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Abstract. We consider families of optimization problems with quadratic object function and affine linear
constraints, which depend smoothly on one real parameter. For a generic subclass of such problems only
three different types of (generalized) critical points occur, whereas in the general case (of nonlinear one-
parameter families of constrained optimization problems on Rn) five types are to be distinguished. We
clarify the theoretical background of these phenomena and illustrate the underlying mechanism with simple
examples.

Keywords: one-parametric quadratic optimization problems, (generalized) critical points, Whitney regular
stratification

AMS subject classification: 90C30, 90C31, 58A35

1. Introduction

One-parametric families of finite, smooth optimization problems in Rn have been studied
intensively during the last decades (see, e.g., [1,3–5,9,10]). Such problems are denoted
by P(t), where t stands for a real valued parameter. A basic concept is that of “general-
ized critical point” (g.c. point). Let us begin with introducing this concept:

We call the pair (x, t) ∈ Rn × R feasible (for the family P(·)), whenever x is
feasible for P(t). The feasible pair (x, t) is said to be a g.c. point (for P(·)) if the gradient
at x of the objective function for P(t), together with the gradients at x of the constraint
functions for P(t) which are active in x, form a linear dependent set of vectors in Rn.
Note that this concept encompasses all usual notions of “candidate local minimizers”
such as “critical point”, “stationary point” and “point of Fritz–John type”.

Jongen et al. [10] have proved that for a “generic” class of families P(·) the g.c.
points classify into precisely five characteristic types. A g.c. point (x, t) is said to be of
type 1 whenever P(t) fulfills at x the following conditions simultaneously:

1. Linear Independency Constraint Qualification (LICQ);

2. Strict Complementarity condition (SC);

3. Non-Degeneracy (ND) of the restricted Hessian of the Lagrange function (where the
restriction is taken to the linearized set of common zeros for the constraint functions,
active at x).
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Apart from some technical conditions (cf. [10] and section 2), a g.c. point is called of
type 2 when both LICQ and ND hold, but SC not; a g.c. point is said to be of type 3
when LICQ and SC are fulfilled, but ND not. The case where LICQ is violated gives
rise to g.c. points of type 4 (when the number of active constraints does not exceed n) or
to g.c. points of type 5 (when the number of active constraints equals n+ 1).

The present paper concerns one-parametric families of C1-quadratic optimization
problems, i.e., problems P(t), where the objective function is quadratic and the con-
straint functions are linear in the objective variable x, with as coefficients C1-functions
of t . Such problems will be denoted by PQ(t). Recently, Henn et al. (cf. [6]) claimed
that – generically – the families PQ(·) admit only g.c. points of the above types 1, 2
and 5. In the present paper we give a full proof as well as a geometrical explanation of
this result; in particular, we describe the effects of the non-occurrence of g.c. points of
types 3, 4 on the sets of feasible and g.c. points.

Although this point of view is not yet worked out, we believe that our approach is
a first step towards a structural analysis of multi- (especially two-) parametric families
of smooth optimization problems, and possibly will contribute to a better understanding
of Sequential quadratic programming methods.

This work is organized as follows: in section 2 we summarize some generalities on
one-parameter (quadratic) optimization problems. A precise formulation of our results is
presented in section 3, whereas in section 4 we give some illustrative examples. Finally
in section 5 the proofs are to be found.

2. Generalities

Throughout this paper, by x we mean a column vector in Rn, by xT its transpose, and
by t a real valued parameter. Moreover, let I and J be two finite (possibly empty) index
sets of cardinality m (< n) and s, respectively. For each t ∈ R let:

min
x
f (x, t) := 1

2
xTA(t)x + aT(t)x subject to

hi(x, t) := BT
i (t)x + bi(t) = 0, i ∈ I ,

gj (x, t) := CT
j (t)x + cj (t) � 0, j ∈ J ,

PQ(t)

where (for fixed t): A(t) is a symmetric (n, n)-matrix; a(t), Bi(t) and Cj(t) are column
vectors in Rn; bi(t) and cj (t) are in R. We assume all entries to be C1-functions of t .

Let B(t) be the (m, n)-matrix with BT
i (t) as its i-th row, and put b(t) =

[b1(t) . . . bm(t)]T. In a similar way, we define C(t) and c(t) by means of CT
j (t) and

cj (t), respectively. Then, PQ(t) takes the form
min
x

1

2
xTA(t)x + aT(t)x subject to

B(t)x + b(t) = 0,

C(t)x + c(t) � 0.

PQ(t)
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In the sequel, we frequently collect matrices with appropriate sizes into bigger
ones. For example, the (m+s, n)-matrix D(t) and the (m+s, 1)-matrix d(t) are defined
by respectively

D(t) :=
[
B(t)

C(t)

]
and d(t) :=

[
b(t)

c(t)

]
.

Given an arbitrary subset J0 of J with p elements (if J0 = ∅ then p = 0), we
define DJ0(t) as the (m+ p, n)-submatrix of D(t) generated by all rows of B(t) and all
rows of C(t) with indices j ∈ J0; the column vector dJ0(t) in Rm+p is defined similarly.
Throughout this paper, elements of Rn+1(= Rn × R) will be partitioned as z = (x, t).
The active index set for PQ(t) at z is defined as usual:

Jz :=
{
j ∈ J | gj (z) = 0

}
.

Let z = (x, t) be feasible for PQ(·), thus rankDJz(t) = rank[DJz(t) dJz(t)], and assume
Jz = {1, . . . , p} if Jz = ∅. The gradients (with respect to x) of hi(x, t ), i ∈ I , and
gj (x, t), j ∈ Jz, at x form a linearly independent set of vectors in Rn if and only
if

LICQ at z rankDJz

(
t
) = m+ p (thus: m+ p � n).

Our target is to investigate the set, say �, of all g.c. points for PQ(·). Recall that z
is a g.c. point if the set of vectors {∇xf (z), ∇xhi(z), ∇xgj (z), i = 1, . . . , m, j =
1, . . . , p} is linearly dependent. Here, ∇x(·) stands for gradient with respect to x.

We distinguish between two situations (z is feasible):

1. LICQ at z does not hold: z is always a g.c. point for PQ(·).
2. LICQ at z is fulfilled: z is g.c. point for PQ(·) if and only if the following equations[

A(t) DT
J0
(t)

DJ0(t) 0

] [
x

η

]
+

[
a(t)

dJ0(t)

]
= 0, J0 = Jz, (1)

admit a solution t = t , x = x, η = η (= (λ1, . . . , λm,µ1, . . . , µp)). Here, 0 stands for
the (m+ p,m+ p) null matrix. (Due to LICQ, the “Lagrange vector” η is unique; put
η = (µ1, . . . , µp) respectively η = (λ1, . . . , λm) if m = 0, respectively p = 0.) Note
that in (1), for t = t , the first n equations yield the “critical point equations for PQ(t) at
x”, whereas the last m+ p equations reflect the feasibility of x with respect to PQ(t).

For a g.c. point z, at which LICQ holds, we introduce the Strict Complementarity
(SC) and the Non-Degeneracy (ND) conditions:

SC at z µ! = 0 for all ! ∈ Jz.
ND at z the “restricted” matrix A(t)|kerDJz (t)

is nonsingular.

By the restricted matrix, we mean any matrix of the form V TA(t)V , where V is a matrix
with as columns a basis for kerDJz(t); note that the numbers of positive, negative and
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zero eigenvalues do not depend on the ambiguity in the choice of V , see also [8]. Note:
A(t) = Hessian of the Lagrange function for PQ(t) at x.

It is easily shown (see, e.g., [8]) that – under the assumption of LICQ at z – the
condition ND is equivalent with

ÑD at z rank

[
A(t) DT

Jz
(t)

DJz(t) 0

]
= n+m+ p.

Apparently, the condition ÑD implies LICQ.

Definition 2.1. We call a g.c. point z of type 1 if LICQ, SC and ND hold at z. The set
of all g.c. points of type 1 for PQ(·) is denoted by �(1).

Let z be a g.c. point of type 1. Then, the linear index LI, the linear co-index
LCI are defined to be the numbers of negative, positive Lagrange multipliers µ! in SC
respectively. The quadratic index QI, the quadratic co-index QCI are defined as the
numbers of negative, positive eigenvalues of A(t)|kerDJz (t)

(cf. ND) respectively. It can
be shown (cf. [8]) that x is a local minimizer for PQ(t) iff LI + QI = 0, and a local
maximizer iff LCI + QCI = 0, whereas in all other cases x is a kind of saddle point for
PQ(t).

Lemma 2.1. For any g.c. point z of type 1, a neighborhood #z of z exists, such that the
“local critical set” #z ∩� consists of merely type 1 g.c. points, and can be parametrized
as a C1-curve (x(t), t) with x(t) = x and |t − t| < ε, some ε > 0. Moreover, on #z∩�
the index quadruple remains constant (cf. figure 1).

Proof. Follows directly by solving the equation (1), thereby taking LICQ, SC, ND and
ÑD into account. �

Now, we are going to specify g.c. points of types 2 and 5 (compare section 1).

Definition 2.2. Let z be a g.c. point, Jz = ∅, and put Jz = {1, . . . , p}. Then, z is said to
be of type 2, whenever LICQ and ND hold at z, and moreover,

Figure 1. Local structure of � around a g.c. point z of type 1; the 4-vectors stand for the index quadruple
(LI,LCI,QI,QCI); LI + LCI = p, LI + LCI + QI + QCI = n−m.
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(i) exactly one of the Lagrange multipliers in SC, say µp, vanishes;

(ii) rank

[
A(t) DT

J0
(t)

DJ0(t) 0

]
= n+m+ p − 1, J0 = Jz \ {p};

(iii) γ := d
dt gp(x̃(t), t)t=t = 0,

where (x̃(t), t) is a parametrization of the local critical set around z (in the sense of
lemma 2.1) of a family, say P̃Q(·), which is obtained from PQ(·) by deleting the con-
straint gp. (Note that z is g.c. point of type 1 for P̃Q(·)).

