühlmann &
Wyner, 1999). The only implicit assumption made is about the finite memory of the process.
These statistical models define rich families of sequence distributions and give efficient
procedures for both generating sequences and computing their probabilities. However, MMs
can become very hard to estimate due to the familiar explosive increase in the number

188 P. TIN̆O AND G. DORFFNER

of free parameters (yielding highly variable estimates) when increasing the model order.
Consequently, only low order MMs can be considered in practical applications.

Approaches proposed in the literature (Ron, Singer, & Tishby, 1996; Laird & Saul, 1994;
Nadas, 1984; Rissanen, 1983; Weinberger, Rissanen, & Feder, 1995; Willems, Shtarkov,
& Tjalkens, 1995; Bühlmann & Wyner, 1999) to overcome the curse of dimensionality
in MMs share the same basic idea: instead of fixed order MMs consider variable memory
length Markov models (VLMMs) with a “deep” memory just where it is really needed (Ron,
Singer, & Tishby, 1994).

Prediction contexts of variable length in VLMMs are often represented as prediction suffix
trees (PSTs) (Rissanen, 1983). The relevant prediction context is defined as the deepest node
in the PST that can be reached from the root when reading the input stream in reversed order.

Prediction suffix trees can be constructed in a top-down (Ron, Singer, & Tishby, 1994,
1996; Weinberger, Rissanen, & Feder, 1995), or bottom-up (Guyon & Pereira, 1995;
Bühlmann & Wyner, 1999) fashion. Both schemes strongly depend on the construction pa-
rameters regulating candidate context selection and growing/pruning decisions (Bühlmann
& Wyner, 1999; Guyon & Pereira, 1995). The appropriate values for those parameters are
derived only under asymptotic considerations. In practical applications, the parameters must
be set by the modeler, which can be, as we will see, quite inconvenient and problematic (see
also Bühlmann, 1999a). Bühlmann and Wyner (1999) suggest to optimize the construction
parameters’ values through minimization of model complexity measured, for example, by
the Akaike information criterion (Akaike, 1974). In another study on VLMM model selec-
tion (Bühlmann, 1999a), Bühlmann proposes a resampling strategy to estimate the asymp-
totic behavior of different risk functions. However, in practical applications, such a strategy
may not be applicable, since fitting the individual VLMMs can be highly time-consuming.

We introduce finite-context predictive models similar in spirit to VLMMs. The key idea
behind our approach is a geometric representation of candidate prediction contexts, where
contexts with long common suffixes (i.e., contexts that are likely to produce similar contin-
uations) are mapped close to each other, while contexts with different suffixes (and poten-
tially different continuations) correspond to points lying far from each other. Selection of
the appropriate prediction contexts is left to a vector quantizer. Dense areas in the spatial
representation of potential prediction contexts correspond to contexts with long common
suffixes and are given more attention by the vector quantizer.

The paper has the following organization:
In Sections 2 and 3, we use the framework of finite memory sources to introduce our

predictive models as well as the classical and variable memory length Markov models.
Section 4 contains a detailed comparison of the studied model classes on five data sets

of different origin, representing a wide range of grammatical and statistical structure.
A discussion summarizes the empirical results and outlines directions in our current and

future research.

2. Statistical modeling of complex sequences

We consider sequences S = s1s2 . . . over a finite alphabet A = {1, 2, . . . , A} (i.e., every
symbol si is from A) generated by stationary information sources (Khinchin, 1957). The

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 189

sets of all sequences over A with a finite number of symbols and exactly n symbols are
denoted by A+ and An , respectively. By S j

i , i ≤ j , we denote the string si si+1 . . . s j , with
Si

i = si . The (empirical) probability of finding an n-block w ∈ An in S is denoted by P̂n(w).
A string w ∈ An is said to be an allowed n-block in the sequence S, if P̂n(w) > 0. The set
of all allowed n-blocks in S is denoted by [S]n .

An information source (Khinchin, 1957; Weinberger, Rissanen, & Feder, 1995) over an
alphabet A = {1, 2, . . . , A} is defined by a family of probability measures Pn on n-blocks
over A, n = 0, 1, 2, Consistent measures satisfy the marginality condition: for all1

s ∈ A, w ∈ An , n = 0, 1, 2 . . . ,
∑
s∈A

Pn+1(ws) = Pn(w).

In applications it is useful to consider probability functions Pn that are both consistent
and easy to handle. This can be achieved, for example, by assuming a finite source memory
of length at most L , and formulating the conditional measures

P(s | w) = PL+1(ws)

PL(w)
, w ∈ AL ,

using a so-called context function c : AL → C, from L-blocks over A to a (presumably
small) finite set C of prediction contexts,

P(s | w) = P(s | c(w)). (1)

The task of a learner is now to first find an appropriate context function c(w) and to
estimate the probability distribution P(s | w) from the data. On one hand such a finite
memory model can be used for prediction. On the other hand, it can also be used as a
sequence generator by initiating it with the first L-block and letting it produce a continuation
according to the next-symbol distribution (1).

We now present two specific examples of finite memory learners and then introduce our
novel approach for constructing finite memory sources from geometric representations of
training sequences.

2.1. Fixed-order Markov models

In classical Markov models (MMs) of (fixed) order n ≤ L , for all L-blocks w ∈ AL , the
relevant prediction context c(w) is chosen a priori as the length-n suffix of w, i.e. c(uv) = v,
v ∈ An , u ∈ AL−n . In other words, for making a prediction about the next symbol, only the
last n symbols are relevant. Formally, the context function c : AL → C for Markov models
(MMs) of order n < L can be interpreted as a natural homomorphism c : AL → AL |E
corresponding to an equivalence relation E ⊆ AL × AL on L-blocks over A : (u, v) ∈ E ,
if the L-blocks u, v share the same suffix of length n. The factor set AL |E , i.e. the set of
all equivalence classes on L-blocks AL under the equivalence E , consists of all n-blocks
over A,

AL |E = C = An.

190 P. TIN̆O AND G. DORFFNER

As already mentioned in the introduction, for large suffix lengths n, the estimation of
prediction probabilities P(s | c(w)) can become infeasible. By increasing the model order
n the number of probability distributions to be estimated rises by An leaving the learner
with the problem to cope with a strong curse of dimensionality.

2.2. Variable length Markov models

The curse of dimensionality in classical Markov models has lead several authors to develop
so-called variable memory length Markov models (VLMMs). The task of a VLMM is
the estimation of an appropriate context function, giving rise to a potentially much smaller
number of contexts considered. This is achieved by permitting the suffixes c(w) of L-blocks
w ∈ AL to be of different lengths, depending on the particular L-block w. We briefly review
strategies for selecting and representing the prediction contexts.

Suppose we are given a long training sequence S over A. Let w ∈ [S]n be a potential
prediction context of length n < L used to predict the next symbol s ∈ A according to the
empirical estimates

P̂(s | w) = P̂n+1(ws)

P̂n(w)
.

If for a symbol a ∈ A, such that aw ∈ [S]n+1, the prediction probability of the next
symbol s,

P̂(s | aw) = P̂n+2(aws)

P̂n+1(aw)
,

with respect to the extended context aw differs “significantly” from P(s | w), then adding
the symbol a ∈ A in the past helps in the next-symbol predictions. Several decision criteria
have been suggested in the literature. For example, one can extend the prediction context
w with a symbol a ∈ A, if

• the Kullback-Leibler divergence between the next-symbol distributions for the candidate
prediction contexts w and aw, weighted by the prior distribution of the extended context
aw, exceeds a given threshold (Ron, Singer, & Tishby, 1994; Guyon & Pereira, 1995),

P̂n+1(aw)
∑
s∈A

P̂(s | aw) logA
P̂(s | aw)

P̂(s | w)
≥ εKL. (2)

• there exists a symbol s ∈ A, such that (Ron, Singer, & Tishby, 1996)

P̂(s | aw) ≥ 1

A
(1 + ε1)ε1 and

P̂(s | aw)

P̂(s | w)
> 1 + 3ε1. (3)

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 191

The (small, positive) construction parameters εKL, ε1 are supplied by the modeler. For
other variants of decision criteria see (Weinberger, Rissanen, & Feder, 1995; Bühlmann &
Wyner, 1999).

A natural representation of the set C of prediction contexts, together with the associated
next-symbol probabilities, has the form of a prediction suffix tree (PST) (Ron, Singer, &
Tishby, 1996; Rissanen, 1983). The edges of PST are labeled by symbols from A. From
every internal node there is at most one outgoing edge labeled by each symbol. The nodes
of PST are labeled by pairs (s, P̂(s | v)), s ∈ A, v ∈ A+, where v is a string associated
with the walk starting from that node and ending in the root of the tree. For each L-block
w = v1v2 · · · vL ∈ AL , the corresponding prediction context c(w) is then the deepest node
in the PST reached by taking a walk labeled by the reversed string, wR = vL · · · v2v1,
starting in the root.

