Skip to main content
Log in

Complexity, Confusion, and Perceptual Grouping. Part II: Mapping Complexity

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Intermediate-level vision is central to form perception, and we outline an approach to intermediate-level segmentation based on complexity analysis. In this second of a pair of papers, we continue the focus on edge-element grouping, and the motivating example of an edge element inferred from an unknown image. Is this local edge part of a long curve, or part of a texture? If the former, which is the next element along the curve? If the latter, is the texture like a well-combed hair pattern, in which nearby elements are oriented similarly, or more chaotic, as in a spaghetti pattern? In the previous paper we showed how these questions raise issues of complexity and dimensionality, and how context in both position and orientation are important. We now propose a measure based on tangential and normal complexities, and illustrate its computation. Tangential complexity is related to extension; normal complexity to density. Taken together they define four canonical classes of tangent distributions: those arising from curves, from texture flows, from turbulent textures, and from isolated “dust”. Examples are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alter, T. and Basri, R. 1996. Extracting salient contours from images: An analysis of the salience network. In Proc. of the IEEE CVPR. IEEE Comp. Society; pp. 13–20.

  • Antonini, A. and Stryker, M.P. 1993. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J. Neuroscience, 13(8):3549–3573.

    Google Scholar 

  • Attneave, F. 1954. Some informational aspects of visual perception. Psychological Review, 61:183–193.

    Google Scholar 

  • Borgefors, G. 1984. Distance transformations in arbitrary dimensions. Computer Vision, Graphics and Image Processing, 27:321–345.

    Google Scholar 

  • Borgefors, G. 1986. Distance transformations in digital images. Computer Vision, Graphics and Image Processing, 34:344–371.

    Google Scholar 

  • Breton, P. 1994. Recovering shape from shading and contour. Ph.D. Thesis, McGill University, Dept. of Electrical Engineering, Montréal.

    Google Scholar 

  • Cover, T.M. and Thomas, J.A. 1991. Elements of Information Theory. Wiley: New York.

    Google Scholar 

  • Dubuc, B. 1988. On estimating fractal dimension. Master's Thesis, McGill University, Dept. of Electrical Engineering, Montréal.

    Google Scholar 

  • Dubuc, B. 1995. On the complexity of curves and the representation of visual information. Ph.D. Thesis, McGill University, Dept. of Electrical Engineering, Montréal.

    Google Scholar 

  • Dubuc, B., Quiniou, J.-F., Roques-Carmes, C., Tricot, C., and Zucker, S.W. 1989. Evaluating the fractal dimension of profiles. Phys. Rev. A 39(3):1500–1512.

    PubMed  Google Scholar 

  • Dubuc, B. and Zucker, S.W. 1995. Indexing visual representations through the complexity map. In Proc. of the 5th ICCV. IEEE Comp. Society: Cambridge, MA, pp. 142–149.

  • Dubuc, B. and Zucker, S.W. 2000. Complexity, confusion, and perceptual grouping. Part I: The curve-like representation. this issue.

  • Dubuc, S. and Dubuc, B. 1996. Error bounds on the estimation of fractal dimension. SINUM, 33(2):602–626.

    Google Scholar 

  • DuPain, Y., Kamae, and Mendès-France, M. 1986. Can one measure the temperature of a curve?. Arch. of Rat. Mech. and Anal., 155–163.

  • Falconer, K.J. 1990. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons Ltd: Chichester, England.

    Google Scholar 

  • Galli, A. and Zama, A. 1931. Untersuchungen über diewahrnehmung ebener geometrischen figuren die ganz oder teilweise von anderen geometrischen figuren verdeckt sind. Zeitschrift f¨ur Psychologie, 123:308–348.

    Google Scholar 

  • Heitger, F. and von der Heydt, R. 1993. A computational model of neural contour processing: figure-ground segregation and illusory contours. In Proc. of the Fourth ICCV. IEEE Comp. Society: pp. 32–40.

  • Kanizsa, G. 1979. Organisation in Vision, Praeger, New York.

    Google Scholar 

  • Koenderink, J. 1990. Solid Shape. MIT Press: Cambridge, MA.

    Google Scholar 

  • Kolmogorov, A.N. 1965. Three approaches to the quantitative definition of information. Problems Inform. Transmission, 1(1): 1–7.