Let z be a g.c. point of type 2 for PQ(·). Then, it can be shown (cf. [10]) that
a reduced neighborhood of z, say #, exists such that # ∩ � consists of merely type 1
points, and admits the typical fork structure as depicted in figure 2 (here the characteristic
numbers δ ∈ {0, 1} are defined as δ = δ1−δ2, where δ1 respectively δ2 denote the number
of negative eigenvalues of A(t)|kerDJz\{p}(t)) respectively A(t)|kerDJz (t)

).

Definition 2.3. Let z be a g.c. point of PQ(·), Jz = ∅, and put Jz = {1, . . . , p}. Then,
z is said to be of type 5, whenever

(i) m+ p = n+ 1 (thus: LICQ does not hold at z, and p � 2 (since m < n)).

(ii) {∇hi(z),∇gj (z), i ∈ I, j ∈ Jz} is a set of linear independent vectors in Rn+1,
where ∇(·) stands for gradient with respect to z.

Figure 2. Local structure of � around a g.c. point z of type 2; the 4-vectors stand for the index quadruple
(LI,LCI,QI,QCI); LI + LCI + QI + QCI = n−m; LI + LCI = p or p − 1.
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From (i) and (ii) it follows that there exist λi, µj , i ∈ I, j ∈ Jz, not all vanishing (and
unique up to a common multiple) such that

m∑
i=1

λi∇xhi(z)+
p∑
j=1

µj∇xgj (z) = 0. (2)

(iii) In (2) we have µj = 0, j = 1, . . . , p.

From (i) and (ii) we see that unique numbers αi, βj , i ∈ I, j ∈ Jz exist, such that

∇f (z) =
m∑
i=1

αi∇hi(z)+
p∑
j=1

βj∇gj (z).

Put

*ij = βi − βj µi
µj
, i, j = 1, . . . , p,

and let * be the (p, p)-matrix with *ij as its (i, j)-element.

(iv) All off-diagonal elements of * are unequal to zero.

Let z be a g.c. point for PQ(·) of type 5. Then, z is a g.c. point for the family
PQj (·) obtained from PQ(·) by deleting the constraint gj , j = 1, . . . , p. Let j0 ∈ Jz
be arbitrary, but fixed. We consider the family PQj0

(·). The Lagrange multipliers for
PQj0

(t) corresponding with the active inequalities at x are just the numbers *jj0, j ∈
Jz \{j0}. Due to definition 2.3(iv) these multipliers are non-vanishing. From this, we see
that z is g.c. point for PQj0

(·) of type 1. Now, it can be shown (cf. [10]) that a reduced
neighborhood # of z exists such that � ∩# consists of merely g.c. points of type 1 and
admits the typical ramification structure as depicted in figure 3 (here, by δj we denote
the number of negative entries in the j -th column of *).

Figure 3. Local structure of � around a g.c. point z of type 5. At z, the set � ramifies into p C1-curves,
say �+j , with (constant) index quadruple (LI,LCI,QI,QCI) equal to (δj , n−m− δj , 0, 0), j = 1, . . . , p.
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3. Results

We represent PQ(·) by the following mapping Q

Q : t �→
[
A(t) DT(t) a(t)

D(t) 0 d(t)

]
.

Apparently, the map Q may be interpreted as an element of C1(R,RN),

N = 1
2n(n + 3) + (m + s)(n + 1). We endow the space C1(R,RN) with the so-called

strong C1-topology (cf. [7]), denoted by C1
s .

Now, we have:

Theorem 3.1 (Theorem of the Three Types). There exists a C1
s -open and -dense subset,

say O, of C1(R,RN) such that for any PQ(·), represented by Q ∈ O, each g.c. point is
of type 1, 2 or 5.

A sketch of the proof of this theorem (focussing on the non-occurrence of g.c.
points of type 3, 4 rather than on the verification of the more technical conditions in
definitions 2.2, 2.3) is to be found in [6]. In the present paper we give a full proof.

Theorem 3.1, together with the analysis as given in section 2, yields (see also [10]):

Corollary 3.1. Given any PQ(·), represented by Q ∈ O (cf. theorem 3.1), then:
The set �(1) of g.c. points of type 1 is a C1-manifold; the g.c. points of types 2

and 5 are isolated points, situated in the topological closure of �(1).
The changes in the index quadruple (LI, LCI, QI, QCI) when passing along � a g.c.

point of type 1, 2, 5 are as depicted in figures 1–3, respectively.

Let z be a g.c. point of type 1, and denote by �(1)
z the connected component of

�(1) which contains z. In the sequel we always have |Jz| = p. From lemma 2.1 we
know that �(1)

z is a C1-curve, parameterized by (x(t), t) with t ∈ Iz (=open interval),
and x(t) = x. We ask for the evolution of (x(t), t) when t increases. Put t̂ := supremum
of t over Iz. If t̂ = ∞, then the evolution of (x(t), t) is trivial. However, if t̂ <∞, then
various possibilities may occur:

Theorem 3.2 (Evolution of the critical set). Given PQ(·), represented by Q ∈ O (cf.
theorem 3.1), then for any g.c. point z of type 1 with t̂ <∞:

Either lim
t↑t̂
x(t) := x̂, some x̂ ∈ Rn, (case 1)

or lim
t↑t̂
‖x(t)‖ = ∞, where ‖ · ‖ stands for Euclidean norm. (case 2)

In case 1:

Either (x̂, t̂ ) is a g.c. point of type 2 (and then m+ p � n),
or (x̂, t̂ ) is a g.c. point of type 5 (and then m+ p = n+ 1).
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In case 2: Put

M(t) =
[
A(t) DT

Jz
(t)

DJz(t) 0

]
, M(t) =

[
M(t)

a(t)

dJz(t)

]
. (3)

In case 2, only the following two alternatives are possible:

(a) m+ p < n (g.c. point at infinity of type 3).
Then, rankM(t̂ ) = 1 + rankM(t̂ ) = n + m + p, and rankDJz(t̂ ) = m + p.
(Thus there exists a unit vector (x̂, η̂) ∈ Rn × Rm+p in kerM(t̂ ), vector x̂ being
non-vanishing and uniquely determined up to a sign.)

(b) m+ p = n (g.c. point at infinity of type 4).
Then, rankM(t̂ ) = 1 + rankM(t̂ ) = 2n, and rankDJz(t̂ ) = n − 1, rank[DJz(t̂ ),

dJz(t̂ )] = n. (Thus there exists a unit vector x̂ in kerDJz(t̂ ), being determined up to
a sign and (of course) non-vanishing.)

In both alternatives we have

lim
t↑t̂

x(t)

‖x(t)‖ = x̃, where x̃ = x̂

‖x̂‖ or x̃ = − x̂

‖x̂‖ . (4)

Interpretation of theorem 3.2 (g.c. points at infinity of type 3 and 4).
The alternatives (a) and (b) in theorem 3.2, case 2, can be interpreted as follows:

Case 2(a) (m + p < n). In equation (1), cf. section 2, the feasibility condition holds
for t = t̂ , but the critical point condition not. This fact is reflected in the property that
x(t) “tends to infinity”, for t ↑ t̂ , according to an “asymptotic direction” given by x̃.
Recall that rankDJz(t̂ ) = m + p; moreover, in the proof of theorem 3.2 we will see
that corankAJz(t̂ )| kerDJz (t̂ )

= 1 and that all Lagrange multipliers for z(t) tend to ±∞
if t ↑ t̂ (in particular they are non-vanishing). Compare also conditions B1–3 for a
g.c. point of type 3 in [10]. Therefore, we say that for t = t̂ there is a g.c. point at
infinity of type 3.

Case 2(b) (m + p = n). In equation (1), cf. section 2, the feasibility condition
is violated for t = t̂ . This fact is reflected in the property that x(t) “tends to in-
finity”, for t ↑ t̂ , according to an “asymptotic direction” given by x̃. Recall that
rankDJz(t̂ ) = n − 1, and m + |Jz| > 0; moreover, in the proof of theorem 3.2
we will obtain that all Lagrange multipliers for z(t) tend to ±∞ if t ↑ t̂ (in par-
ticular they are non-vanishing). Compare also conditions C1–C4 for a g.c. point of
type 4 in [10]. Therefore, we say that for t = t̂ there is a g.c. point at infinity of
type 4. �

In the above theorem, we investigated the evolution of the connected components
of �(1) for increasing values of t . Apparently, similar results can be obtained for de-
creasing t values.
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Theorem 3.3 (Two-sided g.c. points at infinity). Let PQ(·) be represented by the map
Q in O, and let z be a g.c. point of type 1. Assume that we are in the situation of
theorem 3.2, case 2. We distinguish between two cases:

Case Jz = J . Then, there exits a component of �(1), say �̃(1)
z , with the same set of

active constraints (Jz) as �(1)
z , and parameterized by (x(t), t) with t̂ < t < t̂ + ε̃, some

ε̃ > 0, such that

lim
t↓t̂

x(t)

‖x(t)‖ = −x̃,

where x̃ is the unit vector as introduced in theorem 3.2. Moreover, if (I1, I2, I3, I4)

stands for the index quadruple of g.c. points on �(1)
z , then the index quadruple of a g.c.

point on �̃(1)
z is given by:

For a g.c. point at infinity of type 3: (I2, I1, I3 ± 1, I4 ∓ 1);
For a g.c. point at infinity of type 4: (I1, I2, 0, 0).

(Note that in the latter case we always have I3 = I4 = 0 since all points of �(1)
z consist

of “corner points” (m+ p = n).)

Case Jz � J . A component �̃(1)
z as introduced in case Jz = J does not occur.

Phenomena, as described in theorem 3.3, case Jz = J , will be referred to as to
two-sided g.c. points at infinity of type 3 (if m+ p < n) or type 4 (if m+ p = n).

Corollary 3.2.