The algorithm for building PSTs has the following form2 (Ron, Singer, & Tishby, 1994,
1996; Guyon & Pereira, 1995):

• the initial PST is a single root node and the initial set of candidate contexts is W = {s ∈
A | P̂1(s) > εgrow}.

• while W �= ∅, do:

1. pick any v = aw ∈ W , a ∈ A, and remove it from W
2. add the context v to the PST by growing all the necessary nodes, provided the con-

dition (2) (or (3)) holds3

3. provided | v | < L , then for every s ∈ A, if P̂(sv) > εgrow, add sv to W .

The depth of the resulting PST is at most L . The tree is grown from the root to the leaves.
If a string v does not meet the criterion (2) (or (3)), it is not definitely ruled out, since
its descendants are added to W in step 3. The idea is to keep a provision for the future
descendents of v which might meet the selection criterion. In general, as the values of εgrow

and εKL(ε1) decrease, the size of the constructed PST increases.
Prediction suffix trees are usually constructed using a one-parameter scheme introduced

in Ron, Singer and Tishby (1994). This scheme varies only one parameter ε = εKL =
εgrow. In this case, however, it can happen that for small values of ε, many low-probability
subsequences are included as potential contexts in step 3 of the PST construction. The
resulting PSTs are too specific and greatly overfit the training sequence. One can improve
on that by fixing the growth parameter εgrow to a small positive value and varying only the
acceptance threshold parameter εKL. This usually removes the overfitting effect in larger
PSTs. However, smaller PSTs, corresponding to larger values of εKL, often perform poorly,
since the small fixed value of εgrow results in considering unnecessarily specific contexts. We
empirically found the procedure with ratio-related parameters εgrow = ρεKL, 50 ≤ ρ ≤ 100,
to give the best results.

Variable memory length Markov models (VLMMs) are usually compactly described as
stochastic machines (SMs). Briefly, SMs are like finite state machines except that the state
transitions take place with probabilities prescribed by a distribution Ti, j,s . The generating
process is started in an initial state and then, at any given time step, the machine is in some
state i , and at the next time step moves to another state j outputting some symbol s, with
the transition probability Ti, j,s .

192 P. TIN̆O AND G. DORFFNER

The set C of prediction contexts encoded in a PST is the state set of the corresponding
SM that contains the leaves of the PST plus contexts added so that the symbol driven state
transition probabilities Ti, j,s are properly defined (see Ron, Singer, & Tishby, 1994, 1996;
Guyon & Pereira, 1995). SMs representing VLMMs have suffix-free state sets Q and are
known as probabilistic suffix automata (PSA) (Ron, Singer, & Tishby, 1996; Weinberger,
Rissanen, & Feder, 1995). Although VLMMs can be emulated with the corresponding PSTs,
PSA representations of VLMMs give higher processing speed. In PSA, the longest suffices
are precomputed into states, whereas in PSTs the longest suffices must be dynamically
determined (Guyon & Pereira, 1995).

3. Fractal prediction machines

We propose a novel approach for learning the statistical structure of symbolic sequences,
which we call fractal prediction machines (FPMs). FPMs are similar in spirit to VLMMs,
but derive a context function c(w) in a more efficient way.

The main idea behind a FPM is to first transform the L-blocks appearing in the training
sequence into points in a D-dimensional vector metric space (�D, d), so that the suffix
structure of L-blocks is coded into a cluster structure in (�D, d). The equivalence relation
E defining the context function is then constructed by vector-quantizing the geometric
representations of allowed L-blocks. This way, we have a direct control over the number
of predictive contexts and, at the same time, avoid using auxiliary construction parameters
employed in the PST construction (see the last section).

3.1. Chaos game representations

The basis for the transformation of symbolic strings into points in �D is the so-called
chaos game representation (CGR), originally introduced by Jeffrey (1990) to study DNA
sequences (see also Oliver et al., 1993; Roldan, Galván, & Oliver, 1994; Li, 1997). CGRs
of symbolic sequences have been formally studied in Tiňo (1999) revealing the desired
properties for our purposes.

The basis of the chaos game representation of sequences over an alphabetA = {1, 2, . . . ,

A} is an iterative function system (IFS) (Barnsley, 1988) consisting of A affine con-
tractive maps4 1, 2, . . . , A, acting on the D-dimensional unit hypercube5 X = [0, 1]D ,
D = �log2 A�:

i(x) = kx + (1 − k)ti , ti ∈ {0, 1}D, ti �= t j for i �= j. (4)

The contraction coefficient of the maps 1, . . . , A, is k ∈ (0, 1
2].

The chaos game representation CGRk(S) of a sequence S = s1s2 . . . over A is obtained
as follows (Tiňo, 1999):

1. Start in the center x∗ = { 1
2 }D of the hypercube X , x0 = x∗.

2. Plot the point xn = j (xn−1), n ≥ 1, provided the n-th symbol sn is j .

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 193

As an example, consider a sequence S = 142 . . . over the four-symbol alphabet
A = {1, 2, 3, 4}. Let the four affine maps on the unit square [0, 1]2, corresponding to
the symbols in A, be defined as (k = 1

2)

1(x) = 1

2
x + 1

2
(0, 0), 2(x) = 1

2
x + 1

2
(1, 0),

3(x) = 1

2
x + 1

2
(0, 1), 4(x) = 1

2
x + 1

2
(1, 1).

Here, symbols 1, 2, 3 and 4, are associated with the unit square corners t1 = (0, 0),
t2 = (1, 0), t3 = (0, 1) and t4 = (1, 1), respectively. Each map i(x), i = 1, 2, 3, 4, first con-
tracts the unit square [0, 1]2 into the subsquare [0, 1

2]2, and then shifts the subsquare towards
the corresponding corner ti of the unit square.

This is illustrated in figure 1. Under the map 1(x), the black unit square at the top left is
contracted and then shifted, so that it fills the subsquare position associated with symbol 1.
The shift vectors ti are schematically shown as the corresponding symbols i appearing at
the corners of the unit square.

Figure 1. Illustration of the iterative function system behind the chaos sequence representations of symbolic
streams. Each symbol 1, 2, 3 and 4 is associated with a unique corner of the black unit square at the top left. Upon
seeing symbol 1, the unit square is contracted and shifted towards to corner associated with symbol 1. This process
is iteratively repeated as more new symbols arrive. Increasingly longer sequences are coded in the shrinking copies
of the original black unit square. In each construction step, the resulting unit square is labeled by the suffix coded
by the black subsquare.

194 P. TIN̆O AND G. DORFFNER

The whole process can be iteratively repeated. Assume that the next symbol is 4. Again,
the unit square is contracted into [0, 1

2]2, but this time the contracted subsquare is shifted to
the upper right corner of the unit square. Upon seeing yet another symbol, say, 2, the result
of the previous step is contracted into [0, 1

2]2 and shifted to the lower right corner of the
unit square, etc.

Note that by iteratively making contractions and shifts, we effectively code the history
of seen symbols into subsquares of [0, 1]2. Black subsquares inside unit squares in figure 1
correspond to seen strings schematically written on top of the squares. For example, the
black square at the top left of figure 1 codes the state of total ignorance—every string overA
could have been seen. The black subsquare inside the unit square labeled by *1 corresponds
to all strings ending with symbol 1. The black “subsubsquare” in the unit square labeled by
*14 lies in the subsquare corresponding to strings ending with 4 (shaded area) and codes
all strings ending with 14. Likewise, the black region in the unit square labeled by *142
corresponds to all strings ending with 142.

Two properties of the chaos game representation CGR(S) of symbolic sequences S are of
importance to us. First, if histories of the last symbols in two sequences S1, S2, are the same,
i.e. if the sequences S1, S2 share a common suffix, the last points in the representations,
CGR(S1), CGR(S2), lie close to each other. Second, the longer is the common suffix shared
by S1 and S2, the smaller is the region containing the last points of CGR(S1), CGR(S2).

3.2. Deriving an appropriate context function

We slightly modify the concept of chaos game representations to compute a chaos
L-block representation CBRL ,k(S) of the sequence S. It is constructed by plotting only
the last points of the chaos game representations CGRk(w) of allowed L-blocks w ∈ [S]L .
The representation of a single block, resulting in a single point, is defined by the map
σ : AL → [0, 1]D , from L-blocks v1v2 · · · vL over A to the unit hypercube,

σ(v1v2 · · · vL) = vL(vL−1(. . . (v2(v1(x∗))) . . .)) = (vL ◦ vL−1 ◦ · · · ◦ v2 ◦ v1)(x∗),
(5)

where x∗ = { 1
2 }D is the center of the hypercube. The maps v1, . . . , vL , corresponding to

symbols appearing in L-blocks are defined in (4).
We thus obtain the (multi)set of points CBRL ,k(S) in �D containing the geometric repre-

sentations of allowed L-blocks in S. The set CBRL ,k(S) codes the suffix structure in allowed
L-blocks in the following sense (Tiňo, 1999): if v ∈ A+ is a suffix of length |v| of a string
u = rv, r, u ∈ A+, then u(X) ⊂ v(X), where v(X) is a D-dimensional hypercube of side
length k|v|. Hence, the longer is the common suffix shared by two L-blocks, the closer the
L-blocks are mapped in the chaos L-block representation CBRL ,k(S).6 On the other hand,
the Euclidean distance between points representing two L-blocks u, v, that have the same
prefix of length L − 1 and differ in the last symbol, is at least 1 − k.

