Skip to main content
Log in

FILO (Field Interaction Ligand Optimization): A simplex strategy for searching the optimal ligand interaction field in drug design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A method (FILO, Field Interaction Ligand Optimization) for obtaining the optimal molecular interaction field was developed on the basis of the Simplex optimization procedure applied to a matrix of interaction energies obtained by performing a GRID computation on a suitable data set. The FILO procedure was tested on a set of nine HIV-1 protease inhibitors with known crystal structures. The results of FILO consist of the optimal molecular interaction field of a putative new ligand with optimal binding affinity. The final FILO model yields R 2 and R 2 CV values of 0.993 and 0.936, respectively, and finds eight negative and four positive interaction nodes for the OH probe taken as an example. The eight H bonding interactions pointed out by FILO identified well the binding site AA-residues Gly A27, Asp A29, water 501, Gly B48 and Asp A25 of HIV-1 protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cramer III, R.D., Patterson, D.E and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  2. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  3. Snyder, J.P. and Rao, S.N., Chem. Design Autom. News, 4 (1989) 13.

    Google Scholar 

  4. Snyder, J.P. and Rao, S.N., Crai Channels, 11 (1990) 12.

    Google Scholar 

  5. Snyder, J.P., Rao, S.N., Kohler, K.F. and Pellicciari, R., In Angeli, P., Gulini, U. and Quaglia, W. (Eds.) Trends in Receptor Research, Elsevier Science Publishers, Amsterdam, 1992, pp. 367-403.

    Google Scholar 

  6. Snyder, J.P., Rao, S.N., Kohler, K.F. and Vedani, A., In Kubinyi, H. (Ed.) 3D-QSAR in Drug Design: Theory, Method and Applications, ESCOM, Leiden, 1993, pp. 336-354.

    Google Scholar 

  7. Momany, F., Pitha, R., Klimkowsky, V.J. and Venkatachalam, C.M., In Hohne, B.A. and Pierce, T.H. (Eds.) Expert Systems and Applications in Chemistry, ACS Symp. Ser. 408, 1989, p. 82.

  8. Walters, D.E. and Hints, R.M., J. Med. Chem., 37 (1994) 2527.

    Google Scholar 

  9. Doweyko, A.M., J. Med. Chem., 37 (1994) 1769.

    Google Scholar 

  10. Hahn, M. and Rogers, D., J. Med. Chem., 38 (1995) 2091.

    Google Scholar 

  11. Hahn, M., J. Med. Chem., 38 (1995) 2080.

    Google Scholar 

  12. Vedani, A., Zbinden, P. and Snyder, J.P., J. Receptor Res., 13 (1993) 163.

    Google Scholar 

  13. Vedani, A., Zbinden, P., Snyder, J.P. and Greenidge, P.A., J. Am. Chem. Soc., 117 (1995) 4987.

    Google Scholar 

  14. Zbinden, P., Dobler, M., Folkers, G. and Vedani, A., Quant. Struct.-Act. Relat., 17 (1998) 122.

    Google Scholar 

  15. Lucasius, C.B. and Kateman, G., Chemom. Intell. Lab. Syst., 25 (1994) 99.

    Google Scholar 

  16. Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R. and Clementi, S., Quant. Struct.-Act. Relat., 12 (1993) 9.

    Google Scholar 

  17. Pastor, M., Cruciani, G. and Clementi, S., J. Med. Chem., 40 (1997) 1455.

    Google Scholar 

  18. InsightII 97.0, Molecular Simulations, San Diego, CA, USA.

  19. SYBYL-Molecular Modeling Software, 6.4, Tripos Incorporated, St. Louis, MO, USA.

  20. GRID v. 16, Molecular Discovery Ltd., University of Oxford, England, SGI.

  21. Nelder, J.A. and Mead, R., Comput. J., 7 (1965) 308.

    Google Scholar 

  22. Spendeley, W., Hext, G.R. and Himsworth, F.R., Technometrics, 4 (1962) 441.

    Google Scholar 

  23. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F. Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  24. Dreyer, G.B., Lambert, D.M., Meek, T.D., Carr, T.J., Tomaszek, T.A., Jr., Fernandez, A.V., Bartus, H., Caccivillani, E., Hassell, A.M., Minnich, M., Petteway, S.R., Jr. and Metcalf, B.W., Biochemistry, 31 (1992) 6646.

    Google Scholar 

  25. Hoog, S.S., Zhao, B., Winborne, E., Fisher, S., Green, D.W., DesJarlais, R.L., Newlander, K.A., Callahan, J.F., Moore, M.L., Huffam, W.F. and Abdel-Meguid, S.S., J. Med. Chem., 38 (1995) 3246.

    Google Scholar 

  26. Abdel-Meguid, S.S., Zhao, B., Murthy, K.H.M., Winborne, E., Choi, J., DesJarlais, R.L., Minnich, M.D., Culp, J.S., Debouck, C., Tomaszek, T.A., Jr., Meek, T.D. and Dreyer, G.B., Biochemistry, 32 (1993) 7972.

    Google Scholar 

  27. Kim, E.E., Baker, C.T., Dwyer, M.D., Murcko, M.A., Rao, B.G., Tung, R.D. and Navia, M.A., J. Am. Chem. Soc., 117 (1995) 1181.

    Google Scholar 

  28. Jhoti, H., Singh, O.M.P., Weir, M.P., Cooke, R., Murray-Rust, P. and Wonacott, A., Biochemistry, 33 (1994) 8417.

    Google Scholar 

  29. Hosur, M.V., Bhat, N., Kempf, D.J., Baldwin, E.T., Liu, B., Gulnik, S., Wideburg, N.E., Norbeck, D.W., Appelt, K. and Erickson, J.W., J. Am. Chem. Soc., 116 (1994) 847.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melani, F., Gratteri, P., Adamo, M. et al. FILO (Field Interaction Ligand Optimization): A simplex strategy for searching the optimal ligand interaction field in drug design. J Comput Aided Mol Des 15, 57–66 (2001). https://doi.org/10.1023/A:1011178027463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011178027463

Navigation