(a) If, in theorem 3.3, we have J = ∅ (i.e., no inequality constraints) then always
Jz = J . Hence, in this case, all g.c. points at infinity are two-sided and of type 3
(due to the overall condition m < n).

(b) For PQ(·), Q ∈ O, two-sided g.c. points at infinity of type 4 are only possible in
the case where J = ∅ and all inequality constraints are active.

4. Examples

In this section we give two illustrative examples.

Example 1. We consider the following family of optimization problems (n = 1,
m = 0, J = ∅):

min
1

2
(1− t)x2 + tx. PQ(t)

The family PQ(·) is represented by the mapping

Q : t �−→ M(t) = [
(1− t) | t].
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The critical point condition (1− t)x + t = 0 leads to the critical point set

� =
{(
x(t), t

) | x(t) = t

t − 1
, t = 1

}
.

For t = 1, the condition ÑD (1 − t = 0) holds. Since there are no constraints, all
g.c. points are of type 1, i.e., �(1) = � (cf. corollary 3.1). At t̂ = 1 we have

lim
t↑t̂
x(t) = −∞, lim

t↓t̂
x(t) = ∞, and lim

t→t̂±0

x(t)

|x(t)| = ±1.

Thus, at t = t̂ we have given a two-sided g.c. point at infinity of type 3 (cf. theorem 3.3).
The problem Q(·) belongs to the generic class O which is specified in section 5. �

Example 2. We consider the following family of optimization problems (n = 1,
m = 0, J = {1, 2}):

min
1

2
x2 − x subject to

{
g1(x, t) := tx − 2 � 0,
g2(x, t) := (2t − 1)x − 1 � 0.

PQ(t)

Thus,

A(t) = 1, a(t) = −1, D(t) = C(t) =
[

t

2t − 1

]
, d(t) = c(t) =

[−2

−1

]
.

Hence, the family PQ(·) is represented by the mapping

Q : t �−→ M(t) =
[
M(t)

| a(t)
| d(t)

]
=

 1 t 2t − 1 | −1
t 0 0 | −2

2t − 1 0 0 | −1

 .
Let J0 be an arbitrary subset of J . We put �J0 = {z ∈ � | Jz = J0}. We distinguish
between four subcases:

Case J0 = ∅. At g.c. points where this condition holds, LICQ is trivially fulfilled.
Hence, these points follow from (1) together with the conditions g1(z) < 0 and
g2(z) < 0:

x − 1 = 0, tx − 2 < 0, (2t − 1)x − 1 < 0.

This yields the following subset �∅ of �:

�∅ =
{(
x(t), t

) = (1, t) | t < 1
}
.

Since A(t) = 1, the condition ÑD holds everywhere on�∅. Thus, �∅ consists of merely
g.c. points of type 1.



ONE-PARAMETRIC LINEAR-QUADRATIC 231

Case J0 = {1, 2}. The only feasible point in this case is: z = (3, 2/3). The condition
LICQ is automatically violated at this point, and thus

�{1,2} =
{(

3,
2

3

)}
.

By a straightforward verification one checks that this g.c. point is of type 5.

Case J0 = {1}. If t = 0 then, the condition g1 = 0 is violated (no feasibility). If
t = 0 (and thus LICQ holds), the g.c. points follow from (1) together with the condition
g2 < 0. We find:

�{1} =
{(

2

t
, t

)∣∣∣∣ 0 < t <
2

3

}
.

Moreover, for the Lagrange multiplier µ1(t) we have

µ1(t) = t − 2

t2
, 0 < t <

2

3
.

This multiplier does not vanish (for t values on its domain). Since A(t) = 1, the con-
dition ÑD holds at all points of �{1}, and thus �{1} consists of merely g.c. points of
type 1.

Case J0 = {2}. If t = 1/2 ( and thus rankDJ0 = 0), the condition g2 = 0 is violated
(no feasibility). If t = 1/2 (and thus LICQ holds), the g.c. points follow from (1)
together with the condition g1 < 0. We find

�{2} =
{(

1

2t − 1
, t

) ∣∣∣∣ t < 1

2
or t >

2

3

}
.

Figure 4. The critical set of PQ(·); • a g.c. point of type 2, 2 a g.c. point of type 5.
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For the Lagrange multiplier µ2(t) we have

µ2(t) = 2(t − 1)

(2t − 1)2
, t <

1

2
or t >

2

3
.

This multiplier vanishes if t = 1. It is easily verified that z = (1, 1) is a g.c. point of
type 2. All other points of �{2} are of type 1.

These observations on � are summarized in figure 4. Note, that the g.c. points of
type 2 and 5 are situated in the closure of the set �(1) of g.c. points of type 1.

For t ↓ 0 and for t ↑ 1/2 we have a one-sided g.c. point of type 4 (cf. theo-
rems 3.2, 3.3). Note that when the constraint g1 � 0 is deleted the resulting problem
will not admit a g.c. point of type 5 but (for t = 1/2) a two-sided g.c. point of type 4 at
infinity.

5. Proofs

We begin with the introduction of two classes of special structured matrices. For any
integer q � 0, let Mn,q be the set of all real (n+ q, n + q)-matrices M of the form

M =
[
A DT

D 0

]
,

where A is a symmetric (n, n)-matrix, D a (q, n)-matrix, and 0 the (q, q) null matrix.
(If q = 0, then the matrices D and 0 are non-existent.) Moreover, we define Mn,q as
the class of all matrices M = [Me], where e = [ a

d
] and a ∈ Rn, d ∈ Rq . Apparently,

the set Mn,q can be identified with RK,K = 1
2n(n+ 3)+ q(n + 1). Note that Mn,m+s

is just the target space of the mappings Q representing the families of optimization
problems PQ(·).

Each of the classes Mn,q and Mn,q will be partitioned into finitely many mutually

disjoint subsets, the so-called strata (denoted by Vk,ξ and V
!

k,ξ,[τ ] respectively).

Specification of Vk,ξ . For any integer k, with 0 � k � min{n, q}, and any vector
ξ = (ξ+, ξ−, ξ 0) with non-negative integer components summing up to (n − k), the set
Vk,ξ is given by:1

Vk,ξ :=
{
M ∈Mn,q | rankD = k, In(A|kerD) = ξ

}
,

where In(·) stands for the inertia of a symmetric matrix, i.e. the numbers of respectively
positive, negative and zero eigenvalues (counted by multiplicity) of this matrix.

For later purposes we give the so-called Inertia Theorem (cf. [11,12]):
For any M ∈ Vk,ξ :

In(M) = In(A|kerD)+ (k, k, q − k). (5)

1 If rankD = n, respectively q = 0 we define In(A|kerD) = (0, 0, 0), respectively In(A|kerD) = In(A).
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Table 1
Specification of the Mn,q -strata V

!
k,ξ,[τ ].

! M ∈ V !k,ξ,[τ ] iff M ∈ Vk,ξ , and moreover: V
!
k,ξ,[τ ] = ∅ if

1 : rank[Dd] = k + 1 (thus d = 0) k = q

2 : d = 0 rank[Dd] = k, rankM = 1+ rankM k = 0 or n; or ξ0 = 0
3 : d = 0 rankM = rankM ; τ = signM k = 0
4 : d = 0 rankM = 1+ rankM (thus a = 0) ξ0 = 0
5 : d = 0, a = 0 rank[DTa] = k (thus rankM = rankM , k = 0

signM = 0)
6 : d = 0, a = 0 rank[DTa] = k + 1; ξ+ = ξ− = 0, or

rankM = rankM, τ = signM ξ− = 0, τ = −1, 0 or
ξ+ = 0, τ = 0, 1

7 : d = 0, a = 0 (thus rank[Dd] = k; rankM = rankM)

In this table, sign M is defined as the signature of yTe, where y is any vector in Rn+q such that
My = e. (Such y exists iff rankM = rankM ; signM does not depend on the ambiguity of y.)
Note that the parameter τ only plays a role if ! = 3 or 6.

Specification of V
!

k,ξ,[τ ]. Let the integer k and the triple ξ be as above. Then, for the

values ! = 1, . . . , 7, τ = −1, 0, 1, the subsets V
!

k,ξ,[τ ] of Mn,q are defined according to
table 1.

Interpretation of the Mn,q-strata. The conditions specifying the sets V
!

k,ξ,[τ ] may look
rather fancy. However, on various occasions, an interpretation in terms of quadratic
optimization problems is possible.

For example, let us consider a family PQ(·)with J empty (i.e., there are no inequal-
ity constraints: q = m), represented by the mapping Q(·). Then, we have Q(t) ∈Mn,m

for all t and moreover, for fixed t :
PQ(t) does not admit any feasible points if and only if Q(t) ∈ V 1

k,ξ,[τ ].
Now, consider t̃ such that Q(t̃) ∈ V

!

k,ξ,[τ ] with ! � 2. Then LICQ holds at all
feasible points for PQ(t̃) iff k = q (and none of these feasible points is a g.c. point iff
! = 2 or 4). When k < q, each of the feasible points is also a g.c. point.

Using (5) it follows: if Q(t̃) ∈ V 3
q,ξ,[τ ] with ξ 0 = 0, then PQ(t̃) admits only one

g.c. point and at this point both LICQ and ND hold. �

Lemma 5.1. The partitioning of Mn,q into V
!

k,ξ,[τ ] forms a Whitney-regular stratifica-
tion.

Proof. See [12]. �

Here, we will not dwell on the precise definition of Whitney-regular stratification but

merely note that in the context of lemma 5.1 this implies that all strata V
!

k,ξ,[τ ] are smooth

submanifolds of Mn,q and, moreover, neighboring strata stick together in such a regu-
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Table 2
Codimensions of non-empty Mn,q -strata.