Given this property, finding an appropriate context function can easily be done by per-
forming vector quantization (VQ) on the chaos L-block representation CBRL ,k(S) of the
training sequence S. VQ in the metric space (�D, d), where d is the metric, positions in

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 195

�D M codebook vectors (CVs), b1, . . . , bM , each CV representing a subset of points from
CBRL ,k(S) that are closer to it (w.r.t. metric d) than to any other CV, so that the overall
error of substituting CVs for points they represent is minimal. In other words, CVs tend to
represent points in CBRL ,k(S) lying close to each other (in metric d).

As the distance function d , we consider the L1 distance

d1(x, y) =
D∑

i=1

| xi − yi |, (6)

or the L2 (Euclidean) distance

d2(x, y) =
√√√√ D∑

i=1

(xi − yi)2, (7)

where x = (x1, x2, . . . , xD), y = (y1, y2, . . . , yD) ∈ �D . Compared to the L1 metric, the
L2 metric is less sensitive to smaller distances, while emphasizing the larger ones. Vector
quantization in L1 and L2 metrics positions CVs in the median and the mean, respectively,
of the set of points they represent.

Now, as with classical Markov models, we define the prediction context function c :AL →
C via an equivalence E on L-blocks over A. This time, the equivalence E reads: two L-
blocks u, v are in the same class if their images under the map σ (Eq. (5)) are represented
by the same codebook vector. In this case, the set of prediction contexts C can be identified
with the set of codebook vectors {b1, b2, . . . , bM}. We refer to predictive models with such
a context function as fractal prediction machines (FPMs).7 The prediction probabilities (1)
are determined by

P(s | bi) = N (i, s)∑
a∈A N (i, a)

, s ∈ A, (8)

where N (i, a) is the number of (L +1)-blocks ua, u ∈ AL , a ∈ A, in the training sequence,
such that the point σ(u) (Eq. (5)) is allocated to the codebook vector bi .

3.3. FPM construction

To summarize what was described above, fractal prediction machines are constructed as
follows:

1. calculate the chaos L-block representation CBRL ,k(S) of the training sequence S =
s1s2 . . . sm containing point representations σ(w) ∈ �D (Eq. (5)) of all allowed L-blocks
w ∈ [S]L in S

2. partition the hypercube [0, 1]D into M regions V1, . . . , VM , by running a vector quantizer
on the set CBRL ,k(S). The regions Vi , i = 1, . . . , M , in the metric space (�D, d), are

196 P. TIN̆O AND G. DORFFNER

the Voronoi compartments (Aurenhammer, 1991) of the codebook vectors b1, . . . , bM ,

Vi = {
x ∈ [0, 1]D | d(x, bi) = min

j
d(x, b j)

}
.

All points in Vi are allocated8 to the codebook vector bi .
3. set the counters N (i, a), i = 1, . . . , M , a = 1, . . . , A, to zero
4. for 1 ≤ t ≤ m − L

• code the L-block St+L−1
t by a point σ(St+L−1

t)

• if σ(St+L−1
t) ∈ Vi , increment the counter N (i, st+L) by one

5. with each prediction context (codebook vector) b1, . . . , bM , associate the next symbol
probabilities

P(s | bi) = N (i, s)∑
a∈A N (i, a)

, s ∈A.

4. Experiments

We compared the fractal prediction machines (FPMs) with both the classical and variable
memory length Markov models referred to as MM and VLMM (or PST, for prediction suffix
tree), respectively. The experiments were performed on five data sets of various origin and
different levels of subsequence distribution structure. These five data sets comprise the
following:

• two classical symbolic sequences studied previously, namely DNA sequences and text
sequences from the bible,

• two sequences obtained by quantizing chaotic time series, which have been well-studied
and have a known deep and complex structure: quantized Laser data and the Feigenbaum
sequence,

• one sequence derived from quantizing a time series from a real world stochastic process,
namely the historical Dow Jones industrial average.

By choosing these data sets we aim to demonstrate where and when FPMs can outperform
the classical fixed-order and the more flexible variable-order Markov models. At the same
time, we demonstrate the feasibility of transforming continuous time series into symbolic
streams and subsequently using MMs, VLMMs and FPMs to learn about their structure.

Quantizing real-valued time series into symbolic streams has been a well-understood and
useful information reduction technique in symbolic dynamics. Under certain conditions,
stochastic symbolic models of quantized chaotic time series represent, in a natural and
compact way, the basic topological, metric and memory structure of the underlying real-
valued trajectories (see e.g. Crutchfield & Young, 1990; Katok & Hausselblatt, 1995).

Analogous ideas in the context of stochastic real-valued time series were recently put
forward by Bühlmann (1999b). He introduces a new class of hybrid real-valued/symbolic
models, the so-called quantized variable length Markov chains (QVLMCs), that describes

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 197

a class of real-valued stochastic processes. QVLMCs are roughly VLMMs constructed on
the quantized sequences with the next step distribution in � defined as a mixture of local
(say, Gaussian) densities corresponding to the individual partition elements (symbols). The
mixture weights correspond to the next-symbol probabilities given by the symbolic model
(VLMM). Bühlmann (1999b) proves two key results. First, the class of QVLMCs constitutes
a good representational basis for stationary real-valued processes. In particular, the class
of QVLMCs is weakly dense in the set of stationary �-valued processes. Second, given an
appropriate partition function into symbols, finding the optimal QVLMC in the maximum
likelihood setting can be achieved exclusively by finding the optimal underlying VLMM
on the symbolic level. Hence, modeling quantized time series is of great importance. We
found the quantization approach very effective in our recent study on financial time series
modeling (Tiňo et al., 2000a). See also (Bühlmann, 1998; Giles, Lawrence, & Tsoi, 1997;
Papageorgiou, 1998).

4.1. Experimental setup

In all experiments we constructed FPMs using a contraction coefficient k = 1
2 (see Eq. (4))

and K-means clustering (MacQueen, 1967; Buhmann, 1995), in both L1 and L2 norms, as a
vector quantization tool. PSTs representing VLMMs were constructed using the Kullback-
Leibler criterion (Eq. (2)).

4.2. DNA—Coding vs. non-coding regions

4.2.1. Data and methods. The DNA alphabet consists of four symbols A, C, T and G that,
for our purposes, correspond to symbols 1, 2, 3 and 4, respectively. In the first experiment,
we classified DNA sequences into coding and non-coding classes. In contrast to non-coding
sequences, coding DNA strands contain protein coding genes. Locating the coding genes is
a necessary step before any further DNA analysis. For each model class, the classification
module consists of two models—a coding expert built on the coding sequences and a
non-coding expert built on the non-coding ones. Upon presentation of an unseen DNA
sequence, the classification module makes its decision based on the probabilities assigned
to the sequence by the two experts.

In DNA sequences, almost all short subsequences are allowed, with a rather uniform
subsequence distribution. Among the models studied in this paper, fixed order Markov
models should perform well in this experiment.

We collected a large data set of vertebrate DNA sequences9 used to test gene structure
prediction programs (Burset & Guigó, 1996). From the data set, we extracted a portion
of 880 coding sequences as the coding training set and a different portion of 880 coding
sequences as the coding test set. The same applies to the non-coding sequences. So both the
training and test sets consisted of 880 coding and 880 non-coding sequences. The length of
sequences ranged from 100 to 20 000.

Maximal memory depth was set to L = 7 · 3 = 21 (to account for the triplet structure of
the coding genes). For each model class and model size, we built two different models, one
for the coding regions (constructed on the coding training set), and one for the intergenic

198 P. TIN̆O AND G. DORFFNER

regions (constructed on the non-coding training set). We tested the model performance by
calculating the normalized negative log-likelihood (NNL) of the two models on each of the
test sequences. The model pair classifies a test sequence as coding if the NNL achieved by
the coding expert is lower than that of the non-coding expert. Otherwise, the sequence is
classified as non-coding.

