Skip to main content
Log in

Implementing a Multi-Model Estimation Method

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We revisit the problem of parameter estimation in computer vision, reconsidering and implementing what may be called the Kanatani's estimation method, presented here as a simple optimisation problem, so (a) without any direct reference to a probabilistic framework but (b) considering (i) non-linear implicit measurement equations and parameter constraints, plus (ii) robust estimation in the presence of outliers and (iii) multi-model comparisons.

Here, (A) a projection algorithm based on generalisations of square-root decompositions allows an efficient and numerically stable local resolution of a set of non-linear equations. On the other hand, (B) a robust estimation module of a hierarchy of non-linear models has been designed and validated.

A step ahead, (C) the software architecture of the estimation module is discussed with the goal of being integrated in reactive software environments or within applications with time constraints, while an experimentation considering the parameterisation of retinal displacements between two views is proposed as an illustration of the estimation module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. 1977. On entropy maximisation principle. Applications of Statistics. North Holland: Amsterdam, pp. 27-41.

  • Arias, S. 1999. Formalisation et intégration en vision par ordinateur. Ph.D. Thesis, University of Nice.

  • Bard, Y. 1974. Nonlinear Parameter Estimation. Academic Press: San Diego.

    Google Scholar 

  • Biernacki, C., Celeux, G., and Govaert, G. 1998. Assessing a mixture model for clustering with the integrated classification likelihood. Technical Report RR-3521, INRIA Rôhne-Alpes.

    Google Scholar 

  • Bolles, R.C. and Fischler, M.A. 1981. A RANSAC-based approach to model fitting and its application to finding cylinders in range data. In International Joint Conference on Artificial Intelligence, Vancouver, Canada, Aug. 1981, pp. 637-643.

  • Chaumette, F. and Rives, P. 1989. Modélisation et calibration d'une caméra. In AFCET, pp. 527-536.

  • Chojnacki, W., Brooks, M.J. and Hengel, A. 1999. Rationalising Kanatani's method of renormalisation in computer vision. In Statistical Methods for Image Processing, Uppsala, Sweden, August, pp. 61-63.

  • Danvy, O., GlÜck, R. and Thiemann, P. (Eds.). 1996. Partial Evaluation, Vol. 1110 of Lecture Notes in Computer Science. Springer Verlag: Berlin.

    Google Scholar 

  • Draper, N. and Smith, H. 1981. Applied Regression Analysis. John Wiley and Sons: New-York.

    Google Scholar 

  • Enciso, R. and Vieville, T. 1995. Experimental self-calibration from four views. In 8th International Conference Image Analysis and Processing (ICIAP'95), San remo, Italy, Sept. 1995, C. Braccini et al. (Ed.). Vol. 974 of Lecture notes in computer science, Springer-Verlag: Berlin, pp. 307-312.

    Google Scholar 

  • Gaspard, F. and Viéville, T. 1996. Hierarchical visual perception without calibration. RR 3002, INRIA Sophia-Antipolis.

    Google Scholar 

  • Gaspard, F. and Viéville, T. 2000. Non linear minimization and visual localization of a plane. In The 6th International Conference on Information Systems, Analysis and Synthesis, Vol. VIII, pp. 366-371.

    Google Scholar 

  • Gill, P.E., Murray, W. and Wright, M.H. 1993. Practical Optimization. Academic Press: San Diego.

    Google Scholar 

  • Goelb, A. 1974. Applied Optimal Estimation. MIT Press: Cambridge, MA.

    Google Scholar 

  • Grimm, J., Pottier, L. and Rostaing-Schmidt, N. 1996. Optimal time and minimum space-time product for reversing a certain class of programs. RR 2794, INRIA.

  • Hartley, R. 1997. In defense on the 8-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6):580-593.

    Google Scholar 

  • Hartley, R.I. 1992. Estimation of relative camera positions for uncalibrated cameras. Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita, Italy, May 1992, In G. Sandini (Ed.). Springer-Verlag: Berlin, pp. 579-587.

    Google Scholar 

  • Holland, J.H. 1975. Adaptation in natural and artificial systems. Ph.D. Thesis, University of Michigan.

  • Huber, P. 1981. Robust Statistics. John Wiley & Sons: New York.

    Google Scholar 

  • Kanatani, K. 1992. Geometric Computation for Machine Vision. Oxford University Press: London.

    Google Scholar 

  • Kanatani, K. 1996a. Automatic singularity test for motion analysis by an information criterion. In Proceedings of the 4th European Conference on Computer Vision, Cambridge, UK, Apr. 1996, B. Buxton (Ed)., Springer-Verlag, pp. 697-708.

  • Kanatani, K. 1996b. Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier Science: Amsterdan.

    Google Scholar 

  • Kanatani, K. 1998. Statistical optimization and geometric inference in computer vision. Phil. Trans. R. Soc. Lond., A(356):1303-1320.