! codimV
!
k,ξ,[τ ] ! codimV

!
k,ξ,[τ ]

1 (n− k)(q − k)+ 1
2ξ

0(ξ0 + 1) 4 q + (n− k)(q − k)+ 1
2ξ

0(ξ0 + 1)

2 (n− k + 1)(q − k)+ 1
2 ξ

0(ξ0 + 1) 5 q + (n− k)(q − k + 1)+ 1
2ξ

0(ξ0 + 1)

3 (n− k + 1)(q − k)+ 1
2 ξ

0(ξ0 + 3)+ 1− τ2 6 q + (n− k)(q − k)+ 1
2ξ

0(ξ0 + 3)+ 1− τ2

7 q + n+ (n− k)(q − k)+ 1
2ξ

0(ξ0 + 1)

lar way that the local topological type of the partitioning remains constant along (the
connected components) of each stratum. See [2] for other references on this subject.

Lemma 5.2. The codimensions of V
!

k,ξ,[τ ] with respect to Mn,q (= RK) can be ex-
pressed in terms of the parameters n, k, q, ξ 0 and τ , according to table 2.

Proof. See [12]. �

For us, the relevance of the latter two lemmas relies upon the possibility of applying
Thom’s Transversality Theory.

A mapping Q ∈ C1(R,Mn,q) is said to be transversal (
��

) to the manifold V
!

k,ξ,[τ ]
if for any t0 ∈ R either Q(t0) /∈ V !

k,ξ,[τ ], or Q(t0) ∈ V !

k,ξ,[τ ] in which case the tangent

vector d
dt Q(t0) together with the tangent vectors atQ(t0) to V

!

k,ξ,[τ ], span the whole Mn,q

(cf. [7; 9, theorem 7.3.2]). We put
��Mn,q := set of all maps in C1(R,Mn,q), transversal to each Mn,q -stratum.

Then, from Thom’s transversality theorem (cf. [7,9]) it follows:

Lemma 5.3. The set
��Mn,q is C1

s -open and -dense in C1(R,Mn,q) and moreover,
for any Q ∈ ��Mn,q , the inverse image Q−1(Mn,q) is a Whitney-regular strat-

ified subset of R with strata Q−1(V
!

k,ξ,[τ ]). Moreover for non-empty strata we have

codimQ−1(V
!

k,ξ,[τ ]) = codimV
!

k,ξ,[τ ].

Corollary 5.1. For any Q ∈ ��Mn,q , the curve {Q(t) | t ∈ R} only intersects strata

V
!

k,ξ,[τ ] of codimension 0 or 1. In the case of a codimension 1 strata this intersection
only occurs for isolated t values.

In view of this corollary, it is interesting to know, for which parameters n, q, k, ξ
and τ a stratum of Mn,q has codimension 0 or 1. By direct verification of table 2, thereby
taking into account that some strata are empty (cf. table 1) the various possibilities are
to be found in tables 3 and 4.
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Table 3
Mn,q -strata of codim 0.

codimV
!
k,ξ,[τ ] = 0 if Interpretation

q � n+ 1 l = 1, k = n (ξ0 = 0) no feasible points
q = n l = 3, k = q (ξ0 = 0), τ = ±1 LICQ, ND hold; unique g.c. point
0 < q < n l = 3, k = q, ξ0 = 0, τ = ±1 LICQ, ND hold; unique g.c. point
q = 0 l = 6 (k = 0), ξ0 = 0, τ = ±1 no constraints, ND holds; unique g.c. point

Table 4
Mn,q -strata of codim 1.

codim V
!
k,ξ,[τ ] = 1 if Interpretation

q > n+ 1 does not occur —
q = n+ 1 ! = 3, k = n (ξ0 = 0), τ = ±1 LICQ violated
q = n ! = 1, k = n− 1 (= q − 1), ξ0 = 0 no feasible points

! = 3, k = n (ξ0 = 0), τ = 0 LICQ, ND hold; unique g.c. point
! = 5, k = n = 1 (ξ0 = 0) LICQ, ND hold; unique g.c. point

0 < q < n ! = 2, k = q, ξ0 = 1 LICQ holds; no g.c. points
! = 3, k = q, ξ0 = 0, τ = 0 LICQ, ND hold; unique g.c. point
! = 6, k = q = 1, ξ0 = 0, τ = ±1 LICQ, ND hold; unique g.c. point

q = 0 ! = 4 (k = 0), ξ0 = 1 no g.c. points
q = 0 (n > 1) ! = 6 (k = 0), ξ0 = 0, τ = 0 ND holds; unique g.c. point
q = 0 (n = 1) ! = 7 (k = 0), ξ0 = 0 ND holds; unique g.c. point

Lemma 5.4 (Preliminary version of theorem 3.1). There exists a C1
s -open and -dense

subset, say O1, of C1(R,RN) such that for any PQ(·), represented by Q ∈ O1,

either LICQ and ND hold for all g.c. points,
or LICQ is violated at isolated feasible points (in which case the number of

active constraints equals n+ 1).

Proof. Let J0 ⊂ J be arbitrary, but fixed and define QJ0 : R →Mn,m+|J0| by

QJ0(·) :=
[
A(·) DT

J0
(·) a(·)

DJ0(·) 0 dJ0(·)
]
.

Next, we partition the mappings Q(·) in C1(R,Mn,m+s) as follows:

Q(·) := (
QJ0(·),

[
DJ \J0(·) dJ \J0(·)

]) ∈ C1(R,Mn,m+|J0|
)× C1(R,RKJ0

)
,

where KJ0 = (s − |J0|)(n+ 1). We put

OJ0 := ��Mn,m+|J0| × C1(R,RKJ0
)
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and

O1 :=
⋂
J0⊂J

OJ0 .

Then, basically due to lemma 5.3, the set O1 is C1
s -open and -dense in C1(R,RN).

Now consider a map Q(·) ∈ O1, and let z = (x, t) be a g.c. point for the family
PQ(·) represented by Q(·). Put J0 = Jz. Then, the assertion of the lemma follows by
straightforward inspection of tables 3, 4 and corollary 5.1. �

We are going to prove theorem 3.1. This will be done by shrinking, in several
steps, the set O1 (see lemma 5.4) until a C1

s -open and -dense subset O of C1(R,RN) is
obtained with the property that each g.c. point for PQ(·),Q(·) ∈ O is of type 1, 2 or 5
(cf. definitions 2.1, 2.2 and 2.3, respectively).

Idea of the shrinking procedure
1. Put

Tn,q := Union of all Mn,q-strata of codim � 2.

Then, cf. [9, corollary 7.5.3], the set Tn,q is a closed, Whitney regular stratified
subset of Mn,q .

2. Put
��Tn,q :=

{
ϕ ∈ C1(R,Mn,q) | ϕ ��Tn,q

}
,

and

Wn,q =Mn,q \ Tn,q .
Then, from Thom’s transversality theorem, it follows that

��Tn,q is C1
s -open and

-dense in C1(R,Mn,q) and moreover, by a dimension argument,

��Tn,q = C1(R,Wn,q).

3. The set Wn,q , being open in Mn,q , is a smooth submanifold of Mn,q (of codim 0).
Hence, the C1

s -topology on C1(R,Mn,q) induces a topology (also denoted by C1
s )

on C1(R,Wn,q). Now, Thom’s transversality theorem (for C1-mappings from R
to Wn,q) enables us to select subsets of

��Tn,q which are C1
s -open and -dense in

��Tn,q , and thus also C1
s -open and -dense in C1(R,Mn,q). In fact, let T be any

closed submanifold of Wn,q of codim 2, and put
��

T = {ϕ ∈ C1(R,Wn,q) |
ϕ

��

T }. Then,
��

T is C1
s -open and -dense in C1(R,Mn,q) and

��

T =
C1(R,Wn,q \ T ).

4. Successive application of the procedure in step 3, yields a C1
s -open and -dense sub-

set, say Sn,q , of C1(R,Mn,q).
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5. Now, we put for any J0 ⊂ J :

SJ0 :=Sn,m+|J0| × C1(R,RKJ0
)
,

S := intersection of the sets SJ0, all J0 ⊂ J.

Then, S is C1
s -open and -dense in C1(R,RN).

6. Finally, we shrink O1 (see lemma 5.4) to a smaller, but still open and dense, subset
of C1(R,RN) by considering the intersection O1 ∩ S .

In order to apply the above shrinking procedure, six technical lemmas are needed.

Lemma 5.5. Let 0 < q � n and denote by Mν the (n+ q, n+ q)-matrix obtained from
M ∈Mn,q after replacing its ν-th column by

[
a

d

]
. Then, for any j with 0 < j � q, the

set, say Wn+j
n,q , of the matrices M in Wn,q given by the equations

detM = 0, detMn+j = 0

is a closed, smooth manifold of codim 2 in Wn,q .

Proof. The closedness of Wn+j
n,q being trivial, it is sufficient to show that Wn+j

n,q is given
by two equations which are linearly independent (cf. [9]) in Wn,q .

First of all we note that by inspection of tables 1, 3, 4 (and using (5)), for all
M ∈Wn,q we have:

rankM = n+ q.
Furthermore, for all M ∈Wn,q with detM = 0 it follows:

either rankD = q, q < n, (Case 1)

or rankD = q − 1, q = n. (Case 2)

Moreover, in this case we have:

rankM = n+ q − 1

and also

if all columns of M minus the ν-th column form a linearly
independent set of vectors in Rn+q , then detMν = 0.

}
(6)

Now, let M ∈Wn+j
n,q .

Case 1. Since rankD = q, it follows from (6) that detMν = 0 for some ν with
1 � ν � n. Without loss of generality, we assume: detM1 = 0. The first column
of M will be denoted by (a11, . . . , an1, d11, . . . , dq1)

T and its (n + j)-th column by
dj = (dj1, . . . , djn, 0, . . . , 0)T. Taking the symmetry of M into account, we find for
the contributions, say ∇(1) detM, of a11, . . . , an1, d11, . . . , dq1 to the gradient of detM:

∇(1) detM = 2:1 − (ã11, 0, . . . , 0)T,
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where :1 stands for a vector in Rn+q with as components the cofactors2 in M for the
entries of its first column, and the last vector on the right-hand side is also in Rn+q , with
ã11 = (cofactor in M for a11).