The likelihood can be calculated as follows. Denote the empirical n-block frequency
counts in S by P̂n . Let M be a finite memory source built on S. The probability that the
model M, initiated with the first L-block SL

1 , assigns to the continuation Sm
L+1 is

PM
(
Sm

L+1

∣∣ SL
1

) =
m∏

i=L+1

P
(
si

∣∣ c
(
Si−1

i−L

))
(9)

and the likelihood of the sequence S with respect to the model M is determined as

PM(S) = P̂L
(
SL

1

)
PM

(
Sm

L+1

∣∣ SL
1

)
. (10)

The normalized negative log-likelihood10 is calculated by

NNLM(S) = −logA PM(S)

m
. (11)

Normalized negative log-likelihood measures the amount of “statistical surprise” induced
by the model (Ron, Singer, & Tishby, 1996).

4.2.2. Results. The classification results are summarized in the contingency table contain-
ing four items: true positives (TP)—the number of coding sequences correctly classified
as coding, true negatives (TN)—the number of non-coding sequences correctly classified
as non-coding, false positives (FP)—the number of non-coding sequences incorrectly clas-
sified as coding, and false negatives (FN)—the number of coding sequences incorrectly
classified as non-coding.

From the contingency table, four performance measures were calculated:

hit rate (HR)—proportion of correctly classified sequences

HR = TP + TN

TP + TN + FP + FN
,

sensitivity (Sen)—proportion of coding sequences correctly classified as coding

Sen = TP

TP + FN
,

specificity (Sp)—proportion of non-coding sequences correctly classified as non-coding

Sp = TN

TN + FP
,

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 199

and correlation coefficient (CC)—Pearson product-moment correlation coefficient in the
particular case of two binary variables (Burset & Guigó, 1996)

CC = TP · TN − FN · FP√
(TP + FN) · (TN + FP) · (TP + FP) · (TN + FN)

.

CC is an alternative measure of overall prediction accuracy: CC = 1 corresponds to perfect
prediction, CC = 0 is expected for a random prediction.

Classification results are summarized in Tables 1 and 2. In this experiment, FPMs perform
worse than VLMMs, but VLMMs never achieve the performance of classical MMs. We used
McNemar’s test (Everitt, 1977) (on 5% level) to test for significance in the model perfor-
mance differences. PSTs built with the fixed growth strategy (εgrow = 0.001) perform always
significantly better than FPMs of comparable size. Since the size of PSTs is controlled only
indirectly through the construction parameters, the PST experts in coding/non-coding pairs
have only approximately the same size. MMs significantly outperform both the L1 norm
and L2 norm based FPMs, and PSTs built using the one-parameter and ratio εgrow = 50 εKL

schemes.

Table 1. Classification results of FPMs in the DNA experiment.

Model No. of contexts Hit rate Sensitivity Specificity Corr. coef. Signif

FPM-L1 1 63.7 66.9 60.4 0.274 · ·
4 67.7 59.5 75.8 0.358 ∗ ·

16 76.5 80.6 72.5 0.532 ∗ ·
64 82.1 82.3 81.9 0.642 ∗+

256 84.9 80.3 89.5 0.701 ∗ ·
500 85.5 79.9 91.9 0.715 · +
750 85.1 76.9 93.4 0.713 · +

1024 83.8 74.2 93.4 0.689 ∗+
FPM-L2 4 72.5 74.1 70.9 0.450 − ·

16 76.5 81.8 71.1 0.533 ∗ ·
64 81.8 80.7 82.3 0.636 ∗+

256 85.2 80.7 89.6 0.706 ∗ ·
500 85.0 78.4 91.5 0.705 · +
750 84.7 76.9 92.6 0.704 · +

1024 84.5 74.5 94.5 0.705 ∗+
Models were used to classify unseen strings of DNA into coding (positive class) and non-coding (negative
class) sequences. Hit rate, sensitivity and specificity are given in percentages.
Column Signif collects significance results of McNemar’s test (on 5% level) applied to pairs of classifiers
with comparable number of free parameters: ∗ and + mean that the classifier is significantly worse than the
corresponding Markov model and fixed-growth-PST based classifier, respectively; – marks no significance;
dots appear where the model pair of the corresponding size does not exist.

200 P. TIN̆O AND G. DORFFNER

Table 2. Classification results of MMs and PSTs in the DNA experiment.

Model No. of contexts Hit rate Sensitivity Specificity Corr. coef. Signif

PST (54,31) 85.3 83.9 86.8 0.707 ∗ +
(910,760) 83.2 72.8 94.6 0.712 ∗ +

PST–fg (56,30) 86.3 84.9 87.9 0.728 −
(520,410) 87.4 79.9 95.0 0.758 ·
(860,840) 88.1 80.4 95.7 0.770 −

PST(50) (52,32) 86.4 85.2 87.6 0.729 −−
(920,533) 84.9 74.2 95.7 0.716 ∗ +

MM 4 73.2 75.8 70.6 0.464 ·
16 84.4 86.0 82.8 0.689 ·
64 87.1 85.3 88.9 0.742 −
256 90.0 86.1 94.0 0.803 ·
1024 86.9 76.9 96.8 0.752 −

PSTs constructed using the one-parameter, fixed growth parameter εgrow = 0.001, and ratio εgrow = 50 εKL

schemes are identified by PST, PST-fg, and PST(50), respectively. Sizes of PST based classifiers are shown
as (S1, S2), where S1 and S2 are the sizes of the coding and non-coding PST experts, respectively. For other
details, see table footnote of the Table 1.

Classical MMs are difficult to beat in this experiment, because the suffix structure in
the DNA strands is rather uniform. In figure 2 we show geometric representations of L-
blocks of both the coding and non-coding training sequences. Compared with geometric
representations of L-blocks in the laser or Feigenbaum sequences (figures 6, 8), there is

Figure 2. Geometric chaos block representations (CBR) of L-blocks in the DNA coding (left) and non-coding
(right) training sequences.

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 201

almost no structure in the DNA L-blocks and both the L1 and L2 norm vector quantizers
place the codebook on an approximately uniform grid similar to that formed by MMs.
FPMs constructed on a perfectly uniform square grid mimic the corresponding MM. Poorer
performance of FPMs is caused by deviations of the codebooks from regular grids.

The distribution of allowed blocks in the DNA sequences is more flat than that found
in the chaotic laser sequence (Section 4.4), but more subtle than the special self-similar
Feigenbaum subsequence metric structure (Section 4.5). Therefore, for small construction
parameter values, the one-parameter and ratio PST construction schemes are prone to over-
fitting and the best PST results are achieved by the fixed growth parameter εgrow = 0.001
construction.

4.3. The Bible

4.3.1. Data and methods. In the second experiment, we tested our model on the experi-
ments of Ron, Singer and Tishby with language data from the Bible (Ron, Singer, & Tishby,
1996). The alphabet was English letters and the blank character (27 symbols). They trained
classical MMs and a VLMM on the books of the Bible except for the book of Genesis. Then
the models were evaluated on the basis of normalized negative log-likelihood (Eq. (11))
on an unseen portion of 236 characters from the book of Genesis. When constructing PST,
Ron, Singer and Tishby set the maximal memory depth to L = 30. They built a PST with
about 3000 nodes.

We compared likelihood results of our model with those obtained by Ron, Singer and
Tishby for MMs and VLMMs. The training and test sets were the same as in Ron, Singer
and Tishby, (1996). As with the VLMM, we set the maximal memory length to L = 30.
FPMs were constructed by vector quantizing (in both L1 and L2 norms) a 5-dimensional11

geometric representation of 30-blocks appearing in the training set.

4.3.2. Results. NNL results on the test set are shown in figure 3.
Both the PST and FPMs clearly outperform the MMs. FPMs appear to perform slightly

better than the PST. Unfortunately, we were not able to further expand this experiment
by giving results for various PST sizes and construction schemes. The training sequence
contains approximately 3.4 × 106 symbols from an alphabet of 27 characters. On a 2 ×-
Ultrasparc workstation, all the FPM experiments were finished within a few days. We could
not reproduce the PST reported in Ron, Singer and Tishby (1996) and (1994). The PST
construction procedures worked extremely slow (recall that the maximal memory depth
was set to L = 30, and the alphabet has 27 symbols), or resulted in small PSTs. Even after
3 months of computation we were not able to find suitable parameters that would yield a
series of PSTs of size 500–3000. In this respect, the speed and self-organizing character of
FPM construction proved to be of great advantage.

