Skip to main content
Log in

A Posteriori Error Estimators for a Class of Variational Inequalities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present an a posteriori error analysis for the finite element approximation of a variational inequality. We derive a posteriori error estimators of residual type, which are shown to provide upper bounds on the discretization error for a class of variational inequalities provided the solutions are sufficiently regular. Furthermore we derive sharp a posteriori error estimators with both lower and upper error bounds for a subclass of the obstacle problem which are frequently met in many physical models. For sufficiently regular solutions, these estimates are shown to be equivalent to the discretization error in an energy type norm. Our numerical tests show that these sharp error estimators are both reliable and efficient in guiding mesh adaptivity for computing the free boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ainsworth, M., Oden, J. T., and Lee, C. Y. (1993). Local a posteriori error estimators for variational inequalities. Numerical Methods for Partial Differential Equations 9, 22–33.

    Google Scholar 

  2. Ainsworth, M., and Oden, J. T. (1997). A posteriori error estimators in finite element analysis. Computer Methods Appl. Mech. Engr. 142, 1–88.

    Google Scholar 

  3. Bank, R. E., and Weiser, A. (1985). Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44, 283–301.

    Google Scholar 

  4. Baranger, J., and Amri, H. E. (1991). A Posteriori Error Estimators in Finite Element Approximation of Quasi-Newtonian Flows, M 2 AN, Vol. 25, pp. 31–48.

    Google Scholar 

  5. Bernardi, C. (1989). Optimal finite-element interpolation on curved domains. SIAM J. of Numer. Anal. 26, 1212–1240.

    Google Scholar 

  6. Brezis, H. (1972). Problè mes unilaté raux. J. Math. Pures. Appl. 51, 1–168.

    Google Scholar 

  7. Brezzi, F., Hager, W. W., and Raviart, P. A. (1977). Error estimates for the finite element solution of variational inequalities I. Numer. Math. 28, 431–443.

    Google Scholar 

  8. Ciarlet, P. G. (1978). The Finite Element Method for Elliptic Problems, North-Holland Publ., Amsterdam.

    Google Scholar 

  9. Clè ment, Ph. (1975). Approximation by finite element functions using local regularization. RAIRO Numer. Anal. R-2, 77–84.

    Google Scholar 

  10. Duvaut, G., and Lions, J. L. (1973). The Inequalities in Mechanics and Physics, Springer-Verlag.

  11. Elliott, C. M. (1980). On a variational inequality formulation of an electrochemical machining and its approximation by finite element methods. J. Inst. Math. Appl. 25, 121–131.

    Google Scholar 

  12. Elliott, C. M., and Ockendon, J. R. (1982). Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics, Vol. 59, Pitman, Boston.

    Google Scholar 

  13. Falk, R. S. (1974). Error estimates for the approximation of a class of variational inequalities. Math. Comp. 28, 963–971.

    Google Scholar 

  14. Friedman, A. (1982). Variational Principles and Free-Boundary Problems, Academic Press, New York.

    Google Scholar 

  15. French, D. A., Larsson, S., and Nochetto, R. H. Pointwise A Posteriori Error Analysis for an Adaptive Penalty Finite Element Method for the Obstacle Problem (in preparation).

  16. Glowinski, R., Lions, J. L., and Tremolieres, R. (1976). Numerical Analysis of Variational Inequalities, North-Holland, Netherlands.

  17. Johnson, C. (1992). Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2, 483–487.

    Google Scholar 

  18. Kinderlehrer, D., and Stampacchia, G. (1980). An Introduction to Variational Inequalities and Their Applications, Academic Press, New York.

    Google Scholar 

  19. Kornhuber, R. (1996). A posteriori error estimates for elliptic variational inequalities. Comp. Math. Appl. 31, 49–60.

    Google Scholar 

  20. Kufner, A., John, O., and Fucik, S. (1977). Function Spaces, Nordhoff, Leyden, The Netherlands.

    Google Scholar 

  21. Lewy, H., and Stampacchia, G. (1969). On the regularity of the solution of a variational inequality. Comm. Pure Appl. Math. 22, 153–188.

    Google Scholar 

  22. Lions, J. L., and Magenes, E. (1972). Nonhomogeneous Boundary Value Problems and Applications (I), Springer-Verlag.

  23. Liu, W. B., and Barrett, J. W. (1993). Error bounds for the finite element approximation of a degenerate quasilinear parabolic variational inequality. Adv. Comp. Math. 1(2), 223–239.

    Google Scholar 

  24. Liu, W. B., and Barrett, J. W. (1994). Quasi-norm error bounds for the finite element approximation of degenerate quasilinear elliptic variational inequalities. RAIRO Numer. Anal. 28, 725–744.

    Google Scholar 

  25. Liu, W. B., and Barrett, J. W. (1995). Quasi-norm error bounds for the finite element approximation of degenerate quasilinear parabolic variational inequalities. Num. Funct. Anal. Optim. 16, 1309–1321.

    Google Scholar 

  26. Nochetto. R. H. (1986). A note on the approximation of free boundaries by finite element methods. RAIRO Model. Math. Anal. Numer. 20, 355–368.

    Google Scholar 

  27. Nochetto, R. H. (1989). Pointwise accuracy of a finite element method for nonlinear variational inequalities. Numer. Math. 54, 601–618.

    Google Scholar 

  28. Scholz, R. (1986). Numerical solution of the obstacle problem by the penalty method, II. Numer. Math. 49, 255–268.

    Google Scholar 

  29. Scott, L. R., and Zhang, S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493.

    Google Scholar 

  30. Verfurth, R. (1989). A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325.

    Google Scholar 

  31. Verfurth, R. (1996). A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner.

  32. Verfurth, R. (1994). A posteriori error estimates for non-linear problems. Math. Comp. 62, 445–475.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Yan, N. A Posteriori Error Estimators for a Class of Variational Inequalities. Journal of Scientific Computing 15, 361–393 (2000). https://doi.org/10.1023/A:1011130501691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011130501691

Navigation