Since detM1 = 0, we have :1 = 0.
Now, we note that deleting from Mn+j its first column, yields a matrix with the

same columns as in the matrix obtained from M1 by deleting its (n + j)-th column.
Using this observation, together with the symmetry of A, we find for the contribution of
a11, . . . , an1, d11, . . . , dq1 to the gradient of det(Mn+j ):

∇(1) det(Mn+j ) = −:2 + :3 −
(
ã
j

11, 0, . . . , 0
)T
,

where :2, respectively :3, stands for a vector in Rn+q with as components the cofactors
in M1 for the entries of its (n + j)-th column, respectively the cofactors in Mn+j for
the entries of its first row, and where the last vector on the right-hand side is also in
Rn+q with ãj11 = (cofactor in Mn+j for a11). We recall that for quadratic matrices H the
formula H T

c H = HcH
T = I detH is valid for the cofactor matrix Hc of H . We now

find the relation

dT
j :1 = 0, dT

j :2 = 0, dT
j :3 = 0.

In fact, dT
j :1 is the (1, n+ j)-th entry of MT

c M (which equals the zero-matrix) and dT
j :2

is the (n+ j, n+ j)-th entry of (M1)
T
cM1 = detM1I (detM1 = 0). To obtain dT

j :3 = 0
we have to use that basically due to (6), the cofactor in Mn+j for its (1, n + j)-th entry
vanishes and then dT

j :3 equals the (1, n + j)-th entry of (Mn+j )cMT
n+j and is equal to

zero. In view of these relations and :1 = 0 it follows that the vectors :1 and −:2 + :3

are linearly independent. Then also ∇(1) detM and ∇(1) det(Mn+j ) must be linearly
independent and the same is true for the gradients (in Wn,q) of detM and detMn+j . To
see that ∇(1) detM and ∇(1) det(Mn+j ) are linearly independent let us suppose that with
c1, c2 not both zero we have

c1
(
2:1 − (ã11, 0, . . . , 0)T

) = c2
(−:2 + :3 −

(
ã
j

11, 0, . . . , 0
)T)
.

Since the first component of −:2 + :3 equals 2ãj11 and the first component of :1

equals ã11, after multiplying the first component of this relation by 2 we would find
c12:1 = c2(−:2 + :3), a contradiction.

Case 2. We have q = n, and thus detM = (−1)n det2D. Hence, the set Wn+j
n,n is also

given by the equations detD = 0, detMn+j = 0. We are done if we can show that these
equations are linearly independent in Wn,n. Since, in this case, rankDT = n − 1, we
may assume that the first n−1 columns ofDT form a linearly independent set of vectors
in Rn. We denote the j -th column of DT by dj = (dj1, . . . , djn). Then, the contribution

2 The cofactor in M for its (i, j)-th entry equals (−1)i+j detMij , where Mij is a matrix obtained from M

by deleting its i-th row and j -th column and the matrix with as (i, j)-th entry the element (−1)i+j detMij

is called the cofactor matrix Mc of M .
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of dn1, . . . , dnn to the gradient of detDT is a non-vanishing vector ∈ Rn, say :1 (with as
entries the cofactors in DT for the entries of dn = (dn1, . . . , dnn)).

Moreover, it follows from (6) that detMn+n = 0. (In particular, this implies that
0 < j < n.) We note that, deleting from Mn+j the last column yields a matrix with the
same columns as in the matrix obtained from Mn+n by deleting its (n + j)-th column.
Using this observation, we find for the contribution of dn1, . . . , dnn to the gradient of
detMn+j :

∇(2n) det(Mn+j ) = −:2 + :3,

where :2, respectively :3, stand for vectors in Rn with as components the cofactors in
Mn+n for the first n entries in its (n+j)-th column, respectively the cofactors inMn+j for
the first n entries in its 2n-th row. Then, using again the properties of cofactor matrices
mentioned above (together with the facts that detMn+n = 0 and that the cofactor in
Mn+j for the 2n-th element of the column

[
a

d

]
vanishes due to (6)) it is easily shown that

dT
j :1 = 0, dT

j :2 = 0, dT
j :3 = 0.

Now, after a moment of reflection, it will be clear (use also :1 = 0) that :1 and
∇(2n) det(Mn+j ) are linearly independent. Hence, this is also true for the gradients (in
Wn,n) of detD and detMn+j . �

We define (0 < q � n):

Un,q :=Wn,q \ {union of the sets Wn+j
n,q , all j with 0 < j � q}.

Lemma 5.6. Let 1 � q � n, and suppose j, j ′ are different indices, 1 � j, j ′ � q.
Then, the subset, say U j,j ′

n,q , of Un,q given by the equations

detMn+j = 0, detMn+j ′ = 0

is a closed, smooth manifold of codim 2 in Un,q .

Proof. The closedness of U j,j ′
n,q being trivial, we only prove that the equations

detMn+j = 0, detMn+j ′ = 0 are linearly independent in Un,q . Let M ∈ U j,j ′
n,q . Then (by

construction of Un,q) we have: detM = 0. Thus, the contribution of the entries of
[
a

d

]
to the gradients of det(Mn+j ) and det(Mn+j ′), being equal to the (n+ j)-th respectively
the (n+j ′)-th column of the cofactor matrix ofM, are linearly independent. Hence, this
is also true for the gradients (in Un,q) of det(Mn+j ) and det(Mn+j ′). �

We define (0 < q � n):

Vn,q := Un,q \ {union of the sets U j,j ′
n,q , all j, j ′, 1 � j, j ′ � q, j = j ′}.
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Lemma 5.7. Let 0 < j � q � n and denote by M̂n+j the matrix obtained from
M ∈Mn,q after deleting its (n + j)-th column and (n + j)-th row. Then, the subset,
say Vn+jn,q , of Vn,q given by the equations

det M̂n+j = 0, detMn+j = 0

is a closed, smooth submanifold of codim 2 in Vn,q .

Proof. The closedness of Vn+jn,q being trivial, we only prove that the equations
det M̂n+j = 0, detMn+j = 0 are linearly independent in Vn,q . For M ∈ Vn+jn,q we
distinguish between two possibilities: q = n, and 0 < q < n.

Case q = n: Since M ∈Wn,q it follows from tables 1, 3, 4 that:

Either detM = 0, rankD = n− 1
(
if M ∈ V 1

n−1,ξ,[τ ], ξ 0 = 0
)
,

or detM = 0, rankD = n
(
if M ∈ V 5

n,ξ,[τ ], n = 1, ξ 0 = 0, or

M ∈ V 3
n,ξ,[τ ], ξ 0 = 0, τ = 0,±1

)
.

The first alternative is ruled out since (by construction of Vn,q) we have: M /∈ Wn+j
n,q ,

and hence detM = 0, detMn+j = 0 do not hold simultaneously.
The second alternative yields: the contribution of the

[
a

d

]
-entries to the gradient

of detMn+j (being equal to the array of cofactors in M for the entries in its (n + j)-th
column) is non-vanishing. On the other hand the contribution of the

[
a

d

]
-entries to the

gradient of det M̂n+j are all zero (since
[
a

d

]
does not appear in M̂n+j ). So, we only

have to show that the gradient of det M̂n+j is non-vanishing. To this aim we note that,
in the second alternative, from detM = 0, rankD = n and det M̂n+j = 0 it follows:
rank M̂n+j = n+q−2 and rank D̂j = n−1 (where D̂j is the (q−1, n)-matrix obtained
from D by deleting its j -th row). So, we may assume that all but the first column of
M̂n+j form a linearly independent set of vectors in Rn+q−1. Hence, the contributions of
the entries of the first column of M̂n+j to the gradient of det M̂n+j are not all vanishing.

Case q < n: Since M ∈Wn,q it follows from tables 3, 4 that:

Either detM = 0, rankD = q
(
if M ∈ V 2

q,ξ,[τ ], ξ 0 = 1
)
,

or detM = 0, rankD = q
(
if M ∈ V 6

q,ξ,[τ ], q = 1, ξ 0 = 0, τ = ±1, or

M ∈ V 3
q,ξ,[τ ], ξ

0 = 0, τ = 0,±1
)
.

Now, the proof that the gradients in Vn,q of det M̂n+j and detMn+j are linearly indepen-
dent is the same as in the case where q = n, and will be deleted. �

We define (0 < q � n):

Rn,q := Vn,q \ {union of the sets Vn+jn,q , all j = 1, . . . , q}.
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In the proof of theorem 3.1 (see below) we shall use the concept of 1-jet extension.
For ϕ ∈ C1(R,Rn,q), the reduced 1-jet extension, say j 1ϕ is given by j 1ϕ(·) =
(ϕ(·),∇tϕ(·)). Apparently, j 1ϕ is a mapping from R to Rn,q ×R′

n,q where R′
n,q = RK .

An element of the set Rn,q × R′
n,q will be denoted by (M,M

′
); corresponding entries

in M and M
′
will be distinguished by means of the symbol ′. For instance, d ′q is the last

entry of the last column in matrix M
′
.

Next, we consider functions Fj :Rn,q ×R′
n,q → R of the form

Fj
(
M,M

′) = pj
(
M,M

′)+ d ′q · det2
(
M̂n+j ),

where M̂n+j is defined as in lemma 5.7, and where pj is a real polynomial with as
variables the entries of M, M

′
, which however does not depend on d ′q . The precise

specification of Fj will be postponed until the proof of theorem 3.1 (verification of
condition (iii) for g.c. points of type 2).

Lemma 5.8. Let 0 < q � n and 0 < j � q. Then, the subset of Rn,q × R′
n,q , say

[Rn,q ×R′
n,q]j , given by the equations

detMn+j = 0, F j
(
M,M

′) = 0

is a closed, smooth submanifold of codim 2 in Rn,q ×R′
n,q .