4.4. Laser in a chaotic regime

4.4.1. Data and methods. In the third experiment, we trained the models on a sequence of
quantized activity changes of a laser in a chaotic regime. Deterministic chaotic dynamical

202 P. TIN̆O AND G. DORFFNER

Figure 3. Normalized negative log likelihoods (NNL) achieved by finite context sources on an unseen text from
the book of Genesis. The test sequence is the same as that used by Ron, Singer and Tishby (1996). The MM and
PST results are reproduced from Ron, Singer and Tishby (1996).

systems usually organize their behavior around chaotic attractors containing regions of
different levels of instability (sensitivity to small perturbations in initial conditions), mea-
sured e.g., by the local Lyapunov exponents. Periods of relatively predictable behavior are
followed by periods of unpredictable development (due to finite precision of our measur-
ing devices and computing machines). By quantizing a chaotic trajectory into a symbolic
stream (each symbol corresponds to a region of the state space where the system evolves),
a technique well-known in symbolic dynamics, we obtain a rough picture about the basic
topological, metric and memory structure of the trajectories (see e.g., Katok & Hausselblatt,
1995). Relatively predictable subsequences having various levels of memory structure are
followed by highly unpredictable events usually requiring a deep memory. For example, in
this experiment, the chaotic laser produces periods of oscillations with increasing ampli-
tude, followed by sudden, difficult to predict, activity collapses (see figure 4). To model such
sequences with the simple class of stochastic models studied in this paper—finite context
sources—we need to vary the memory depth with respect to the context. This is exactly the
thing variable memory length models should be good at.

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 203

Figure 4. Left—the first 1000 activations of a laser in a chaotic regime. Right—histogram of the differences
between the successive activations. Dotted vertical lines show the cut values θ1 and θ2 corresponding to the Q%
and (100 −Q)% quantiles, respectively (Q = 10). Symbols corresponding to quantization regions appear on top
of the figure.

The data set was a long sequence12 {Dt } of 10 000 differences between the successive
activations of a real laser in a chaotic regime. The sequence {Dt } was quantized into a
symbolic stream S = {st } over four symbols corresponding to low and high positive/negative
laser activity change:

st =

1 (normal up), if 0 ≤ Dt < θ2

2 (extreme up), if θ2 ≤ Dt

3 (normal down), if θ1 ≤ Dt < 0

4 (extreme down), if Dt < θ1,

(12)

where the parameters θ1 and θ2 correspond to Q percent and (100 − Q) percent sam-
ple quantiles, respectively. The number of positive differences is approximately the same

204 P. TIN̆O AND G. DORFFNER

as that of the negative differences. So, the upper (lower) 2Q% of all laser activation in-
creases (decreases) in the sample are considered extremal, and the lower (upper) (100 −
2Q)% of laser activation increases (decreases) are viewed as normal. The quantile Q
was set to 10%. Figure 4 shows a portion of the first 1000 laser activations, together
with a histogram of the differences between the successive activations. Dotted vertical
lines show the cut values θ1 and θ2 corresponding to the 10% and 90% quantiles, respec-
tively.

The first 8000 symbols and the remaining 2000 symbols from the laser symbolic sequence
S formed the training and test sequences, respectively. After constructing the finite-context
sources MMs, VLMMs and FPMs on the training sequence (maximal memory depth was
set to L = 20), we evaluated the normalized negative log-likelihood (NNL) (see Eq. (11))
of the test sequence with respect to the fitted models.

4.4.2. Results. The results are shown in figure 5.
Classical MMs of order up to 5 are outperformed by FPMs with comparable number

of contexts. There is almost no difference between the performances of FPMs constructed
using the L1-norm and L2-norm based procedures.13

As discussed in Section 2.2, small values of ε = εKL = εgrow in the one-parameter PST
construction scheme lead to including low-probability subsequences as potential prediction
PST contexts. This results in PSTs greatly overfitting the training sequence (line indicated by
PST in figure 5). The line indicated by PST-fg traces the NNLs achieved by the fixed growth
parameter εgrow = 0.001 PST construction scheme. Only the acceptance threshold parameter
εKL is varied. While the overfitting effect in larger PSTs has disappeared, smaller PSTs
(corresponding to larger values of εKL) perform poorly, since the fixed small value of εgrow

resulted in considering unnecessarily specific contexts. Finally, we show the results for the
procedure constructing PSTs with ratio-related parameters εgrow = ρ εKL, ρ = 10, 50, 100
(lines indicated by PST(ρ)). For small εKL, the ratio value of 10 is still too low to prevent the
overfitting effect. PSTs constructed with ratios ρ = 50 and ρ = 100 achieve performances
comparable to those of FPMs.

This experiment demonstrates that VLMM construction can be highly dependent on
construction parameters and that using the one-parameter scheme of Ron, Singer and Tishby
(1994) may result in too specific models strongly overfitting the training sequence. FPMs, on
the other hand, are constructed by simply enlarging the codebook in the vector quantization
phase and show no deterioration in performance when increasing the number of prediction
contexts.14

To illustrate the difference between the fixed-order and variable-context-length Markov
models, we plot in figure 6 the geometric representations σ(St+L−1

t), t = 1, 2, . . . , m − L
+ 1, of L-blocks appearing in the training sequence S = s1s2 . . . sm , (see Eq. (5)), together
with geometric representations σ(w) of prediction contexts w ∈ C found in the MM, PST
and FPMs of comparable size (approximately 256 contexts). Geometric representations of
the training sequence L-blocks are shown as dots in the upper left part of figure 6.

Geometric representations of prediction contexts of the 4th-order MM, shown as circles
in the lower right, blindly cover the unit square [0, 1]2, regardless of the actual L-block
distribution in the training sequence.

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 205

Figure 5. Normalized negative log-likelihoods (NNL) of the laser test sequence with respect to finite-context
sources built on the laser training sequence. Markov models are indicated by MM. FPMs corresponding to the L1-
norm and L2-norm based constructions are indicated by FPM-L1 and FPM-L2, respectively. PSTs constructed using
the one-parameter scheme, PSTs build with fixed growth parameter εgrow, and PSTs constructed with ratio-related
growth and threshold parameters εgrow = ρεKL, ρ = 10, 50, 100, are indicated by PST, PST-fg, and PST(ρ),
respectively.

Prediction contexts of the VLMM (PST constructed with ratio related parameters εgrow =
50 εKL) are suffixes of the allowed L-blocks, and so geometric representations of the
prediction contexts concentrate on the areas inhabited by representations of the allowed
L-blocks (see Section 3.1). The context selection criteria favor prediction contexts whose
probability exceeds the “acceptance” threshold εgrow and whose next-symbol probabili-
ties do not significantly differ from those of the extended contexts. The result (lower left
of figure 6) is a sort of “conditional” vector quantization of geometric representations
of the training sequence L-blocks, whose aim is to cover the set of “accepted” allowed
blocks with a set of prediction contexts, taking into account the associated next-symbol
probabilities.

FPM contexts, shown in the upper right of figure 6, correspond to codebooks constructed
by vector quantization in the L1 (circles) and L2 (crosses) norms.

206 P. TIN̆O AND G. DORFFNER

Figure 6. Chaos block representations (CBR) of L-blocks in the laser training sequence (upper left), prediction
contexts of FPMs (upper right), PST (lower left), and MM (lower right). Chaos block representations of prediction
contexts are shown as circles, except for contexts of the L2-norm constructed FPM (shown as crosses).

4.5. Feigenbaum sequence

4.5.1. Data and methods. In the fourth experiment, we applied the models to the
Feigenbaum binary sequence with a very strict topological and metric organization of
allowed subsequences (see e.g., Katok & Hausselblatt, 1995). The sequence was obtained
by quantizing the time series resulting from the well-known logistic equation in the chaotic
regime with respect to the sign of the iterands (1—negative, 2—non-negative). Highly spe-
cialized, very deep prediction contexts are needed to model this sequence. Classical Markov
models cannot succeed and the full power of admitting a limited number of variable length
contexts can be exploited.

The sequence is well-studied in symbolic dynamics and has a number of interesting
properties. First, the topological structure of the sequence (i.e., the structure of allowed
n-blocks, not regarding their probabilities) can only be described using a context sensitive

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 207

Figure 7. Plots of self-similar rank-ordered block distributions of the Feigenbaum sequence for different block
lengths (indicated by the numbers above the plots). The self similarity relates block distributions for block lengths
2g → 2g+1, 3 · 2g−1 → 3 · 2g , g ≥ 1 (connected by arrows).

tool—a restricted indexed context-free grammar (Crutchfield & Young, 1990). Second, for
each block length n = 1, 2, . . . , the distribution of n-blocks is either uniform, or has just
two probability levels. Third, the n-block distributions are organized in a self-similar fashion
(Freund, Ebeling, & Rateitschak, 1996). The transition between the ranked distributions for
block lengths 2g → 2g+1, 3 · 2g−1 → 3 · 2g , g ≥ 1, is achieved by rescaling the horizontal
and vertical axis by a factor 2 and 1

2 , respectively. Plots of the Feigenbaum sequence n-block
distributions, n = 1, 2, . . . , 8, can be seen in figure 7. Numbers above the plots indicate
the corresponding block lengths. The arrows connect distributions with the (2, 1

2)-scaling
self-similarity relationship.

The sequence can be specified by the composition rule

a0 = 2, a1 = 21, an+1 = anan−1 an−1. (13)

We chose to work with the Feigenbaum sequence, because increasingly accurate mod-
eling of the sequence with finite memory models requires a selective mechanism for deep
prediction contexts.