    Google Scholar 

  • Kolmogorov, A.N. 1987. Information theory and theory of algorithms. In Selected Works, Vol. 3, Y.V. Prokhorov and A.N. Shiryaev (Eds.). Nauka (in Russian).

  • Leymarie, F. and Levine, M.D. 1992. Fast raster scan distance propagation on the discrete rectangular lattice. CVGIP: Image Understanding, 55:84–94.

    Google Scholar 

  • Lindeberg, T. 1993. On scale selection for differential operators. In Proc. of the 8th Scand. Conf. on Im. Anal., Tromsø, Norway, pp. 857–866.

  • Lindenbaum, M. and Berengolts, A. 2000. A probabilistic interpretation of the saliency network. In Proc. ECCV, pp. 257–272.

  • Mahoney, J.V. 1987. Image chunking: Defining spatial building blocks for scene analysis. MIT Artificial Intelligence Laboratory, Cambridge, MA, M.I.T. Technical Report980.

    Google Scholar 

  • Mandelbrot, B.B. 1970. How long is the coast of Britain?. Physica Scripta, 32:257–260.

    Google Scholar 

  • Mandelbrot, B.B. 1982. The Fractal Geometry of Nature. Freeman: San Francisco.

    Google Scholar 

  • Matheron, G. 1975. Random Sets and Integral Geometry. JohnWiley and Sons: New York.

    Google Scholar 

  • Mendès-France, M. 1991a. Dimension and entropy of regular curves. In Fractals: Non-integral Dimensions and Applications.G. Cherbit (Ed.). John Wiley and Sons Ltd, Baffins Lane, Chichester, pp. 222–230.

    Google Scholar 

  • Mendès-France, M. 1991b. The Planck constant of a curve. In Fractal Geometry and Analysis. S. Dubuc and J. Bélair, (Eds.). Kluwer Academic Publishers: pp. 325–366.

  • Pagels, H.R. 1988. The Dreams of Reason: the Computer and the Rise of the Sciences of Complexity. Simon and Schuster: New York.

    Google Scholar 

  • Pentland, A.P. 1984. Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Machine Intell., 6(6):661–674.

    Google Scholar 

  • Pentland, A.P. 1985. On describing complex surface shapes. Image and Vision Computing, 3(4):153–162.

    Google Scholar 

  • Santaló, L.A. 1976. Integral geometry and geometric probability. In Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Company: Reading, MA.

    Google Scholar 

  • Serra, J. 1982. Image Analysis and Mathematical Morphology. Academic Press: London.

    Google Scholar 

  • Sha'ashua, A. and Ullman, S. 1988. Structural saliency: the detection of globally salient structures using a locally connected network. In Proc. of the 2nd ICCV. IEEE Comp. Society: pp. 321–327.

  • Treisman, A. 1985. Preattentive processes in vision. Computer Vision, Graphics and Image Processing, 31:156–177.

    Google Scholar 

  • Tricot, C. 1995. Curves and Fractal Dimension. Springler-Verlag: New York.

    Google Scholar 

  • Tricot, C., Quiniou, J.-F., Wehbi, D., Roques-Carmes, C. and Dubuc, B. 1988. Evaluation de la dimension fractale d'un graphe. Revue Phys. Appl., 23:111–124.

    Google Scholar 

  • Turing, A. 1936. On computable numbers with an application to the entscheidungsproblem. Proc. London Math. Soc., 42:230–265. Correction, Ibid, 43:544–546, 1937.

    Google Scholar 

  • Ullman, S. 1990. Three-dimensional object recognition. In Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV, Cold Spring Harbor Laboratory Press, pp. 889–898.

    Google Scholar 

  • Valiron, G. 1966. Théorie des Fonctions. Masson et Cie: Paris.

    Google Scholar 

  • Williams, L. and Thornber, K. 1998. A comparison of measures for detecting natural shapes in cluttered backgrounds. In Proc. ECCV, pp. 432–448.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubuc, B., Zucker, S.W. Complexity, Confusion, and Perceptual Grouping. Part II: Mapping Complexity. International Journal of Computer Vision 42, 83–115 (2001). https://doi.org/10.1023/A:1011141618114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011141618114

Navigation