Proof. We only show that the equations defining [Rn,q ×R′
n,q]j form a linearly inde-

pendent pair.
Let (M,M

′
) be in [Rn,q ×R′

n,q]j . Apparently, the contribution of d ′q to the gra-
dient (with respect to Rn,q × R′

n,q) of detMn+j , respectively Fj , equals 0, respec-
tively det2(M̂n+j ). From the construction of Rn,q it follows that M /∈ Vn+jn,q , and thus
det M̂n+j = 0. On the other hand, we also have: M /∈ Wn+j

n,q (cf. lemma 5.5), and thus
detM = 0. Hence, the contribution of the

[
a

d

]
-entries to the gradient of detMn+j are not

all vanishing.
Altogether, from these observations it follows that the gradients of detMn+j and

Fj (M,M
′
), both regarded as functions on Rn,q × R′

n,q , form a linearly independent
pair of vectors. �

The next two lemmas deal with matrices M = [
A DT a

D 0 d

]
in Wn,n+1. We recall that

then D is an (n+ 1, n)-matrix and that by D̂j we mean a matrix obtained from D after
deleting its j -th row.

Lemma 5.9. Let 0 < j � n+ 1. Then, the subset, say Wj

n,n+1, of Wn,n+1 given by

det[Dd] = 0, det D̂j = 0

is a closed, smooth submanifold of codim 2 in Wn,n+1.
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Proof. We only prove that the defining equations are linearly independent. Note that
for any M ∈Wn,n+1 we have:

Either M ∈ V 1
n,ξ,[τ ], ξ 0 = 0,

or M ∈ V 3
n,ξ,[τ ], ξ 0 = 0, τ = ±1.

We emphasize that in both cases: rankD = n. Hence the contributions of the entries of d
to the gradient of det[Dd] are not all vanishing. Moreover, rank D̂j = n − 1 and thus
also the contribution of the entries of D̂j to the gradient of det D̂j are not all vanishing.
Since d does not appear in D̂j , the linear independency of the gradients of det[Dd] and
det D̂j follows immediately. �

We put

Un,n+1 :=Wn,n+1 \ {union of the sets Wj

n,n+1 all j, 0 < j � n+ 1}.

Lemma 5.10. For any M ∈Wn,n+1 and any pair j, j ′ with 0 < j � n+ 1, 0 < j ′ � n,
let Mj

j ′ be the matrix obtained from M by deleting its (n + j)-th column and row, and

deleting from the resulting matrix its (n+ j ′)-th column. Then the subset, say U j,j ′
n,n+1, of

Un,n+1 given by the equations

det[Dd] = 0, detMj

j ′ = 0

is a closed, smooth submanifold of codim 2 in Un,n+1.

Proof. Again we must prove that the defining equations are linearly independent. By
construction of Un,n+1, we have for any M ∈ U j,j ′

n,n+1:

det

[
A D̂jT

D̂j 0

]
= (−1)ndet2D̂j = 0.

From this it follows that the contributions of the entries of
[
a

d̂j

]
to the gradient of detMj

j ′

are not all vanishing. (Here, d̂j stands for the vector obtained from d after deleting
its j -th component.) On the other hand, again using that det D̂j = 0 for all j , the
contribution of any entry of d to the gradient of det[Dd] is non-vanishing. Since the j -th
component of d does not show up in Mj

j ′ , we conclude that the gradients of det[Dd]
and detMj

j ′ are linearly independent. �

Our six technical lemmas being proved we proceed with

Proof of theorem 3.1. We begin with the construction, for any q, of certain C1
s -open

and -dense subsets, say Sn,q , of C1(R,Mn,q).
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Let 0 < q � n. Successive application of the previously described shrinking
procedure (and using lemmas 5.5, 5.7) yields the set C1(R,Rn,q), which is C1

s -open
and -dense in C1(R,Mn,q). We define

��[Rn,q ×R′
n,q]j :=

{
ϕ ∈ C1(R,Rn,q) | j 1ϕ

��[Rn,q ×R′
n,q ]j

}
.

Then, from Thom’s transversality theorem (1-jet version) (cf. [7] or [9]), together with
lemma 5.8, it follows that

��[Rn,q ×R′
n,q ]j is C1

s -open and -dense in C1(R,Rn,q) and
thus also in C1(R,Mn,q). Moreover, by a dimension argument we have

��[Rn,q ×R′
n,q]j =

{
ϕ ∈ C1(R,Rn,q) | j 1ϕ(R) ∩ [Rn,q ×R′

n,q]j = ∅
}
.

We put:

Sn,q :=
{
intersection of the sets

��[Rn,q ×R′
n,q]j , all j with 0 < j � q (� n)

}
.

Apparently, this set Sn,q is C1
s -open and -dense in C1(R,Rn,q) and thus also in

C1(R,Mn,q); moreover, we have

ϕ ∈ Sn,q iff j 1ϕ(R) ∩ [Rn,q ×R′
n,q]j = ∅, all j, 0 < j � q.

Next, we turn over to the case where q = n + 1. Define: (compare also lemmas 5.9,
5.10)

Vn,n+1 :=Un,n+1 \ {union of the sets U j,j ′
n,n+1, all j, j ′, 1 � j � n+ 1, 1 � j ′ � n},

Sn,n+1 := ��Vn,n+1
(= C1(R,Vn,n+1)

)
.

Then, according to our shrinking procedure (and using lemmas 5.9, 5.10) we find that
Sn,n+1 is C1

s -open and -dense in C1(R,Mn,n+1).
Finally, if q = 0 or q > n+ 1, we define Sn,q := C1(R,Mn,q).
Now, we are ready to define our set O:
For arbitrary but fixed J0 ⊂ J , we introduce the following C1

s -open and -dense
subset, say SJ0 , of C1(R,RN):

SJ0 := Sn,m+|J0| × C1
(
R,RKJ0

)
.

We define

S :=
⋂
J0⊂J

SJ0 and O := O1 ∩ S.

(For the meaning of O1, we refer to the proof of lemma 5.4, where also the integer KJ0

is introduced). Apparently, the set O is C1
s -open and -dense in C1(R,RN).

From now on, we assume that PQ(·) is a 1-parameter family of quadratic opti-
mization problems, represented by a mapping Q(·) ∈ O and that z is a g.c. point for
PQ(·). Note that by lemma 5.4 we have: m+ |Jz| � n+ 1.

Firstly, we consider the case wherem+|Jz| � n (and thus, due to lemma 5.4 LICQ,
ND hold at z), Jz = ∅ and at least one of the Lagrange multipliers µj, j ∈ Jz, vanishes.
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We shall verify that in this case the additional conditions (i)–(iii) of definition 2.2 are
fulfilled (and consequently, z is a g.c. point of type 2).

Verification of definition 2.2(i). In view of LICQ, the g.c. point z follows from equa-
tion (1). Due to ND, Cramer’s rule applied to (1), yields: z admits vanishing La-
grange multipliers for both gj and gj ′ , j, j ′ ∈ Jz, j = j ′, if and only if detMn+j =
detMn+j ′ = 0, i.e., QJz(t) ∈ U j,j ′

n,m+|Jz| (see also lemma 5.6). This is impossible by the
very construction of S .

Verification of definition 2.2(ii). In view of LICQ we have: m+|Jz| � n. SinceQ ∈ O,
and thus in particular Q ∈ O1, we know that QJz\{p}(t) is situated in a Mn,q-stratum of
codim 0 or 1, where q = m+ |Jz| − 1 (< n). Now, the assertion follows by inspection
of tables 3, 4 and the fact that z is a g.c. point for the “reduced” family P̃Q(·). (Note that
under LICQ the condition ND and ÑD are equivalent.)

Verification of definition 2.2(iii). For γ we find by the Chain rule (Dm+p denotes the
last row of DJz):

γ = Dm+p(t)
d

dt
x̃(t)+ d

dt

[
Dm+p(t)

]
x̃(t)+ d

dt
dm+p(t), (7)

where x̃(t) can be obtained from: (cf. (1))[
x̃(t)

η̃(t)

]
= −

[
A(t) DT

J0
(t)

DJ0(t) 0

]−1 [
a(t)

dJ0(t)

]
, J0 = Jz \ {p}. (8)

(Note that – by the already verified condition (ii) – the above inverse matrix is well
defined for t ≈ t .) We put

γ̃ := γ · det2

[
A(t) DT

J0
(t)

DJ0(t) 0

]
.

By means of (7) and (8) (use Cramer’s rule) we can express γ̃ in terms of the entries
of A(·), DJz(·), a(·), dJz (·) at t as well as the derivatives of these entries at t . In this
way, we obtain for γ̃ an expression which is polynomial in the entries as well as their
derivatives of the matrices involved . We denote γ̃ , seen as a function of these entries,
by Fq , where Fq is of the form of the function Fq :Rn,q × R′

n,q → R as introduced
in the context of lemma 5.8 with q = m + |Jz|, j = m + p. (Recall that |Jz| = p.)
Apparently, we have γ̃ = Fq(j 1(QJz(t)).

Since Q(·) ∈ S , we have in particular: Q(·) /∈ Vqn,q (cf. lemma 5.7). On the other
hand, by assumption: (use µp = 0)

detMn+m+p = 0,
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where Mn+m+p stands for the matrix obtained from
[
A(t)

DJz (t)

DT
Jz
(t)

0

]
after replacing its (n+

m+p)-th column by
[
a(t)

dJz (t)

]
. Consequently, we find: (use lemma 5.7 and J0 = Jz \ {p})

det

[
A(t) DT

J0
(t)

DJ0(t) 0

]
= 0,

and thus

γ = 0 iff γ̃ = 0.

Since, by construction of S , it follows that QJz(·) ∈ Sn,q, q = m + |Jz|, in particular
j 1QJz(t) /∈ [Rn,q × R′

n,q ]q . Hence, we have γ̃ = 0 (and thus also γ = 0), compare
lemma 5.8.

Remark 5.1. It is possible to give an explicit formula for γ (and thus also γ̃ ) in terms
of the coefficients, and their derivatives, of the objective/active constraint functions for
PQ(t), t = t (cf. [10]). However this formula is rather complicated, whereas only its
structure is needed (cf. the form of the mappings Fj in lemma 5.8).