We created a large portion of the Feigenbaum sequence and trained a series of classical
MMs, variable memory length MMs (VLMMs), and fractal prediction machines (FPMs)
on the first 260 000 symbols. The following 200 000 symbols formed a test set. Maximum
memory length L for VLMMs and FPMs was set to 30.

4.5.2. Results. Due to the special metric structure of the Feigenbaum sequence, where for
each block length n, the n-block distribution is either uniform, or has just two probability
levels, the issues concerning the growth parameter εgrow in the PST construction, promi-
nent in the previous experiment, are not relevant. Therefore we report just VLMM results
corresponding to the one-parameter PST construction scheme.

Nevertheless, constructing a series of increasingly complex VLMMs by varying the con-
struction parameter appeared to be a troublesome task. Unlike in the previous experiment,
the PST construction procedure did not work “smoothly” with varying the construction

208 P. TIN̆O AND G. DORFFNER

parameter. We experienced a highly non-regular behavior with intervals of parameter val-
ues yielding unchanged PSTs, and tiny regions in parameter space corresponding to a large
spectrum of PST sizes. Therefore, it was impossible to simply iteratively change the param-
eters by a small amount and save the resulting PSTs (as done in the previous experiment).
Instead, one had to spent a fair amount of time to find the “critical” parameter values.

In contrast, a fully automatic construction of FPMs involved sliding a window of length
L = 30 through the training set; for each window position, mapping the L-block w appearing
in the window to the point σ(w) (Eq. (5)), vector-quantizing (in both L1 and L2 norms) the
resulting set of points (up to 30 codebook vectors). After the quantization step, we computed
predictive probabilities according to Eq. (8).

Figure 8 is analogous to figure 6 from the previous experiment. One dimensional15

geometric representations of the training sequence L-blocks form very dense, well-separated
clusters. In this case, vector quantization in L1 and L2 norms gives almost identical
codebooks and so both the L1 and L2 norm based FPM constructions yielded the same
results. Variable-context-length models quickly grasp the structure in allowed L-blocks.
The rigid fixed-order MMs, instead of specializing on deeper contexts, spare their resources
to cover the missing subsequences.

Figure 8. One-dimensional chaos block representations of L-blocks in the binary Feigenbaum training sequence
(bottom). Shown are also geometric representations of the prediction contexts of FPMs, PST, and MM with
approximately 16 prediction contexts. Representations of prediction contexts are shown as circles, except for
contexts of the L2-norm constructed FPM (shown as crosses).

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 209

Table 3. Normalized negative log-likelihoods (NNL) on the Feigenbaum test set.

Model No. of contexts NNL Captured block distribution

FPM 2–4 0.6666 1–3

5–7 0.3333 1–6

8–22 0.1666 1–12

23– 0.0833 1–24

PST 2–4 0.6666 1–3

5 0.3333 1–6

11 0.1666 1–12

23 0.0833 1–24

MM 2,4,8,16,32 0.6666 1–3

Normalized negative log-likelihoods (NNL) (Eq. (11)) of the test set computed using the
fitted models exhibited a step-like increasing tendency shown in Table 3. We also investi-
gated the ability of the models to reproduce the n-block distribution found in the training
and test sets. This was done by letting the models generate sequences of length equal to
the length of the training sequence and for each block length n = 1, 2, . . . , 30, computing
the L1 distance between the n-block distribution of the training and model-generated se-
quences. The n-block distributions on the test and training sets were virtually the same for
n = 1, 2, . . . , 30. In Table 3 we show block lengths for which the L1 distance does not ex-
ceed a small threshold �. We set � = 0.005, since in this experiment, either the L1 distance
was less 0.005, or exceeded 0.005 by a large amount.

The classical MM totally fails in this experiment, since the context length 5 is far too
small to enable the MM to mimic the complicated subsequence structure in the Feigenbaum
sequence. FPMs and VLMMs quickly learn to explore a limited number of deep prediction
contexts and perform comparatively well.

An explanation of the step-like behavior in the log-likelihood and n-block modeling
behavior of VLMMs and FPMs is out of the scope of this paper. For a detailed analysis, see
(Tiňo, Dorffner, & Schittenkopf, 2000). We briefly mention, however, that by combining
the knowledge about the topological and metric structures of the Feigenbaum sequence
(e.g. Freund, Ebeling, & Rateitschak, 1996) with a careful analysis of the models, one can
show why and when an inclusion of a prediction context leads to an abrupt improvement in
the modeling performance. In fact, we show that VLMMs and FPMs constitute increasingly
better approximations to the infinite self-similar Feigenbaum machine known in symbolic
dynamics (Crutchfield & Young, 1990).

4.6. Financial data

4.6.1. Data and methods. The final data set consisted of quantized daily volatility changes
of the Dow Jones Industrial Average (DJIA) from Feb. 1, 1918 until April 1, 1997, trans-
formed into a time series of returns rt = log xt+1 − log xt . Predictive models were used
to predict the direction of volatility move for the next day. In Tiňo et al.(2000a) we show

210 P. TIN̆O AND G. DORFFNER

that the quantization, symbol based approach to volatility prediction can outperform the
more traditional econometric models of the ARCH and GARCH families (Bollerslev, 1986).
Financial time series are known to be highly stochastic with a relatively shallow memory
structure (Jaditz & Sayers, 1993). In addition, to account for stationarity, financial time
series of daily values are usually kept short. In this case, it is difficult to beat the low-
order classical MMs. One can perform better than MMs only by developing a few deeper
specialized contexts, but that, on the other hand, can easily lead to overfitting.

We considered the squared return r2
t a volatility estimate for day t . Volatility change fore-

casts (volatility is going to increase or decrease) based on historical returns can be interpreted
as a buying or selling signal (in an option market) for a straddle (see e.g. Noh, Engle, &
Kane, 1994). If the volatility decreases, we go short (straddle is sold), if it increases, we take
a long position (straddle is bought). In this respect, the quality of a volatility model can be
measured by the percentage of correctly predicted directions of daily volatility differences.

The series of returns {rt } was transformed into a series {Dt } of differences between the
successive squared returns Dt = r2

t+1 − r2
t . We then partitioned the series {Dt } of daily

volatility moves into 13 non-overlapping intervals, each containing 1700 values (spanning
approximately 6 1

2 years). Each interval was further partitioned into the training set (the first
1100 values) and the validation set (the remaining 600 values). The series of returns of the
DJIA can be seen in figure 9. The solid vertical lines indicate division into the intervals,
the dotted vertical line within each interval indicates the split between the training and
validation sets. For each interval I = 1, 2, . . . , 12, predictive models were trained on the
training set, candidate models were selected on the validation set, and the selected candidate
models were tested on the test set formed by the first 600 values from the training set of
the next interval. This way, we got 12 partially overlapping epochs of the series {Dt }, each
containing 1100 + 600 + 600 = 2300 values (spanning approximately 9 years). Training
sets of the 12 epochs do not overlap. The same applies to the test and validation sets.

In each epoch, we transformed the training series {Dt } of daily volatility differences into
a sequence over four symbols via the quantile technique used in the laser data experiment
(see Eq. (12)). Given a quantile Q, the validation and test sets were quantized using the cut
values determined for Q on the training set.

Maximum memory length L for VLMMs and FPMs was set to 10 (two weeks). We trained
classical MMs, PSTs and FPMs with various numbers of prediction contexts (up to 256)
and extremal event quantiles Q∈ {10, 20, . . . , 40}. For each model class, the model size
and the quantile Q to be used on the test set were selected according to the validation set
performance. Performance of the models was quantified as the percentage of correct guesses
of the volatility change direction for the next day. If the next symbol was 1 or 2 (3 or 4) and
the sum of conditional next symbol probabilities for 1 and 2 (3 and 4) given by a model
was greater than 0.5, the model guess was considered correct.

4.6.2. Results. For all 12 epochs, test set performances of the models selected on the
validation sets are shown in figure 10.

We subjected the differences in model performances across the 12 epochs to the para-
metric t- and non-parametric Wilcoxon paired significance tests. The results of significance
tests are summarized in Table 4. Both tests reveal that the FPMs significantly outperform

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 211

Table 4. Tests for significance in model performances across 12 epochs in the DJIA experiment.

Model FPM–L1 FPM–L2 PST PST–fg PST (50) MM

FPM–L1 − − ∗ ∗ ++ ∗ ∗ ++ ∗ ∗ ++ −
FPM–L2 − − ∗ ∗ ++ ∗ ∗ ++ ∗ ∗ ++ *+
PST − − − − − −
PST–fg − − − − − −
PST(50) − − − − − −
MM − − ∗ + * * −
Item (i, j) reports results of the test whether the model corresponding to the row i significantly
outperforms the model associated with the column j .
Significance suggested by the (parametric) t- and (non-parametric) Wilcoxon paired tests is
marked with ∗ and +, respectively. A double star (plus) means a significance on 1% level, a
single star (plus) corresponds to a significance on 5% level, – means no significance. PSTs
constructed using the one-parameter, fixed growth parameter εgrow = 0.001, and ratio εgrow =
50 εKL schemes are denoted by PST, PST–fg, and PST(50), respectively.