    Google Scholar 

  • Lee, R. 1964. Optimal Estimation, Identification and Control. M.I.T. Press: Cambridge.

    Google Scholar 

  • Leedan, Y. 1997. Statistical analysis of quadratic problems in computer vision. P.h.D Thesis, Department of Electrical and Computer Engineering, Rutgers University.

  • Leedan, Y. and Meer, P. 2000. Heteroscedastic regression in computer vision: Problems with bilinear constraint. The International Journal of Computer Vision, 37(2):1-24.

    Google Scholar 

  • Lingrand, D. 1999. Analyse adaptative du mouvement dans des séquences monoculaires non calibrées. P.h.D Thesis, Université de Nice—Sophia Antipolis, INRIA, Sophia Antipolis, France.

    Google Scholar 

  • Luong, Q.-T., Deriche, R., Faugeras, O. and Papadopoulo, T. 1993.On determining the fundamental matrix: Analysis of different methods and experimental results. Technical Report 1894, INRIA.

  • Matei, B. and Meer, P. 2000.A general method for errors-in-variables problems in computer vision. In Computer Vision and Pattern Recognition Proceedings, June 2000.

  • Maybank, S.J. and Faugeras, O.D. 1992. A theory of self-calibration of a moving camera. The International Journal of Computer Vision, 8(2):123-152.

    Google Scholar 

  • Meer, P., Mintz, D., Rosenfeld, A., and Kim, D. 1991. Robust regression methods for computer vision: A review. The International Journal of Computer Vision, 6(1):59-70.

    Google Scholar 

  • Powell, M.J.D. 1978. The convergence of variable metric methods for nonlinearly constrained optimization calculations, Nonlinear Programming. Academic Press: New York.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. 1988. Numerical Recipes in C. Cambridge University Press: Cambridge.

    Google Scholar 

  • Rey, W.J. 1983. Introduction to Robust and Quasi-Robust Statistical Methods. Springer-Verlag: Berlin.

    Google Scholar 

  • Rousseeuw, P. and Leroy, A. 1987. Robust Regression and Outlier Detection. John Wiley & Sons: New York.

    Google Scholar 

  • Schwarz, H. 1989. Numerical Analysis.Wiley and Sons: New York.

    Google Scholar 

  • Stewart, C. 1997. Bias in robust estimation caused by discontinuities and multiple structures. Pami, 19(8):818-833.

    Google Scholar 

  • Torr, P.H.S. 1998. Geometric motion segmentation and model selection. Phil. Trans. R. Soc. Lond. A, 356:1321-1340.

    Google Scholar 

  • Torr, P.H.S. and Murray, D.W. 1997. The development and comparison of robust methods for estimating the fundamental matrix. IJCV, 24(3):271-300.

    Google Scholar 

  • Triggs, B. 1998. Optimal estimation of matching constraints. In Workshop on 3D Structure from Multiple Images of Large-scale Environments SMILE'98, R. Koch and L.V. Gool (Eds.). Lecture notes in computer science.

  • Viéville, T. and Faugeras, O. 1996. The first order expansion of motion equations in the uncalibrated case. CVGIP: Image Understanding, 64(1):128-146.

    Google Scholar 

  • Viéville, T., Faugeras, O.D., and Luong, Q.-T. 1996a. Motion of points and lines in the uncalibrated case. The International Journal of Computer Vision, 17(1):7-42.

    Google Scholar 

  • Viéville, T. and Lingrand, D. 1999. Using specific displacements to analyze motion without calibration. The International Journal of Computer Vision, 31(1):5-29.

    Google Scholar 

  • Vieville, T., Lingrand, D. and Gaspard, F. 2000. Implementing a variant of the Kanatani's estimation method. RR 4050, INRIA.

  • Viéville, T. and Sander, P. 1992. Using pseudo Kalman-filters in the presence of constraints. Technical Report RR-1669, INRIA, Sophia, France.

    Google Scholar 

  • Viéville, T., Zeller, C. and Robert, L. 1996. Using collineations to compute motion and structure in an uncalibrated image sequence. The International Journal of Computer Vision, 20(3):213-242.

    Google Scholar 

  • Wei, G. and Ma, S. 1994. Implicit and explicit camera calibration: Theory and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(5):469-480.

    Google Scholar 

  • Zhang, Z. 1997. Parameter estimation techniques: A tutorial with application to conic fitting. Image and Vision Computing Journal, 15(1):59-76.

    Google Scholar 

  • Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q.-T. 1994. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal, 78(1-2):87-119, also appeared in October 1995, also INRIA Research Report No.2273, May 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieville, T., Lingrand, D. & Gaspard, F. Implementing a Multi-Model Estimation Method. International Journal of Computer Vision 44, 41–64 (2001). https://doi.org/10.1023/A:1011120419133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011120419133

Navigation