We end up with the case where m + |Jz| = n + 1 (and thus LICQ does not hold
at z); compare lemma 5.4. We shall verify that in this case the additional conditions
(ii)–(iv) in definition 2.3 are fulfilled (and thus, z is a g.c. point of type 5).

Verification of definition 2.3(ii). By construction of O, the curve {QJz(t), t ∈ R} is
situated in the (open) set Wn,n+1. We recall that this latter set is the union of the Mn,n+1-

strata V
1
n,ξ,[τ ], ξ 0 = 0 (codim 0) and V

3
n,ξ,[τ ], ξ 0 = 0, τ = ±1 (codim 1), compare also

tables 3, 4. From these tables, together with table 1, it also follows that the latter stratum
(as subset of Wn,n+1) is given by the equation

det[D d] = 0.

This equation is a defining system (cf. [9]) for V
3
n,ξ,[τ ], ξ 0 = 0, τ = ±1 (since

rankD = n on Wn,n+1). In view of the feasibility of z we have: (use also the very
definition of O1)

QJz(t) intersects V
3
n,ξ,[τ ], ξ

0 = 0, τ = ±1 transversally for t = t .

Put QJz(t) = (A(t), a(t),D(t), d(t)) (seen as an element from RK, q = n + 1). We
have det[D(t) d(t)] = 0. Then, the above transversality condition yields:

∇T det
[
D(t) d(t)

] d

dt
QJz(t) = 0,

or equivalently,

∇̃T det
[
D(t) d(t)

] d

dt

[
D(t) d(t)

] = 0.
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Here, ∇ stands, as usual, for gradient with respect to the entries of M(∈ Wn,n+1),
whereas ∇̃ stands for gradient with respect to the entries of [D d] (∈ R(n+1)2). By
the Chain rule, the latter inequality is equivalent with

d

dt
det

[
D(t) d(t)

]
t=t = 0.

By elementary matrix manipulations, we obtain

det
[
D(t) d(t)

] = det

[
D(t)

h(x, t)

g(x, t)

]
,

where h := (h1, . . . , hm)
T and g := (g1, . . . , gp)

T stands for respectively the equality
and active (at z) inequality constraints. Taking the feasibility of z into account, we
find

0 = d

dt
det

[
D(t) d(t)

]
t=t = det

[
D(t)

d
dt h(x, t)

d
dt g(x, t)

]
t=t
.

Note that the matrix on the right-hand side has ∇Thi(z), i ∈ I , and ∇Tgj (z), j ∈ Jz as
its rows. So, these gradients are linearly independent.

Verification of definition 2.3(iii). Let again D(t) be the matrix with as rows ∇T
x hi(z),

i ∈ I , and ∇T
x gj (z), j ∈ Jz. We assume that our condition is not fulfilled, i.e.,

DT(t)η = 0,

for some η ∈ Rn+1, η = 0, with vanishing last component ηn+1. Then we also have:

D̂T(t)η̂ = 0, (9)

where D̂(t) and η̂ are obtained from D(t), respectively η by deleting the last row, re-
spectively the last entry. From the construction of O1 it follows that QJz\{p}(t), where

p = n−m+1, is situated in one of the Mn,n-strata V
3
n,ξ,[τ ], ξ 0 = 0, τ = 0,±1, V

5
n,ξ,[τ ]

(if n = 1), V
1
n−1,ξ,[τ ], ξ 0 = 0. The latter possibility is ruled out since z is feasible for

P̃Q(t) (= optimization problem obtained from PQ(t) by deleting the constraint gp). In
the other cases we always have rank D̂(t) = n, and thus by (9): η̂ = 0. This leads to a
contradiction with our assumption on η.

Verification of definition 2.3(iv). Put M := QJz(t). By construction of O (especially

Sn,n+1) we have: M ∈ Vn,n+1, in particular M /∈ U j,j ′
n,n+1, for all pairs j, j ′, 0 < j �

n + 1, 0 < j ′ � n. We recall that det[D(t) d(t)] = 0. Thus detMj

j ′ = 0, where

M
j

j ′ is defined as in lemma 5.10. Now, after a moment of reflection it will be clear that
the latter condition implies: all off-diagonal elements of matrix * in definition 2.3 are
non-vanishing.
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We proceed to

Proof of theorem 3.2. As stated in the assertion of this theorem, let PQ(·) be repre-
sented by Q ∈ O, and let z = (x, t) be a g.c. point of type 1. Moreover, the component
�
(1)
z of �(1) is parameterized as z(t) = (x(t), t), x(t) = x, t ∈ Iz (= open interval

around t), and t̂ (= supIz t)<∞. Following the curve (x(t), t) for increasing t , there are
two mutually exclusive possibilities:

Case 1 limt↑t̂ x(t) = x̂, some x̂ ∈ Rn, or

Case 2 limt↑t̂ x(t) does not exist.

Case 1. A continuity argument yields that ẑ = (x̂, t̂ ) is feasible and also Jz ⊂ Jẑ.
If LICQ at ẑ does not hold, then ẑ is (automatically) a g.c. point which by definition
of t̂ cannot be of type 1, and also not of type 2 (since LICQ is violated). Hence, by
theorem 3.1 we find that ẑ is g.c. point of type 5.

If LICQ at ẑ holds, a continuity argument (use also Jz ⊂ Jẑ) yields that ẑ is g.c.
point which cannot be of type 1 (by definition of t̂) and also not of type 5 (because of
LICQ). Hence, by theorem 3.1, we find that ẑ is a g.c. point of type 2.

Case 2. We are going to prove that limt↑t̂ ‖x(t)‖ = ∞ and limt↑t̂ x(t)/‖x(t)‖ = x̃.
As before, we put |Jz| = p, m+ p = q and write (cf. (3))

M(t) =
[
A(t) DT

Jz
(t)

DJz(t) 0

]
, M(t) = QJz(t) =

[
M(t)

a(t)

dJz(t)

]
.

Since z(t), t ∈ Iz, are g.c. points of type 1, we have:

detM(t) = 0, all t ∈ Iz.
From this it follows (use equation (1)) that if detM(t̂ ) = 0, then limt↑t̂ x(t) would
exist. However, this is a contradiction to the assumption of case 2. Hence, we have
detM(t̂ ) = 0.

As a further simplification of notations we write:

Dt̂ = DJz

(
t̂
)
, dt̂ = dJz

(
t̂
)
, Mt̂ = M

(
t̂
)
, Mt̂ = M

(
t̂
)
.

By inspection of tables 1, 3, 4 (and using the inertia formula (5) as well as detMt̂ = 0)
we find the following alternatives (recall that q � n):

Case 2(a). Mt̂ ∈ V 2
q,ξ,[τ ], ξ 0 = 1 (if 0 < q < n) or Mt̂ ∈ V 4

q,ξ,[τ ], ξ 0 = 1 (if q = 0),

and thus always rankMt̂ = 1+ rankMt̂ (= n + q), rank[Dt̂dt̂ ] = q (= m + p). Note,
that ξ 0 = 1 means corankA(t̂ )| kerDJz (t)

= 1.

Case 2(b). Mt̂ ∈ V 1
q−1,ξ,[τ ], ξ 0 = 0 (if q = n), and thus rankMt̂ = 1 + rankMt̂ =

n+ q (= 2n), rank[Dt̂dt̂ ] = 1+ rankDt̂ = q (= n).
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We begin with analyzing case 2(a), 0 < q < n. Let y(t) = (x(t), η(t)), t ∈ Iz, be
the solution of equation (1), i.e.,

M(t)

[
x(t)

η(t)

]
+

[
a(t)

dJz(t)

]
= 0. (10)

We show that

lim
t↑t̂
‖y(t)‖ = ∞, and lim

t↑t̂
y(t)

‖y(t)‖ = ŷ, some ŷ ∈ kerMt̂, ‖ŷ‖ = 1.

Cramer’s rule applied to (10) yields

yν(t) = −detMν(t)

detM(t)
, t ∈ Iz, ν = 1, . . . , n+ q, (11)

where Mν(t) is obtained from M(t) by replacing its ν-th column by
[
a(t)

dJz (t)

]
, cf.

lemma 5.5. Since Q(·) ∈ O, we have in particular Mt̂ ∈ Un,q , 0 < q < n, and
thus (using detMt̂ = 0):

detMn+j (t̂ ) = 0, all j = 1, . . . , q.

So, from (11) it follows that limt↑t̂ |ηj (t)| = ∞, j = 1, . . . , q, and thus (recall ηj =
yn+j ) we have limt↑t̂ ‖y(t)‖ = ∞. Dividing both sides of (10) by ‖y(t)‖, yields

lim
t↑t̂
M(t)

y(t)

‖y(t)‖ = 0.

Since corankMt̂ = 1, a unique (up to a sign) solution, say ŷ, exists for

Mt̂y = 0, y ∈ Rn+q, ‖y‖ = 1. (12)

Hence, the only possible limit points of y(t)/‖y(t)‖ for t ↑ t̂ are ± ŷ. By a continuity
argument it follows that not both ŷ and −ŷ can be limit points. So, we may assume that
limt↑t̂ y(t)/‖y(t)‖ = ŷ (= (x̂, η̂) ∈ Rn × Rq). When x̂ would vanish, then by (12):
DT
t̂
η̂ = 0 and thus η̂ = 0 (since Dt̂ has full rank). This however is in contradiction to

‖ŷ‖ = 1. So, x̂ = 0 and thus limt↑t̂ ‖x(t)‖ = ∞. Moreover,

lim
t↑t̂

x(t)

‖x(t)‖ = lim
t↑t̂

[
x(t)

‖y(t)‖ ·
‖y(t)‖
‖x(t)‖

]
= x̂

‖x̂‖ (= x̃). (13)

The proof in case 2(a), q = 0, runs essentially along the same lines and will be omit-
ted. (Note that in this subcase: DJz(t) and dJz(t) are non-existent (thus M(t) = A(t)),
rank[At̂at̂ ] = 1+ rankAt̂ = n and x̃ (= x̂ or −x̂) is a unit vector in kerAt̂ .)