Figure 9. Series of returns (in percent) of the DJIA from February 1918 till April 1997. The solid vertical lines
indicate division into intervals, the dotted vertical line within each interval indicates the split between the training
and validation sets. The first 600 values from the training set of an interval forms a test set for the previous interval.

212 P. TIN̆O AND G. DORFFNER

Figure 10. Prediction performance (hit rates) of MMs, PSTs and FPMs on 12 epochs of the quantized daily
volatility moves of the DJIA. FPMs constructed through the L1 and L2 norm procedures are indicated by FPM-L1
and FPM-L2, respectively. The performances of PSTs constructed via the one-parameter (solid line), fixed growth
parameter εgrow = 0.001 (dashed line), and ratio εgrow = 50 εKL (dotted line) schemes are almost identical.

VLMMs. The L2 norm based FPMs perform significantly better than MMs. Both tests also
suggest that MMs significantly outperform PSTs constructed with one-parameter scheme.
Restricting to t-test, MMs appear to be significantly better than any PST scheme.

This experiment illustrates the practical problems in fitting VLMMs. Training sequences
in this experiment are relatively short (1100 symbols—approximately 4 1

2 years). Consider-
ing stationarity issues, they can hardly be made substantially larger. In addition, financial
time series are known to be highly stochastic with a relatively shallow memory structure
(Jaditz & Sayers, 1993). All PST construction schemes develop too specialized predic-
tion contexts, even for small PSTs. In this case, the use of validation set strategy does not
completely prevent PSTs from overestimating the memory structure in the data.

5. Discussion

In four of the five experiments, fractal prediction machines (FPMs) performed at least
as well as variable memory length Markov models (VLMMs). The only exception is the

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 213

DNA sequence, where due to the uniform distribution of contexts, classical Markov models
(MMs) are favored. In this case, FPMs performed worse than VLMMs.

In the remaining four cases FPMs outperformed classical MMs, and showed a decisive
advantage over VLMMs with respect to model performance and/or ease of construction:

• in the case of the bible text, inhibitive computational demands of the VLMM were
revealed. In contrast, FPMs could efficiently be estimated on the same data set with a
variety of numbers of contexts,

• in the case of quantized Laser data, the experiments pointed to a severe parameter-
dependency of the estimation algorithm for VLMMs, whereas FPMs proved to be robust
and effective,

• in the case of the Feigenbaum sequence, FPMs achieved the same level of performance
(measured by negative log likelihood) as the VLMM, but the construction of FPMs was
much less troublesome.

• in the case of quantized financial data, FPMs significantly outperformed VLMMs, mainly
due to the availability of only short training sequences rendering the estimation of a
VLMM difficult.

In summary, the experiments demonstrate that fractal prediction machines are an efficient
and viable candidate for learning the statistical structure of symbolic sequences, whenever
the classical Markov models are not appropriate due to the existence of deep structure
involving only a few relevant contexts.

One of the main advantages of our approach is the self-organizing character of con-
structing a series of fractal-based predictive models, fractal prediction machines (FPMs),
of increasing size. Vector quantization covers the geometric L-block representations of the
training sequence with increasingly large codebooks in a natural and self-organized man-
ner. Predictive models constructed on such codebooks can be compared through a model
selection criterion, e.g., validation set performance.

Constructing a series of increasingly large models to enter the model selection phase
is an important issue that has attained little attention in the VLMM literature. In practical
applications with larger alphabets and very long sequences, constructing a set of potential
candidate VLMMs can take a prohibitively long time. Indeed, results in the VLMM litera-
ture are usually presented only for a few fitted models, stressing the memory requirement
advantage of VLMMs over the classical MMs. Little is said about whether a particular
model was selected from a set of potential candidates, or how difficult it was to arrive at the
presented solution (see, for example Ron, Singer, & Tishby, 1994, 1996).

Guyon and Pereira (1995) study two ways of constructing increasingly complex VLMMs:
by increasing the source memory L with other construction parameters kept fixed, or by
fixing a (long enough) source memory L and gradually changing a single parameter, while
keeping all the other construction parameters fixed. The latter scheme was experimentally
shown to yield a superior performance (Guyon & Pereira, 1995). It should be noted, that
while Guyon and Pereira (1995) do construct a series of increasingly complex VLMMs on
a very large set (AP news corpus, containing about 108 characters), they do so by setting
the maximal memory depth to L = 5. Such a shallow memory construction16 enabled the
authors to construct a series of VLMMs in a realistic time. Larger memory lengths L would
lead to an exponential increase in PST construction time.

214 P. TIN̆O AND G. DORFFNER

In addition, as mentioned in Section 4.5, the construction parameters’ selection is a non-
intuitive task that may require a lot of interactive steps. In this respect, the FPM construction
is more intuitive (the number of codebook vectors directly corresponds to the number of
predictive contexts), easier to automate (growth of predictive models is directed by the
codebook growth in the self-organizing quantization algorithms) and often faster.

Moreover, we illustrated in the laser data experiment, that considering different VLMM
parameter selection strategies can lead to completely different learning scenarios. In con-
trast, the simple FPM construction is free of such defects. Interestingly enough, it gives
similar results for both the L1 and L2 norm FPM algorithms.17

Variable memory length strategies work better than the classical fixed order Markov
models when there is a significant suffix structure in long allowed blocks of the training
sequence, not explainable by considering some pre-defined, (relatively) small suffix length.
Natural language, as demonstrated in the Bible experiment, is an example of such a situation.
Another example is provided by the Feigenbaum sequence.

DNA sequences stand at the opposite end, with a rather uniform suffix structure. In this
case, it is difficult to outperform the classical MMs. Better performance might be achieved
with specialized models, incorporating some a-priori knowledge, e.g. gene structure ex-
pressed in a hidden Markov model topology (Krogh, 1997), or similarity searches with
respect to known amino acid sequences (Burset & Guigó, 1996).

However, allowing for a variable memory length is a double-edged sword. Especially
on shorter sequences (relative to the alphabet size), the variable memory length model
construction often specializes on overly deep prediction contexts, even for small model sizes.
As shown in the Dow Jones Industrial Average experiment, in this case, model selection
strategies cannot eliminate the overlearning effects.

Is is only fair to note that even though the FPMs emerge from our experiments as poten-
tially interesting and favorable alternatives to VLMMs, so far, they lack a sound theoretical
background comparable to that supporting the use of VLMMs (Ron, Singer, & Tishby,
1996; Weinberger, Rissanen, & Feder, 1995; Bühlmann & Wyner, 1999). Proceeding in
this direction, we have theoretically analyzed the multifractal properties of the basis for our
predictive models’ construction—the geometric L-block representation (Tiňo, 1999), and
found a relationship among the chaos block representation contraction factor, magnification
factor of the vector quantizer and the dynamics of the FPM context transitions.

Acknowledgments

We wish to thank Owen Kelly for helpful comments on variable length Markov models
and anonymous reviewers for many helpful suggestions. This work was supported by the
Austrian Science Fund (FWF) within the research project “Adaptive Information Systems
and Modeling in Economics and Management Science” (SFB 010). The Austrian Research
Institute for Artificial Intelligence is supported by the Austrian Federal Ministry of Science
and Transport.

Notes

1. A0 = {�} and P0(�) = 1, where � denotes the empty string.

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 215

2. εgrow is a small positive construction parameter.
3. P̂(s|�) = P̂1(s), � is the empty string.
4. To keep the notation simple, we slightly abuse mathematical notation and, depending on the context, regard

the symbols 1, 2, . . . , A, as integers, or as referring to maps on X .
5. For x ∈ �, �x� is the smallest integer y, such that y ≥ x .
6. For k close to 1

2 , geometric representations of completely different L-blocks may lie close to each other.
This happens, for example, for blocks 444...41 and 333...32 over the alphabet {1, 2, 3, 4}, geometrically
represented through the iterative function system (4) acting on [0, 1]2, with t1 = (0, 0), t2 = (1, 0), t3 = (0, 1)

and t4 = (1, 1). As a remedy, one may lower the contraction ratio k. The issue of optimal contraction ratio
with respect to a given training sequence and vector quantizer is also being currently investigated.