Finally, we analyze case 2(b) (q = n):
As in case 2(a), let y(t) = (x(t), η(t)), t ∈ Iz, be a solution of (1). In particular,

we then have

DJz(t)x(t) + dJz(t) = 0, t ∈ Iz. (14)
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Cramer’s rule yields

xi(t) = (−1)n+i+1
det[D̂i

Jz
(t)dJz (t)]

detDJz(t)
, i = 1, . . . , n, (15)

where D̂i
Jz
(t) is obtained from DJz(t) by deleting its i-th column. From rankDt̂ = n−1

and rank[Dt̂ dt̂ ] = n it follows that for at least one i, say i0, we have det[D̂i0
t̂
dt̂ ] = 0.

So, from (15) we may conclude that limt↑t̂ |xi0(t)| = ∞, and thus limt↑t̂ ‖x(t)‖ = ∞.
Dividing both sides of (14) by ‖x(t)‖:

lim
t↑t̂
DJz(t)

x(t)

‖x(t)‖ = 0.

Since corankDt̂ = 1, from this it follows that limt↑t̂ x(t)/‖x(t)‖ = x̃, with x̃ a unique
(up to a sign) unit vector in kerDt̂ ; see case 2(a) for a similar argumentation. �

Proof of theorem 3.3. We distinguish between several cases.

Case J = Jz, 0 < q < n (compare theorem 3.2, case 2(a)). By construction of

O1 the curve QJz(t) (= M(t)) intersects the Mn,q-stratum V
2
q,ξ,[τ ], ξ 0 = 1 for t = t̂

transversally at Mt̂ . As a subset of the open set Wn,q , the latter stratum is given by the
equation detM = 0 (use table 1, 3, 4 and the inertia formula (5)). This equation yields a
defining system for our stratum (since on this stratum corankM = 1). Hence, from the
above transversality condition it follows

∇T detM|Mt̂

d

dt
M(t̂ ) = 0,

or equivalently

d

dt
detM(t)t=t̂ = ∇̃T detM|Mt̂

d

dt
M(t̂ ) = 0,

where ∇ and ∇̃ stands for gradient in Mn,q and Mn,q , respectively. We conclude that

detM(t) changes sign at t = t̂ . (16)

We consider equation (1), which takes the form: (compare also (10))

M(t)

[
x

η

]
+

[
a(t)

dJz(t)

]
= 0. (17)

For t = t̂ this equation has no solution (since rankMt̂ = 1+ rankMt̂ ); for t ≈ t̂ , t = t̂

there is a unique solution, say y(t) = (x(t), η(t)), because, due to (16), we then have
detM(t) = 0. Since J = Jz, all inequality constraints for PQ(t) are active at x(t) if
t ≈ t̂ , t = t̂ . So, for such t values the points x(t) are feasible for PQ(t). In the proof
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of theorem 3.2 we did already show that limt↑t̂ x(t)/‖x(t)‖ = x̃. In a similar way one
proves (use (11) and also (16)) that

lim
t↓t̂

x(t)

‖x(t)‖ = −x̃. (18)

Again by (11) and (16) one finds limt→t̂ |ηj (t)| = ∞, j = 1, . . . , q, all Lagrange
multipliers ηj (t) changing sign when t passes t̂ ; this explains the interchange of lin-
ear indices and co-indices at two sided g.c. points at infinity of type 3. The transition
between the quadratic indices and co-indices is obtained by application of the inertia
formula (5) in the cases t < t̂, t = t̂ and t > t̂ , thereby taking into account (16) as well
as corankMt̂ = 1.

Case J = Jz, q = n (compare also the proof of theorem 3.2, case 2(b)). By
construction of O1, the curve QJz(t) (= M(t)) intersects the Mn,n-stratum

V
1
n−1,ξ,[τ ], ξ 0 = 0 for t = t̂ transversally at Mt̂ . As a subset of the open set Wn,n,

the latter stratum is given by the equation 0 = detM (= (−1)n det2DJz); use tables
1, 3, 4 and the inertia formula (5). The equation detD = 0 is a defining system for
our stratum (since on this stratum corankD = 1). Hence, from the above transversality
condition it follows

∇T det[DJz]|Mt̂

d

dt
M(t̂ ) = 0,

or equivalently,

d

dt
detDJz(t)|t=t̂ = ∇̃T det[DJz]|Dt̂

d

dt
DJz(t̂ ) = 0,

where ∇ and ∇̃ stands for gradient in Mn,n and Rn2
respectively. We conclude that

detDJz(t) changes sign at t = t̂ . (19)

We consider the feasibility condition

DJz(t)x + dJz(t) = 0. (20)

For t = t̂ there is no solution (since rank[Dt̂dt̂ ] = 1 + rankDt̂ ); for t ≈ t̂ , t = t̂ , there
is a unique solution, say x(t), because, due to (19), we then have detDJz(t) = 0. Since
J = Jz, all inequality constraints for PQ(t) are active at x(t) if t ≈ t̃ , t = t̃ . So, for
these t-values the points x(t) are feasible for PQ(t). In the proof of theorem 3.2 we did
already show that limt↑t̂ x(t)/‖x(t)‖ = x̃. Similarly, one proves (using (15) and (19))
that

lim
t↓t̂

x(t)

‖x(t)‖ = −x̃.

Recall that

detM(t) = (−1)ndet2DJz(t). (21)



ONE-PARAMETRIC LINEAR-QUADRATIC 251

By (19) and (21) there exists on a reduced neighborhood of t̂ a solution, say y(t) =
(x(t), η(t)) for (1). By Cramer’s rule: (cf. (11))

ηj (t) = −detMj(t)

detM(t)
, t ≈ t̂ , t = t̂ , j = 1, . . . , q. (22)

As in the proof of theorem 3.2 from this it follows that limt→t̂ |ηj (t)| = ∞, j =
1, . . . , q. However, by (21) the sign of the Lagrange parameters will not change when
t passes t̂ . This explains the non-changing of the linear (co-)indices in the case of two-
sided g.c. points at infinity of type 4.

Remark. Note, that by (15) and d
dt detDJz(t̂ ) = 0 for each index i with

det[D̂i
Jz
(t̂ ) dJz(t̂ )] = 0 it follows

lim
t→t̂

∣∣xi(t)∣∣∣∣t − t̂∣∣ = σi (23)

with some σi = 0. In view of (21) and (22) we have (recall detMj(t̂ ) = 0)

lim
t→t̂

∣∣ηj (t)∣∣(t − t̂ )2 = κj , j = 1, . . . , q, (24)

with some κj = 0. This means that (in the case of a g.c. point at infinity of type 4) for
t → t̂ the Lagrange multiplier η(t) tends to infinity more rapidly than the g.c. point x(t).
This effect is illustrated in example 2.

Case J = Jz, q = 0. The proof runs along the same lines as in the case 0 < q < n,
and will be deleted. (Compare also the comment in the proof of theorem 3.2, case 2(a),
q = 0; note that in this case there are no Lagrange multipliers, and thus the linear
(co-)indices are zero.)

Case Jz � J . In case of a g.c. point at infinity for t ↑ t̂ , the following property holds:

If Q(·) ∈ O and Jz � J then, for all indices j ∈ J \ Jz we have

∇T
x gj

(
x, t̂

)
x̂ = 0,

(25)

where x̂ is as introduced in theorem 3.2, case 2. (Note that ∇T
x gj (x, t̂ ) does not depend

on x.) In order to prove (25), we suppose that (25) is not true. Then for some j ∈
J \ Jz ( = ∅) we have

∇T
x gj

(
x, t̂

)
x̂ = 0.

Put gj (x, t) = Dj(t)x + dj (t) (thus Dj(t) = CT
j (t), dj (t) = cj (t); see the definition of

PQ(t) in section 2) and distinguish between the two cases 0 < q < n and q = n: (recall
that q � n; the case q = 0 is similar and omitted).



252 JONKER ET AL.

Case 0 < q < n. Put

M =
 At̂ DT

t̂
DT
j (t̂ ) at̂

Dt̂ O 0 dt̂
Dj (t̂ ) 0 0 dj (t̂ )

 .
Then, using the notations as introduced in lemma 5.7, from the proof of theorem 3.2,
case 2(a), cf. (12), it follows: (ŷ = (x̂, η̂))

M̂n+q+1ŷ = 0 and Mn+q+1

[
ŷ

0

]
= 0.

Since ŷ = 0, we have

det M̂n+q+1 = detMn+q+1 = 0,

which by construction of O (cf. lemma 5.7) is impossible.

Case q = n. PutD =
[

Dt̂

Dj (t̂ )

]
and d =

[
dt̂

dj (t̂ )

]
. Then, using the notations of lemma 5.9

from the proof of theorem 3.2, case 2(b), it follows

D̂n+1x̂ = 0 and [D d]
[
x̂

0

]
= 0.

Since x̂ = 0, we have

det D̂n+1 = det[D d] = 0,

which by construction of O (cf. lemma 5.9) is impossible. Altogether, we have proved
that property (25) holds.

Now we choose some j0 ∈ J \ Jz. Then, by (25) we have

∇T
x gj0

(
x, t̂

)
x̂

(= CT
j0
(t̂ )x̂

) = 0. (26)

As before, let (x(t), η(t)) be the solution of (10) on a reduced neighborhood of t̂ . Then,
x(t) is feasible for t < t̂ and t sufficiently close to t̂ , i.e., gj0(x(t), t) = CT

j0
(t)x(t) +

cj0(t) < 0. In view of (13) and (26) it follows CT
j0
(t̂ )x̃ < 0. But then CT

j0
(t̂ )(−x̃) > 0

and in view of (18) for t > t̂ and t sufficiently close to t̂ it follows gj0(x(t), t) =
CT
j0
(t)x(t) + cj0(t) > 0, i.e., x(t) is not feasible.
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