7. We note that FPMs depend on cluster density in the geometric L-block representations, that is controlled by
the contraction parameter k (see Eq. (4)). Smaller k’s yield more dense clusters. Furthermore, quantization
of the geometric representations is controlled by the magnification factor (Ritter & Schulten, 1986; Bauer,
Der, & Herrmann, 1996) of the used vector quantization scheme. The magnification factor relates, under
asymptotic considerations, the frequency of codebook vectors in the quantized region with the frequency of
L-block representations in that region. One can find a formal relationship among the contraction factor k,
magnification factor of the vector quantizer and the dynamics of the FPM context transitions. This and other
related issues are currently under investigation.

8. Ties as events of measure zero (points land on the border between the compartments) are broken according
to index order.

9. http://www1.imim.es/GeneIdentification/Evaluation/Index.html
10. Base of the logarithm is the number of symbols A in the alphabet A.
11. Alphabet has 27 symbols.
12. Taken from http://www.cs.colorado.edu/∼andreas/Time-Series/SantaFe.html
13. In this experiment, we also tried other vector quantization techniques like the classical Kohonen self-organizing

feature maps (SOFM) (Kohonen, 1990), SOFM with the star topology of neuron field (Tiňo & Šajda, 1995),
dynamic cell structures (Bruske & Sommer, 1995) or deterministic annealing based hierarchical clustering
(Rose, Gurewitz, & Fox, 1990). We got model performances comparable to those of the models obtained
via the K-means clustering. Clustering via deterministic annealing took enormous time without any apparent
improvement in the resulting predictive models.

14. At least up to 300 contexts.
15. Alphabet A = {1, 2} has two symbols.
16. Compare with memory depth of L = 30 in the Ron, Singer and Tishby (1996) Bible experiment.
17. We thank one of the anonymous reviewers for suggesting to use also the L1-norm FPM construction

scheme.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19, 716–723.

Aurenhammer, F. (1991). Voronoi diagrams—Survey of a fundamental geometric data structure. ACM Computing
Surveys, 3, 345–405.

Barnsley, M. F. (1988). Fractals everywhere. New York: Academic Press.
Bauer, H. U., Der, R., & Herrmann, M. (1996). Controlling the magnification factor of self-organizing feature

maps. Neural Computation, 8, 757–771.
Bollerslev, T. (1986). A generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31,

307–327.
Brillinger, D. R. (1994). Examples of scientific problems and data analysis in demography, neurophysiology and

seismology. J. Comp. and Graph. Statistics, 3, 1–22.
Bruske, J. & Sommer, G. (1995). Dynamic cell structure learns perfectly topology preserving map. Neural Com-

putation, 4, 845–865.
Burset, M. & Guigó, R. (1996). Evaluation of gene structure prediction programs. Genomics, 34, 353–357.

216 P. TIN̆O AND G. DORFFNER

Bühlmann, P. (1998). Extreme events from return-volume process: A discretization approach for complexity
reduction. Applied Financial Economics, 8, 267–278.

Bühlmann, P. (2000). Model selection for variable length Markov chains and tuning the context algorithm. Annals
of the Institute of Statistical Mathematics, 52, 287–315.

Bühlmann, P. (1999b). Dynamic adaptive partitioning for nonlinear time series. Biometrika, 86, 555–571.
Bühlmann, P. & Wyner, A. J. (1999). Variable length Markov chains. Annals of Statistics, 27, 480–513.
Buhmann, J. M. (1995). Learning and data clustering. In M. Arbib (Ed.), Handbook of brain theory and neural

networks. Cambridge, MA: Bradford Books, MIT Press.
Crutchfield, J. P. & Young, K. (1990). Computation at the onset of chaos. In W. H. Zurek (Ed.), Complexity,

entropy, and the physics of information, SFI Studies in the Sciences of Complexity (Vol. 8). Reading, MA:
Addison-Wesley.

Everitt, B. S. (1977). The analysis of contingency tables. London: Chapman and Hall.
Freund, J., Ebeling, W., & Rateitschak, K. (1996). Self-similar sequences and universal scaling of dynamical

entropies. Physical Review E, 5, 5561–5566.
Giles, C. L., Lawrence, S., & Tsoi, A. C. (1997). Rule inference for financial prediction using recurrent neural

networks. In Proceedings of the Conference on Computational Intelligence for Financial Engineering (pp. 253–
259). Piscataway, NJ: IEEE.

Guyon, I. & Pereira, F. (1995). Design of a linguistic postprocessor using variable memory length Markov models.
In Proceedings of International Conference on Document Analysis and Recognition (pp. 454–457). Montreal,
Canada: IEEE Computer Society Press.

Jaditz, T. & Sayers, C. L. (1993). Is chaos generic in economic data? Int. Journal of Bifurcation and Chaos, 3,
745–755.

Jeffrey, J. (1990). Chaos game representation of gene structure. Nucleic Acids Research, 8, 2163–2170.
Katok, A. & Hausselblatt, B. (1995). Introduction to the modern theory of dynamical systems. Cambridge, UK:

Cambridge University Press.
Khinchin, A. I. (1957). Mathematical foundations of information theory. New York: Dover Publications.
Kohonen, T. (1990). The self–organizing map. Proceedings of the IEEE, 9, 1464–1479.
Krogh, A. (1997). Two methods for improving performance of a HMM and their application for gene finding.

In Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology, Halkidiki,
Greece (pp. 179–186). Menlo Park, CA: AAAI Press.

Laird, P. & Saul, R. (1994). Discrete sequence prediction and its applications. Machine Learning, 15, 43–68.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of

the 5th Berkeley Symposium on Mathematical Statistics and Probability (pp. 281–297). Berkeley, CA: University
of California Press.

Nadas, A. (1984). Estimation of probabilities in the language model of the IBM speech recognition system. IEEE
Trans. on ASSP, 4, 859–861.

Noh, J., Engle, R. F., & Kane, A. (1994). Forecasting volatility and option prices of the s&p 500 index. Journal
of Derivatives, 2(1), 17–30.

Papageorgiou, C. P. (1998). Mixed memory Markov models for time series analysis. In Proceedings of the con-
ference on Computational Intelligence for Financial Engineering (pp. 165–183). Piscataway, NJ: IEEE.

Prum, B., Rodolphe, F., & deTurckheim, E. (1995). Finding words with unexpected frequencies in deoxyribonucleic
acid sequences. Journal of Royal Statistical Society, B 57, 205–220.

Rissanen, J. (1983). A universal data compression system. IEEE Trans. Inform. Theory, 5, 656–664.
Ritter, H. & Schulten, K. (1986). On the stationary state of the kohonen’s self-organizing sensory mapping. Biol.

Cybern., 54, 99–106.
Ron, D., Singer, Y., & Tishby, N. (1994). The power of amnesia. In Advances in Neural Information Processing

Systems 6. San Mateo, CA: Morgan Kaufmann.
Ron, D., Singer, Y., & Tishby, N. (1996). The power of amnesia. Machine Learning, 25(1), 117–150.
Rose, K., Gurewitz, E., & Fox, G. C. (1990). Statistical mechanics and phase transitions in clustering. Physical

Review Letters, 8, 945–948.
Tiňo, P. & Šajda, J. (1995). Learning and extracting initial mealy machines with a modular neural network model.

Neural Computation, 4, 822–844.
Tiňo, P. & Dorffner, G. (1998). Recurrent neural networks with iterated function systems dynamics. In International

PREDICTING THE FUTURE OF DISCRETE SEQUENCES 217

ICSC/IFAC Symposium on Neural Computation (pp. 526–532). Canada/Switzerland: ICSC Academic Press.
Tiňo, P. & Köteles, M. (1999). Extracting finite state representations from recurrent neural networks trained on

chaotic symbolic sequences. IEEE Transactions on Neural Networks, 10(2), 284–302.
Tiňo, P. (1999). Spatial representation of symbolic sequences through iterative function systems. IEEE Transactions

on Systems, Man, and Cybernetics Part A: Systems and Humans, 29(4), 386–392.
Tiňo, P., Dorffner, G., & Schittenkopf, Ch. (2000). Understanding state space organization in recurrent neural

networks with iterative function systems dynamics. In S. Wermter, & R. Sun (Eds.), Hybrid neural symbolic
integration (pp. 256–270). Berlin: Springer Verlag.

Tiňo, P., Schittenkopf, Ch., Dorffner, G., & Dockner, E. J. (2000a). A symbolic dynamics approach to volatility
prediction. In Y. S. Abu-Mostafa, B. LeBaron, A. W. Lo, & A. S. Weigend (Eds.), Computational finance
(pp. 137–151). Cambridge, MA: MIT Press.

Weinberger, M. J., Rissanen, J. J., & Feder, M. (1995). A universal finite memory source. IEEE Transactions on
Information Theory, 3, 643–652.

Willems, F. M. J., Shtarkov, Y. M., & Tjalkens, T. J. (1995). The context tree weighting method: basic properties.
IEEE Trans. Info. Theory, 3, 653–664.

Received June 17, 1998
Revised March 21, 2000
Accepted March 21, 2000
Final manuscript April 3, 2000

